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The thermal conductivity of an anharmonic crystal containing randomly distributed sub-

stitutional defects due to impurity-phonon scattering is theoretically investigated with the

use of the method of double-time thermal Green's functions and the Kubo formalism con-

sidering all the terms, i.e., diagonal, nondiagonal, cubic anharmonic, and imperfection terms

in the energy-fiux operator as propounded by Hardy. The study uses cubic, quartic anhar-

monic, and defect terms in the Hamiltonian. Mass changes as well as force-constant

changes between impurity and host-lattice atoms are taken into account explicitly. It is

shown that the total conductivity can be written as a sum of contributions, namely diagonal,

nondiagonal, anharmonic, and imperfection contributions. For phonons of small halfwidth,

the diagonal contribution has precisely the same form which is obtained from Boltzmann's

transport equation for impurity scattering in the relaxation-time approximation. The

present study shows that there is a finite contribution of the nondiagonal term, cubic anhar-

monic term, and the term due to lattice imperfections in the energy-flux operator to the

thermal conductivity although the contribution is small compared with that from the diago-

nal part. We have also discussed the feasibility of numerical evaluation of the various con-

tributions to the thermal conductivity.

I. INTRODUCTION

There has been considerable interest in past
theoretical studies of the lattice conductivity of
solids doped with impurities. These studies are gen-
erally based on the Boltzmann equation for phonons
first presented by Peierls' and are discussed exten-
sively in review articles by Klemens and Caruth-
ers. These theories suffer from the usual shortcom-
ings of kinetic theories as enumerated by Hardy.
The latest theories on phonon transport in solids ex-

press the thermal conductivity in terms of a correla-
tion function of the energy-flux operator on the
dynamical variables of the system, i.e., the creation
and annihilation operators for phonons in the case
of a lattice. Hardy5 has given a systematic deriva-
tion of the energy-flux operator for a three-
dimensional lattice in terms of the phonon variables,
which is valid for all phases of matter. It is shown
that even in the harmonic approximations the total
energy-flux operator contains the nondiagonal terms
in addition to the usual diagonal term. The contri-
butions to the average energy flux for the anhar-
monic forces and from lattice imperfections are also
included.

Within the last few years a large number of work-
ers ' have investigated the behavior of the thermal
conductivity of crystals containing substitutional de-

fects using the correlation function formalism of
Kubo' and various other techniques. In all these
studies the effect of lattice imperfections on the
average heat-flux operator of the crystal is not taken
into account, which becomes significant at low tem-
perature. Goyal and Sharma' have considered the
influence of lattice imperfection term in the energy-
flux operator on the transport of heat in harmonic
crystals.

The aim of the present study is to derive an ex-
pression for the thermal conductivity of an anhar-
monic Bravais crystal containing randomly distri-
buted substitutional defects using the double-time
thermal Green's-function technique, ' and the Kubo
formalism taking into account both mass and force-
constant changes and considering the contributions
of lattice imperfections and cubic anharmonic forces
to the energy-flux operator as propounded by Har-
dy. In Sec. II, a general formulation of the Kubo
formula for the thermal conductivity is given and
the thermal conductivity is separated into terms
contributed by diagonal, nondiagonal, anharmonic
forces, and imperfection terms in the energy flux.
Section III describes the Hamiltonian used and deals
with the evaluation of necessary double-time Green's
functions with the help of the Dyson equation. In
Sec. IV we derive an expression for the diagonal,
nondiagonal, anharmonic-force, and lattice-
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imperfection contributions to the lattice thermal
conductivity of the system. In Sec. V we summarize
the various results and also discuss the feasibility of
numerical evaluation of the various contributions to
thermal conductivity.

II. GENERAL FORMULATION

We start with the Kubo correlation formula for
the thermal conductivity, ' '

kgP 2

K= ((m f d(e "Re(Q(0) Q((0, (()
o 3V

where P=(k&T) ', k~ is the Boltzmann constant, V
and T are the volume and the temperature of the
crystal, Q(t) is the heat-flux operator for the lattice
in the Heisenberg representation, and the angular
brackets denote the canonical ensemble average of
the expectation value of the operator and Re stands
for the real part of the quantity.

