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Virtual surface plasmons in cylinders
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In a metallic cylinder virtual radiative surface eigenmodes with frequencies greater than

plasma frequency exist; their dispersion curves and other properties are determined. The

physical importance of these eigenmodes in the optical properties of metallic cylinders is

shown.

I. INTRODUCTION

The properties of surface plasm ons (SP) in
cylindrical geometry (in contrast to the planar'2 or
spherical geometry) have received limited atten-
tion probably because of the experimental difficul-
ties in fabricating very thin wires. Results for the
dispersion relations, co=co(k, ), have been obtained
for real nonradiative eigenmodes in a metallic
cylinder assuming a simple dielectric function
e(to) =1—to&/co . Pfeiffer et al. have studied the
existence of virtual radiative eigenmodes for co ~ co~

and have obtained the corresponding dispersion
curves. Such eigenmodes have also been observed
experimentally. Similar calculations, including spa-
tial dispersion, for homogeneous and inhomogene-
ous metallic cylinders have been done by Aers et al. 7

In Ref. 8 additional recent work on the optical prop-
erties of cylinders is presented.

In a previous paper we examined the excitations
of SP by electrons moving in circular orbits around
a cylinder. Peaks in the emitted radiation for
co&to&, where co& is the bulk plasma frequency,
demonstrated the existence of virtual radiative SP.
In the present work we verify the existence of these
virtual radiative eigenmodes and we determine their
dispersion relations and other properties. Next we
study the optical properties of metallic cylinders and
we find that the frequencies of the eigenmodes cor-
respond to peaks in the optical absorption spectrum.
This fact shows the physical importance of the
eigenmodes and points out to an easy way for their
experimental observation.

A rough description of the origin of these eigen-
modes and their physical meaning is as follows:
Cylindrical waves are characterized by a wave num-

ber k, along the cylinder axis (z axis) and a second
"wave number" P=(eto /c k, )'~ along th—e radial
direction. Here e is the dielectric function of the
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If we introduce for convenience the dimensionless
variables A=to/to~ and a=R c/oc the above equa-

medium and co the frequency. If we restrict our-
selves to the k, =0 case, the eigenmodes of a metal-
lic circular cylinder can be separated into transverse
magnetic (TM) ones, with zero z component of the
magnetic field, and transverse electric (TE) ones in
which the z component of the electric field is zero.
[This separation is not possible in the general case
k,&0 (Ref. 10).] The eigenfrequencies of the TM
and TE modes, respectively, are given by the equa-
tionS

J„(kR)H„'(k&R)—~eJ„'(kR)H„(koR)=0, (la)

~eJ„(kR)H„'(koR) J„'(kR)H„—(koR) =0, (lb)

with k2=eto2/cz, ko=to2/c2, and R the cylinder ra-
dius. J„andH„areBessel and Hankel functions of
the first kind with the prime denoting differentia-
tion with respect of the argument. If we take for the
dielectric function the simple form

2

e(co)=1-
CO

and if we restrict ourselves to the to&to~ range
(where e is positive and k is real) we can have a sim-
ple approximate form for Eqs. (la) and (lb) in the
limit of large R (more precisely kR » 1 and
koR »1). We take the square modulus of the left-
hand side of Eqs. (la) and (1b), we make use of the
asymptotic forms of the Bessel functions for large
arguments and we have
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tions take the form

~F„(Q)
~

=1— sin a(Q —1)'~ — n.

(4a)
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These equations have na real roots for Q&1. But
(F„(Q}

~

or
(
G„(Q)

~

have a minimum at the
values of Q that make sin or cos equal to unity.
For those Q's that are not much greater than unity,
these minima will be close to zero and hence

( F„(Q)
~

and
~
G„(Q)

~

will exhibit sharp
maxima. This last conditian defines a virtual eigen-
mode. It is obviaus that the eigenfrequencies carre-
spond to values of the arguinent of sin and cos (and
the Bessel functions) that are integral multiples of
m/2. This is the condition for the creation of stand-

ing waves in the cylinder via multiple refiections.
This elucidates the physical origin of these eigen-
modes. Our explanation is further strengthened by
the fact that the lifetime af the TM modes decreases
in the vicinity of Brewster's angle as we will see in
the next section.

As was mentioned above, Q must be close to unity
for the virtual eigenmodes to be well defined. We
remark also that the parameter a must not be very
large because in such a case the eigenmodes becomes
closely spaced and almost indistinguishable. Our
detailed calculations show that the surface eigen-
modes with co&co& are well defined for values of Q
from 1.0 to about 1.5 and for a from about 10 to 20.
This means, for a metallic cylinder, a radius of a
few thousand angstroms.

In Sec. II we derive the dispersion curves
co=co(k, ) for the virtual eigeninodes with co&co~.
Their relation to the optical properties (especially
optical absorption) is examined in Sec. III. Finally,
in Sec. IV we present our conclusions and we discuss
the properties of our eigenmodes in relation to those
with co & roz and those of a metallic slab. "

II. VIRTUAL EIGENMODES WITH ca & a)~

In this section we derive the dispersion curves
co=co(k, ) for the surface eigenmodes with co&c0&.
Strictly speaking the dispersion curves give the real
part of the complex eigenfrequency co vs k, . The
imaginary part, which is the inverse of the inode
lifetime, is given separately. We look for bound
solutions of Maxwell's equations. By the term
"bound" we mean solutions with no incident wave.

The condition for the existence of such a solution is
an equation of the general form F(co,k, )=0. Virtu-
al eigenmodes correspond to camplex roots of this
equation. Practically one looks for real values of ai
that give a sharp maximum of

~
F(co,k, )

~
and in-

terprets these values as the real part of the complex
eigenfrequency. The imaginary part is determined

by the halfwidth of the maximum. We use this
methodology in aur wark.

The system under consideration is a circulary
cylindrical conductor of radius R in vacuum, with
the cylinder axis along the z axis. The conductor is
characterized by the simple dielectric function given

by Eq. (2) and its magnetic permeability is supposed
to be unity. The solution of Maxwell's equations'
is a superposition af TM and TE waves of the form

E„=7 y, V X II„,H„=—7 y, , (Sa)
C j

C j

The Hertz vector II„is
ll„=zZ„(Pr)e'"ee' e

(Sb)

where P = cue/c k, —The. symbol Z„stands for
the proper Bessel or Hankel function of order n.

For the interior of the cylinder we have

E = g a„'E„+b„'E„ (7a)

H = g a„'H„+b„'H„

J„(PR)a„'— J„'(PR)b„'+ H„(PQR)a„'
c " " R

H„'(P(R)ib„'=0, (Sa)

nk, i CO 0J„'(PR )a„'— J„(PR)b„'— H„'(P R)0a„'
C C

+ H„(pDR)b„'=0, (sb)

We take as Z„the Bessel function J„(pr)which is
finite at the origin. The expressions for the exterior
of the cylinder are similar to (7a) and (7b}, but we
take as Z„the Hankel function of the first kind
H„(par) with pa co /c k,——and the—dielectric con-
stant e= 1. We replace also the coefficients a„',b„'by
a„',b„',respectively.

If we impose the well-known boundary conditions
at r =R we obtain for each n, the following homo-
geneous system:
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P J„(PR)a„'—PoH„(PpR)a„'=0,

P Jn(PR}bn PoHn(PoR)bn =0 .