Taking into account the contributions to the aver-

K =Kd +K„d+K, +K,~ +K;

where

(3)

age energy flux due to cubic anharmonic forces and
from perturbations characterizing lattice imperfec-
tions, Hardy has shown that the total heat-flux
operator can be written as

Q(t) =Qp(t)+Q'(t)+Q"(t), (2)

where Qp(t) is independent of perturbation and de-
scribes the heat-flux operator of an ideal lattice in
the harmonic approximation, Q'(t) describes the
contribution to the heat-flux operator from the cu-
bic anharmonic forces, and Q"(t) represents the con-
tribution to the heat-flux operator due to the lattice
imperfection. The detailed exp essions for these
quantities are given by Hardy.

When Eq. (2), with the expressions of the dif-
ferent quantities involved in it, are substituted into
Eq. (l), the thermal conductivity can be written as

A kgP 00
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(10)

where the asterisk indicates the complex conjugation and expressions for Xk k, , k, . „, Yk k, , k „„,
Z-„,-„,-„„,, J -„-„,, -„.. „,and J

k k
. . are given by Hardy. Equations (4)—(6) describe the contributions of the

diagonal, nondiagonal, and cubic parts of the average heat-flux operator to the thermal conductivity. Equation
(7) along with Eqs. (9a) and (9b) gives contribution due to anharmonic forces as correction terms to the thermal
conductivity. Equation (10) describes the contribution of the lattice imperfection of the average heat-flux
operator to the thermal conductivity.

The correlation functions R and L appearing in the above equations are given by

R-k, k,, (t)=(A k, (0)Bk, (0)A-„, (t)8 k,, (t)), (11)

R -„,-„,(t) = (A -„,(0)8-„,, (0)A k, ( t)B-„,(t) ),
„(t)= (A «k (0)A k, , (0)A «k»» (0)A «(t)A «& ~ (t)A «««(t) )ks k's'k "s"k lsl k lsl k 1sl' ks k'$' k "s" k lsl k 1$1 k

1
sl'

L- -, ,-„„- -,- „(t)= (A - {0)B-,.(0)8-., „(0)A— (t)8-, (t)B-:(t))ksk s k s klslklsl klsl ks k s k s klsl klsl klsl

+ (8k,„(Q)8-„,(0)A -„,(0)8-„„(t)B-„,(t)A ~k, (t) )

+{Ak, (0)Bk, (0)Bk„,„(0)B-„~,(t)B-„- „(t)A k, (t))

+ (8-„„,„(0)8k,, (0)A -„,(0)A -„, (t)B-„,( t)B -„~ „(t)), (14)

ksksksksklslklsl klsl k
1 $1

=(8k, (0)Bk, (0)8 k,„(0)A k...,„,(0)8 k, (t)B-„,(t)B- „A -„„,(t))
+(A k„, .„(0)Bk„,.(0)B k(0)A (k0)A- „,8- „8-,(t)Bk (t))

+ (A-k„,,„,(0)Bk„, (0)Bk., (0)B-„,(0)Bk, (t)B-„,(t)B „~ „(t)A -„"„,(t))

+{8k,{0)Bk., (0)Bk„, ( )0A „k,,„,(0)A-„„,B-„-„(t)B-„,(t)B k, (t)), (15)

and

L ««, ,««i, (t) = (A «(0)B«, , (0)A «(t)8 «~, (t) )ks k's'k lsl k lsl ks k's' k lsl k lsl

Thus we notice that the problem of evaluating the lattice thermal conductivity of doped crystals is reduced
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to that of the calculation of two-time correlation function on a suitable model for the crystal Hamiltonian.
These correlation functions can be evaluated by different techniques. Here we use the thermodynamic
Green's-function' method which is well suited for this purpose. The calculation of the canonical average in
Eqs. (4), (5), and (8)—(10) is considerably simplified if the correlation functions are factorized according to a
decoupling scheme. 0 Thus for the average of a four-operator product abed, we write

(abed ) = (ab ) (cd ) + (ac ) (bd ) + (ad ) (bc ) .

With the use of the above decoupling scheme the correlation functions (11}—(16) can be written as

R k, k,, (t)=(A-„,(0)A k,, (t)(8-„,(0)Bk,, (t))+(A k, (0)Bk., (t))(8-„,(0)A-„, (t)),
R-„,k, (t)=(A k, (0)A k, (t))(Bk, (0).8-„,(0))+(A k,(0)B-„,(t))(B k, , (0)A k, (t)),

R-„-„,,-„„„-„-„,- „(t)= (A k, (0}A k, (t) ) (A k., (0)A k „,„(0)A -„~, (t)A -„~ „(t)),
L-„-„,,-„„„-„-,-„~ „(t)=4[(Ak, (0)A k, (t))(Bk., (0)8k „, (0)B-„,(t)B-„„(t))],

(18)

(19)

(20)

ks k's'k "s"k"'s"'k
&s] k ]s~ k

1
s~"

=4[ (A k.„,.„(0)A -„~ „,(t) ) (8 k, (0)Bk,, (0)Bk „, (0)8 k, , t)B-„,(t)B-„- „(t) )), (22)

and

L- -, ,- -, (t) = (A k, (0)A k (t) ) (8 k,, (0)B-,(t) ) + (A k,(0)8-, (t) ) (8 k, , (0)A k (t) ) . (23)

In writing Eqs. (19)—(23) we have neglected the correlation functions of the operators with the same time ar-
guments because they do not contribute to the thermal conductivity, which follows from the fact that there is
no heat flow in equilibrium.

III. HAMILTONIAN AND GREEN'S FUNCTIONS

For further analysis, an explicit expression for the Hamiltonian is needed. Here we consider a three-
dimensional cubic Bravais anharmonic crystal with total number of N atoms whose n lattice sites are occupied
by randomly distributed substitutional defects each of mass M, while the remaining (N n} lat—tice sites are
occupied by host atoms of mass M. The introduction of defects modifies the force constants between the host
and impurity atoms around the defect sites in additian to the change in mass. If the defect contribution (n/N)
is quite small, one can assume that the distance between any two defect atoms is too large so that the
impurity-impurity interactian can be neglected. The farce-constant changes associated with defect and host
atoms may be assumed to be restricted only to nearest neighbors. It is assumed that the defect causes changes
anly in the harmonic forces and anharmonic forces remains unchanged. Thus the total Hamiltonian of such a
defect anharmonic crystal in second quantized notation can be written as

H =Ho+H'yH~,

where Ho is the harmonic Hamiltonian of an unperturbed lattice given by

Ho g~k(ttkttk+ 2 } 4 g~k(AkAk+BkBk} ~

k k

(24)

(25)

For brevity and canvenience in what follows we use index k as a short form for ks. The perturbation part H'
arises because of the substitutional defects in the crystal and can be written as

H'= fi g C—(kik2)Bk Bk +A g D(ki, k2)Ak, Ak, .
k), k2 k(, k~

(26)

The parameters C(ki, k2) and D(ki, k2) depend upon changes in mass and force constant due ta the introduc-
tion of impurities and are given in Ref. 11.

The anharmonic contribution Hq which contains dominant cubic and quartic terms in the expansion of the
lattice potential energy in powers of atomic displacements can be written as
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Hg ——A' g V' '(k(&kz&k3)AI, Al, Ai, , +A
k), k2, k3 k), k2, k3, k4

V' '(k), kz, k3, k4)AI, Ag Ai, Ag (27)

where the coefficients V' ' and V' ' are the Fourier transforms of third- and fourth-order atomic force con-
stants. They are symmetric with respect to pair of indices k and are given by Maradudin and Fein.

In order to evaluate the correlation functions appearing in Eqs. (18), (20), and (23), we introduce the follow-
ing one-phonon retarded Green's functions:

Gi&'(r t) =(—(AI, (t);A~ (r'))) = i B—(t —t')([A&(t),AI, (t')]),
Gl', I,'(t t') =—((A/, (t);B/, (t') )),
GI'I, '(t t') —= ((BI,(t);By (&') )), (28c)

(28b)

(29b)

and also for the evaluation of the correlation functions appearing in Eqs. (20)—(22), we introduce the following
two-phonon and three-phonon retarded Green's functions:

g'"(t —r')=((Al, (t)AI, (t);A„, (t')A„, (t'))), (29a)

g '"(t t') = &(—BI,, (t)BI,,(t);B„', (t')B„', (t') )&,

g' '(t —t') =((Bi,, (t)BA, (t)BI,,(t);BI,, (t')BI,, (t')BI, (t')))
& (29c)

where e(t) is the usual Heaviside step function and is equal to 1 for t & 0 and is 0 for t & 0.
For the evaluation of the Green's function we apply an approach in which we first develop an expression in

terms of Dyson equation using the equation-of-motion method and then to obtain an expression for the polari-
zation operator of the system.