(Sc}

(8d)

We examine first the s &rial case k, =0. In this
case, where P=k =co e/c and Pp k——p P—i—/c, the
above system can be separated in two subsystems:
the one of Eqs. (Sb) and (Sc) that includes only the
variables a„',a„'and the other of Eqs. (Sa) and (Sd)
that includes only b„',b„'.This means a separation of
the solutions of Maxwell's equations in pure TM
waves [i.e., b„'=b„'=0and a„',a„'satisfying the sys-
tem (Sb) and (Sc)] and pure TE waves [a„'=a„'=0
and b„',b„'satisfying the system (Sa) and (Sd)]. The

I

condition for the existence of a nontrival solution of
the above subsystem is obtained by setting the deter-
minant equal to zero. So we have the equations that
give the frequencies of the TM and TE eigenmodes,
respectively, for the case k, =0:

Jn(kR)Hn (koR) V—EJn (kR)Hn(koR) =0, (9a)

V eJ„(kR)H„'(koR) J„'—(kR)H„(koR)=0 . (9b)

If k, &0 we cannot make this separation. In this
case the solution is a superposition of TM and TE
waves and the condition for the existence of such a
solution is obtained by setting the determinant of the
full system (8) equal to zero:

2

[PJ (PR)Hn (PpR) EPo J' (PR)H (PpR)][PJ (PR)H' (PpR) —Pp J' (PR )H (PpR)]

[J„(PR)H„(poR)] 2
=0 . (10)

Jn (PR )Hn (Po R ) ~eJ„'(PR )Hn (Pp R )
pp

e"

Equation (10) can be written in either of the following two forms:

nk, (P —Po)

R p~po

[J„(PR)H„(PpR)] =0,
CP Po~& PJn (PR )Hn (Pp R ) PpJn (PR —)Hn (Pp R )

(1 la)

J„(PR )H„'(Pp R )—J„'(PR )H„(Pp R )
nk P —Po c2

'2
2 2

P'Pp ro'Po

[J„(PR)H„(PpR) ]2
X =0.

PJ„(PR)H„'(PoR ) ePpf„'(PR)H—„(PpR)
(1 lb)

(12b)

Equations (1 la) and (1 lb) have the general form

2 C„(pi,k, )
F„(oi,k, )=A„(rp,k, ) k, —=0,n & s n & s g B ( k )

(12a)

2 C„(co,k, )
G„(rp,k, ) =B„(co,k, ) k, —

nrp~ z

and coincide with (9a} and (9b), respectively, for k, =0. As was mentioned above virtual eigenmodes corre-
spond to sharp maxima of

~
F„(ro,k, )

~

or
~
G„(ro,k, )

~
. For k, =0 these eigenmodes are pure TM or TE.

If, however, k,&0 but it is small, the second terms in (12a) and (12b) are not so important and this separation
can be extended for these values of k, . One could make use of the terms "TM-like" and "TE-like" eigenmodes
for small values of k, with the corresponding dispersion relations =rp(ck0, ) deriving from the maxima of

~
F„(ro,k, )

~
and

~
G„(co,k, ) ~, respectively. This nomenclature becomes meaningless as k, becomes large.

Nevertheless, these two branches of the dispersion relations tend to coincide as k, becomes larger and larger as
is shown from our explicit calculations.

It is convenient to insert the dimensionless variables Q=co/co&, a=Rcpt/c, q =k, /ceo&, Ao
——(Q —q )'~,

and A, =(eQ —q )'~ . The functions Fn(ro, k, ) and Gn(co, k, ) can then be written

F„(Q,q) = J„(hx)H„'(~)—v eJ„'(4z)H„(kyz)
A,p

6'

[J„(4z)H„(A,oa) ]
a ve'Q (Q q ) (6Q q ) J (~)H (~) J&(~)H (g )

0
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G„(Q,q) = J„(Aa)H„'(Aoa)—J„'(Aa)H„(Apa)

n

c22~&Q2(Q2 q2 )2(&Q2 q 2)

[J„(Aa)H„(Aoa)]