Differentiating Eq. (28a) twice with respect to the time argument t and using the commutation relation for
the Hamiltonian (24), we obtain the following equation for the Fourier transform of the Green s function:

(co col )Gi,—g (co)= 5', +—C( k, k')+ —((FI, (t)&AI, (t')))~
&

(&) k 4, k (1) (30)

where 51,1, is the Kronecker 5, the suffix co on the right-hand side indicates the Fourier transformation, and

Fl', "(t)=4m g D( k, k( )Al, ,
(t)—+

k)

COk 16m.
C( —k, k))Ag (t) + g [C( —k, k))D( —kz, k))]AI, ,

(t)
Nk Nk

+2m 3 g V' '(k~&kz& k)AI, AI, —+4 g V' '(k& kz &k3 &k&)AI AI,zAI, ,
k(, k2 k), k~, k3

Considering the equation of motion for the Green s function that appears on the right-hand side of Eq. (31)
with respect to the time argument t and substituting the Fourier transform of the resulting expression into Eq.
(30), the equation of motion for the Green's function GI',I,'(co) can be written in the form of the Dyson equation,

G'„"(co)=G (co)5 +G (co)P „(co)G (co)=G (co)5 +G„(co)II"'(a))G'„"(co),

where

(32)

and

Nk
GI, (~)=

77(CO —COg )
(33)

PII,'(co)= — ([FII."(t)&By (t')])+ ([FII' (t)&AI, (t')])+ g C(k', —k))([FII '(t)&P~t(t')])
k)

1

(&)t+((Fi',"(t);FI, (t')}}~+4mC( k&k')(royal, ) '(c—o roy )— (34)

The Dyson equation can be written to give the Green's function as
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~kk'

p i (i)(Gk) —IIk ( )

where the diagonal polarization operator Ilk"(&o} is given by

11k (&p}=Pkk (pt}[l+Gk(pt}PkI, ( }] (36)

In the region af frequencies far from the zeros af the denominator in Eq. (36), one may expand the right-
hand side in a power series of Pkk (&o) as(&)

}—Pkk ( }[l —Gk( )Pkk ( }+ ] (37)

In the above equation [Eq. (37)] only the first term will give the dominating contribution while the remain-
ing terms lead to the corrections of a higher order of smallness. In the lawest approximation, we may write
IIk''(&0}=Pkk (&p), which gives

(1) &Ok ~kk'
Gkk'(m}=

2 -(i) 2 (i)
[pt —'(&Ok ) 2ptkPk—(pt)]

(3g)

where &Ok
' is the frequency of the renormalized mode k in the lowest approximation of the perturbation theory

and is given by

(&Ok } =&Ok+ ([Fk (r)~Bk(r }] )+ (Fk (r)~Ak(r }1

g C(k, —k) ) ([Fk"(r),Bk (t'))') +8
~k k,

(P) —P)k )
2 2

C( —k, k) (39)

and

Pk (} ((Fk (t) Fk (r }))ro

The superscript 0 in the Eq. (39) denotes that in the evaluation of the commutators, the phonon occupation
number Nk( = (AkAk ) ) is evaluated by means af the zeroth-order Green's function

(i) p ~k~kk'
[Gkk (pt)]

m[&0 —(P)k ) ]

The response function Pk"(&o) (in the first-order approximation) is obtained by describing the frequency
spectrum of the zeroth-order Green's function (41) by an equivalent zeroth-order renormalized Hamiltonian

p i)i (&Pk }
AkAk+ ptkBkBk

4 k k
(42)

To evaluate the twa- and three-phonon Green's functions (29} we use the renormalized Hamiltonian (42}.
The Fourier transforms of the Green's functions are given by

((Ak Ak, Ak, Ak, ))I=
&Pk Ptk

1 2

(~k, +~k, )

(nk)+nkvd) z i +(
& —(~k +~k }

1 2 1 2

(43)

&Pk, &ok,

((B„B„;B„'B,', ))„=
1 2' 1 2 2' COk k

1 2

(~k, +~k, ) (~k, -~k, )

(nk +nk ) +(nk, nk )—
(&0k +&Ok } &P (&Ok &Pk

1 2 2

(44}
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((Bk Bk Bk,Bk, Bk, Bk, ))~=
k, k2k3

Nk Nk COk

«k, +~k, +~k, )

X (1+nk, nk, +nk, nk, +nk, nk, )
ai —(k, +k, +aik, )

+ I~k,~—k, l+ Ik, ~—rok, I+ 1~k,~—rok ] (45)

where
(2)

k k' k k' k k' k k'
1 1 2 2 1 2 2 1

5123+5213+ t1321
(3)

with

k k' k k' k k' k k' k k'
1 1 2 2 3 3 2 3 3 2

(46a)

(46b)

(46c)

In Eq. (45), Icok,~—Fok I, I cok,~—rok ), and Irok, ~—cok, I indicate three further terms which are obtained

by changing cok to —iok, iok to —rok, and rok to —
haik in the first term, respectively.

From Eqs. (31) and (40), after using the expressions (44) and (45) for the two- and three-phonon Green's
functions, the response function Pk "(r0) is obtained as

Pk"(co)=8 g [cok S(—k, ki)S~( —k, ki)][io —(cok, ) ]
k1

+18 g ~

V' '(ki, k2, —k)
~

k1,k2 k k

k, +k2 ~k, —k2
X (nk, +nk, ), , +(nk, nk, )—

(~k +~k ) ~ (~k ~k
1 2 1 2

Nk Nk Nk
+48 y ~

V' '(ki, k2, k3, —k)
~

k1,k2, k3 Nk Nk Nk

Nk +Q)k +Nk
X (1+nk, nk +nk nk +nk nk, )

~ —(~k, +~k, +~k, )

Nk —Nk —Nk
+ 3(1 nk nk +nk nk nk nk, )

~ —(k —aik —k )
1 2 3

(47)

where

Nk
S(k1,k2) = C(k1,k2)+D(k1, k2)

COk
1& 2 2~ 2

1

nk=
k
k t ~~k

(skulk) =cot (49)
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For a small quantity @~0+,the response function Pk"(co) can be written as

Pk"(~+a) =a«"(&)—i r',"(), (50)

where the real part b, 'k"(co) represents the shift in the frequency of the kth mode, while the imaginary
part 1 «"(c0) gives the halfwidth of the phonons of wave vector k. The explicit expressions for them are given

b, 'k"(co)=8P g [cok S ( —k, k, )S ( —k, k ) )][co —(co'k ') ]
k)

COk COk

+18P g ~

V"'(k, ,k, , -k) ~'
k), k2 COk COk

COk +COk COk —COk

X (nk~+nk~) z ~ +(nkvd n—k~)
(k +~k ) ~ (rok ~k )

1 2 1 2

COk, COk2COk,

+48P g ~

V' '(k), kq, kq —k)
~

k), k2, k3 COk COk COk

k)+ k2+ k3
(1+nk, nk, +nk, nk, +nk, nk, )

(~k—
, +~k, +~«, )

COk1
—

COk2
—

COk3

+ 3(1—nk nk +nk nk —nk nk )
-(~k -~k -k )

1 2 3

(51)

I 'k"(co) =8ne(a)) g [co«,S( k, k, )S*(——k, k) )5(co —(iok, ) )]
k)

COk COk

+181Th(N) y ~

V"'(kt, kp, —k)
~

'
k), k2 COk COk

X[(nk +nk )(k +k +( (k +~k )')

+(nk nk )(k k +(' —(k ~k )')]

COk COk COk

+487'(co) y ~

V' '(k//k', k3 k)~—
k l k2 k3 COk COk COk

X[(1+nk,nk +nk nk, +nk, nk, )(rok +rok +co« )$(~ (cok +amok
—+co« ) )

+3(1 nk nk +—nk nk nk k )(k ~0« Gk +(N (cok k cok ) )]

(52)

where P stands for the principal value of the quantity and e(ro) = 1 for co & 0 and = —1 for ro & 0. ~jth this re-
sult, the Green's function (38) can be written as