J„(A,a)H„'(Roar, ) ~EJ„'(A,a)H„(A,gz)
ko e

and the dielectric function becomes

e(Q) =1—1

In Fig. 1 we plot the real and imaginary part of
the complex eigenfrequency versus q for TM-like
modes and for a=10. We mention that for each n

there is a series of curves with increasing frequency
and that we have plotted only the lowest one. In the
higher ones the imaginary part becomes relatively
large and the corresponding eigenmodes are not well

defined. Figure 2 is the same as Fig. 1 but for
a=15. An interesting remark in Figs. 1(b) and 2(b)
is that a maximum appears in the imaginary part of
Q at a certain value of q. To this value of q corre-
sponds a value of ReQ via the dispersion curves of
Figs. 1(a) and 1(b). These (Q,q) pairs correspond to
points on the (Q,q) plane as shown in Fig. 3; we see
that these points are very close to the curve that
represents the Brewster's angle. By the term
Brewster's angle we mean here the angle qI that sat-

I

isfies the relation

2k,
tan y= 2 2 2

N /C —kg

Or

Q = —, +q +( —, +q )

The points (Q, q) of the a=15 case are closer to the
Brewster's angle curve than those of the case a = 10.
This happens because by increasing the cylinder ra-

dius we approach the plane geometry. The fact that

the TM-like modes lifetime (that is the inverse of
the imaginary part of Q) decreases in the vicinity of
Brewster's angle is in agreement with the physical
interpretation given in the preceding section. It is
well known that the refiection of TM waves is im-

peded at the Brewster's angle.
In Fig. 4 we show the dispersion curves for the

TE-like modes and for a =10. There are two groups
of curves (dashed and solids) with some differences
between them. One difference is that the first group
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FIG. l. (a) Dispersion curves for TM-like eigenmodes of a metallic cylinder with radius corresponding to

a=Ace~/c= 10. There is a series of curves for each n and only the first of them is shown here. (b) The imaginary part of
the complex eigenfrequency vs q (i.e., the inverse of the mode lifetime). There is a maximum in the imaginary part that

corresponds to Brewster's angle.
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FIG. 3. Positions of maximum of the imaginary part
of the complex eigenfrequency of TM-like modes for
a=10 and 15. The curve relates the frequency 0 and the
wave number q corresponding to the Brewster's angle.
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FIG. 2. Same as Fig. 1 but for a =15.

(a) does not contain the n=0 mode. We have also
different behavior in the imaginary part, where the
modes of the first group exhibits a maximum unre-
lated with the Brewster's angle.

In both TM- and TE-like eigenmodes the disper-
sion curves ReQ=f(q) approach the photon line
Q=q (i.e., ro=ck, ) as q increases. Also the curves
of the two types tend to coincide as q increases.
With increasing q the eigenfrequency increases and
the dielectric function a~1. In this case, as we can
see from Eqs. (11a) and (lib) F„(Q,q}~G„(Q,q).
We repeat that for large q the modes are superposi-
tions of TM and TE waves and thus we cannot talk
about TM- or TE-like modes.

III. OPTICAL PROPERTIES

Q,„,= — g Re(a„+b„),a n = —ce

(14a)

(14b}

(14c)

The terms a„,b„for p polarization are

In this section we study the interaction of elec-
tromagnetic radiation with a metallic cylinder with
special emphasis on the excitation of the eigenmodes
of the preceding section. We calculate the optical
absorption spectrum (i.e., the absorptivity as a func-
tion of the frequency) for the case of perpendicular
incidence of a plane electromagnetic wave with p or
s polarization.

The general case of incidence of a plane elec-
tromagnetic (EM} wave on a cylinder is shown in
Fig. 5. The cases of p and s polarization correspond
to 0' and 90' for the angle g, respectively. For per-
pendicular incidence (k, =0) the extinction, scatter-
ing and absorption coefficients are given by'
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FIG. 4. (a) Dispersion curves for TE-like eigenmodes of a metallic cylinder with a=10. Dashed and solid lines
represent two different groups of eigenmodes. (b) Imaginary part of the complex eigenfrequency vs q. The maxima for the
modes of the group (a) have no relation to the Brewster's angle.

n=

J„(aQ~E)J„'(aQ) ve J—„'(aQ~e)J„(aQ)
J„(aQ~e)H„'(aQ) —V eJ„'(aQVe)H„(aQ)