(&) ~ k ~kk'+' =
z (~) z7r{rd —Ivk (N)] +2iN«rk (co))

(53)
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where

{vk (~)] (k ) +2k~k

Proceeding in a similar manner, with the equations of motion for the Green's function (28b} and (28c) and
following the procedure as used above, we obtain the following expressions for the Green's functions:

Gkk'(Co+i e)=

Gkk' (+ i ~)(&)

where

~4k
( ' —

I k"( }I'+2' kl'k"( })

~k 5kk'

n(to~ {v—P"(co) ] +2itokl k '(t0) }

(55)

(56)

{v'k"'(co) I =(tok"') +2tokbk"'(co), n =2,3,
and bk"'(co) and I k"'(co) are the real and imaginary parts of the response function Pk"'(co) occurring in the pro-
cess of the evaluation of Green's functions (28b) and (28c). The expressions for the renormalized frequencies
co'k"' and the response functions Pk"'(ro) corresponding to these Green's functions are obtained as

(co'k') =cok+ ([Fk"(t),Bk(t')] )+ ([Fk"(t),Ak(t')] )

g D(k, —k, )([F„"'(t);F,"'(t)]')
Nk

(57)

r

(~k '}'=~k+ & [Fk"(t»Ak(t')]'&+ ([Fk"(t»Bk(t'}l'&

g D( —k, k, )([Fk"(t),Ak (t')]')
Nk

(~'-~k} '

6+8m. D( k, k)+ —g V' '( k, k, k, , ——k))Nk
Nk

1

Pk '(t0)=

P( )( )

((F"',Fk"(t'}». ,

((Fk '(t);Fk" (t') ))„,

(59)

with

Fk '(t) =4n+C( —k, k.
i )+

k,

COk

D( —k, ki)+ gD( —kqkq)C( —kP, ki) Bk,
Nk

+2m. 3 g V' '( —k, ki, kg)
kl, k2

Nk
BkAkAk +

2 3

k2 Nk

AklBk2Ak3+ AklAk2Bk3 (6l)

The response functions PI, '(co) and Pk '(co) can easily be obtained from Eqs. (59) and (60) after evaluating
the two- and three-phonon Green s functions using the renormalized Hamiltonian (42). It is important to note
that we have evaluated the Green s functions (28) in the lowest-order approximation of the polarization opera-
tor. However, if the imaginary part of the polarization operator Pk(co} in Eqs. (53), (55), and (56) becomes zero
for some frequency vk+tok, its value should be evaluated in the first-order approximation, i.e., by considering
higher-order terms in Eq. (36). Having obtained the Green s function we can calculate also the correlation
function using the standard relations.
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We separately evaluate the diagonal contribution, nondiagonal contribution, lattice-imperfection contribu-
tion, and contribution due to anharmonic forces to the thermal conductivity. Substituting the values of the
correlation functions appearing in Eq. (4) with the help of Eqs. (18), (53), (55), and (56) and performing the in-

tegration over the time t, the diagonal contribution to the thermal conductivity becomes

4i)i k2)P
CO U J dco

3~V ks ks J ~ ( tit)$$1 }2
k,s

~'-„,[r'-„",(~)][r'-„",(~)]
(I2 —[v(-„"(~)]2j2+4 '-„,[r(-„",(~)]2)(I~2—[v'-„,(~)]2j2+4 '-„,[r'-„",(~)]2)

2[r(2) ( )]2

((co —[v-„,(co)] j +4'-„,[r'-„' (co)]2)2
(62)

For small values of halfwidths I 'k,'(co), the integrands in Eq. (62) are peaked around co= v'k,'(co) and the in-

tegrals can be evaluated analytically by replacing the peak distribution by a Dirac 5 function. We then obtain
the diagonal contribution to the thermal conductivity as

))ik P
K = B ~ 2 2 e (2) 2

12@ + ks ks tit)
()) (~) r(3)

(
(1)

}
ks~V CO +(v- )

(e k$1)2 ks ks

j%v (co)ks
(63}

Neglecting the shift in the frequency due to anharmonic interactions and the shift in perturbation due to lat-
tice imperfection, the expression has a form similar to the well-known Debye-Peierls expression for the thermal
conductivity which is obtained here as a direct consequence of the Kubo formula and the choice of the Hamil-
tonian.

In a similar manner we can obtain the nondiagonal contribution K~ to the thermal conductivity. Inserting
the values of the correlation functions appearing in Eq. (5) with the help of Eqs. (19), (53), (55), and (56) and
following the method as used above, the nondiagonal contribution to the thermal conductivity due to the non-

diagonal term in the energy-flux operator can be written in the form

4)ri'kiip'
2 2, - etitk'

K~ ——
3ir[/ $$ s $

~& (e 1)X k ' k k '
pliN 2

k, s,s'
s+s'

co-„,co-„,,[r'-„",(co)][r'-„',,(a) )]

( I [
( )

( )]2j2+4 [r( )
( )]2)( I

2 [ ( )
( ))jj2+4 [r( )

( )])

~'[r(-„",(~)][r(-„",,(~)]

(I '—[ '-„",( )]'j'+4ei'-„, [r'-„",( )]')(I ' —[ '-„",,( )]'j'+4 '-„,,[I'-„",.( ))')

(64}

The above expression shows that the nondiagonal contribution due to the nondiagonal part of the energy-
flux operator comes from the modes of difference polarization directions and is similar to the diagonal contri-
bution.

We now proceed to evaluate the contribution to the thermal conductivity on account of the terms which are
cubic functions of position and momentum operator in the harmonic approximation in the energy-flux opera-
tor. Inserting the values of the correlation functions appearing in Eqs. (8) with the help of Eqs. (53), (43), and
(44), and performing the integration with respect to time the contribution due to these terms is given by
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flak

gP
C

k, s, k ',s', k ",s" ~ /g

k, s, k &,s&, k &,s&

r'-„",(~)

(I 2
[

( )
( )]2I2+4 [r( )

( ))2)

CO
k I tCO k lt tt

'X
k 's' k "s"

r

X g (n k„,„+ln k., )(mk, , +l~k-, -)
I=+1

X 5(co' —(cok, +l~-k-, -) ) (65a)

, )
4A' k2)P

C

k,s, k', s', k",s" u
s, k1,$1, k1,$1

2 g(2)
k s ~ (e)Sett

CO k t tCO k tt

Nkt tNktt
t t ~ tt tt ~ ~&

p ~ tikst k ts t k s kst k ]$) t k ] $]

g ( -„„„+k, , ) ~k,,, +lG-k, „)
1=+1

X $(~2 —(ro k,, +lro k, ., ) )
(65b)

4' k2) P
C

k, s, k ', s', k ",s" —+ ~I t ~It ttk, s, k ),s), k ),s)

2 g(2)
ks ~ (efHko l)2

CO
k t ICO

k tl II

CO
k I tCO k II IIs s

Z,.k s tk stks kisitkisl~ks

T

X g (nk, „+ink., )(Gk,, +l@k,„)
I=+1

X &(a)' —(8-k., +la)-k„, )') (65c)

We further proceed to evaluate the contribution to the thermal conductivity due to the perturbation terms in
the average heat flux arising from cubic anharmonic forces. Substituting for the correlation functions appear-
ing in Eq. (9a) with the help of Eqs. (53) and (44), we obtain the contribution K( to the thermal conductivity on
account of the term which is a cubic function of position and momentum operators as
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4)}i kgP
1 ~l t ~II

k tst k &Is& I k
&

ss

I I lt tl"ks, k s, k s ks, k&s&, k&s&

PAm

X~2 (2)
k J

(
pfhu 1)2 (I 2 [v( ) (~)]2j2+4~ [r (~)]2)

ks k s

+ 1
CO k I ICO k It II

ap, ,N-„„
(n k „,, + ln k, )(io k., + lr0 k,„)

X &(ro —(~-k,, + l~-k-, . )') (66a}

g(3)
~J s 'I I I ~ II lt I Itl III + ~

g
~~ /I III Ilt 1

Similarly, substituting for the correlation functions appearing in Eq. (9b) from Eqs. (53}and (45), the contri-
bution K2 to the thermal conductivity on account of cubic forces which are quartic functions of position and

momentum operators is given by

2' kgp2

I st k II sll k ltl s Itl ~l
~

~II
k &,s~, k &,s&, k &,s&

CO ~ Pro
X

(
P/kl

1 )2

(1)
k ns nr(C0)

2 (1) 2 2 2 (1) 2(I~ —[v-„... .,.(~)] j +4 -„... „.[r-„... „.(~)] )

X'
CO k CO k I ICO k II lt

(1+n- n-. , +n, .n-„.. +n-„.,n- )ks k's' k's' k s" k s" ks
CO k CO k t ICO k II

ks k's'+ k "s" ks+ k's'+ k "s") )

+ I~k, —~-k, j+ I~-k., —ai-k., j+ Ice-k, —co-k,„j, (66b)

where Iso k,~ —co-k, j represents a term which is obtained by replacing co k, by —co
k

in the first term.

Finally, we come to the evaluation of the contribution K; ~ due to the thermal conductivity on account of
perturbation term in the energy flux due to lattice imperfection. Inserting the values of the correlation func-
tion appearing in Eq. (10) with the help of Eqs. (23), (53), and (55) and following the method as used above, we
obtain

4fPk g p2'"= 3~V k,s, k', s'

co-„,co-„,, [I'-„",(ro)][r'-„', (~)](J- - .' J-„
t

([a)2—
I v'k", (r0) j 2] +4''-k, [r'-k", (a))]')([ro' —I v'-„", (r0) j']'+M~k, , [r'k', (~)]')

ai'[r'-„",(r0)][r'-„', (ro)]( J- -, , &' -, . - )
+

([~2Iv(-„",(~) j 2]2+4 '-„,[r'-„",(~)]')([~'—I v'-„'!,,(~)j']2+4 '-„,[r'-„,(~)]')
(67}
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V. DISCUSSION

In the present paper we have derived an expres-
sion for the thermal conductivity of an impure
anharmonic Bravais crystal. Equations (63)—(67)
give various contributions to the temperature depen-

dence of the thermal conductivity of a doped Bra-
vais anharmonic crystal due to impurity-phonon
scattering. The diagonal contribution (63) in the
limit of small halfwidth of phonons has essentially
the same form as obtained by Klemens and Car-
ruthers using the Boltzmann transport equation.
The nondiagonal contributions due to the nondiago-
nal part of the energy-flux operator, and also due to
the term corresponding to lattice imperfections as

propounded by Hardy, come from different modes
of different polarization directions. Hardy has
shown that Q, is negligible except below 10 K. The
contributions of cubic anharmonic forces Q' are sig-
nificant only when the amplitude of the particle dis-

placements are appreciable compared to spacings be-

tween particles such as at temperatures near the
melting point. Therefore at low temperatures where

only long-wavelength phonons are present, the diag-

onal contribution gives the major contribution to the
thermal conductivity of a defect crystal. However,
at high temperatures we should also consider the
other remaining contributions. Based on the classi-
cal treatment of phonon operators Hardy has point-
ed out that the nondiagonal part of the energy-flux
operator is an oscillating function of terms where
frequencies are the sum and difference of the fre-
quencies of different branches and give negligible
contribution to thermal conductivity compared to
the diagonal one when averaged over a long period
of time. The present study shows that there is a fin-
ite contribution of the nondiagonal terms, the cubic
anharmonic term, and the term due to lattice imper-

fections in the energy-flux operator of the thermal
conductivity. Though the contributions may be
much smaller than the diagonal one, the contribu-
tions from the cubic anharmonic force term in the
energy-fiux operator are at least 2 orders of magni-
tude smaller than the diagonal contribution. The re-
sults obtained here are correct for small concentra-
tion of impurities and to the lowest nonvanishing or-
der in the anharmonic force constants.

It emerges from the present study that from the
Kubo formula and double-time Green*s-function
technique it is easier to evaluate the thermal conduc-
tivity for a suitable model of a doped Bravais anhar-
monic crystal taking into account the lattice-
imperfection term and the effect of cubic anharmon-
ic forces in the energy-flux operator. We have not
evaluated nuinerical values of various contributions
to thermal conductivity due to the great complexity
of the computation which arises mainly from the
wide range of phonon frequencies that must be in-

cluded and the presence of impurities and anhar-
monicity in the crystal. Even then, by computing
the numerical values of different parameters in-

volved in the various expressions and substituting
these in the respective places, one can find the nu-

merical values of the various contributions to
thermal conductivity by solving the integrals with
the help of a computer.
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