(15a)

(15b)

and for s polarization,

Qn =
V 6Jii(aQ'~e)J„'(aQ) —J„'(aQV E)J„(aQ)

v EJ„(aQVe)H„'(aQ)—J„'(aQve)H„(aQ)

(16a)

(16b)

El

E l

I

I

I

kz
————r ic I

It must be pointed out' that the eigenfrequencies
of the virtual modes with co &o~~ correspond to the
maxima of Q,b, and not to the maxima of Q, or
Q,„,. As can be seen from Eqs. (15) and (16) the
eigenfrequencies minimize the denominator of Eqs.
(15a) and (16b); however, at these eigenfrequencies
the numerator becomes minimum as well and thus
the maxima of Q„,and Q,„,do not coincide with
the eigenfrequencies. For calculating absorptivity
we must, of course, take into account a damping
factor in the dielectric function. Instead of the form
(13) we use the form

FIG. 5. Incidence of a plane electromagnetic wave of
wave vector k on a cylindrical surface. The polarization
is determined by the angle tt. The magnetic field vector is
not shown. or

2
Np

e(co)= 1—
CO(iu+ i 7 )
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1
e(Q) =1-

with y=(coze) '
I.n numerical applications we take

for the damping factor y the typical value 0.01.
From (14c) the absorption coefficient Q,b, is shown

I

to be

Q.~ =
n =—ao

For p polarization it is

2 Im[ —v eJ„'(aQ~e}J„*(«~E)]
~

J„(aQ~e)H„'(aQ) v—eJ„'(aQ~e)H„(aQ)
~

and for S polarization

Im[ —(~e)~J„'(aQv e')J„'(aQve)]

~

~EJ„(«~e)H„'(aQ)J„'—(«~&)H, («)
~

'

(20a)

(20b)

(the asterisk denotes complex conjugate). In Figs. 6
and 7 we plot Q,b, vs Q for p and s polarization,
respectively, and for a=10. The peaks in these ab-

sorption spectra correspond exactly to the frequen-
cies of TM and TE eigenmodes. We see that the
sharpness of the peaks decreases with n because of
the increase of the imaginary part of the eigenfre-
quencies. Nevertheless, the peaks for small n are
clearly distinguishable and thus their experimental
observation should present no major difficulty. We
note that for s polarization (Fig. 7} both groups of
TE-like modes are responsible for peak formation.
Occasionally, due to an almost degeneracy and finite
linewidth, two modes may be responsible for a single

eak.

0.1 2

IV. CONCLUSIONS

The co&ni~ virtual eigenmodes studied in this
work stem from a geometric resonance effect, where
the "wavelength" fits the size of the circular cross
section. This allows a coherent surface multiple-
scattering effect to take place, which is responsible
for the appearance of these virtual bound modes.
As the radius of the cylinder increases (i.e., as we

approach a planar geometry) the geometrical fitting
becomes more precise and the virtual modes better
defined. Indeed our explicit calculations show that
for a (5 these eigenmodes cannot be defined at all.
On the other hand, a very large radius makes the

0.1 0

0.08

0.06

0.04—

0.03
1.00 1.05

l

1.10 1.15
l

1.20

FIG. 6. Absorption coefficient Q,b, vs 0 for normal incident of a plane EM wave with p polarization. The radius of the
cylinder corresponds to a = 10. The peaks for n =0,1,2,3 appear at the eigenfrequencies of TM modes.
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I
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1

1.20

FIG. 7. Same as in Fig. 6 but for s polarization. The peaks appear now at the TE modes eigenfrequencies. Some peaks
(e.g., the third and fourth ones in order of increasing frequency) are due to two almost degenerate modes.

modes so clasely spaced that they become practically
indistinguishable. This geometrical interpretation is

consistent with our finding that the lifetime de-

creases with increasing n [see Figs. 1(b), 2(b), and

4(b)].
The eigenmodes of this work show many similari-

ties with analogaus eigenmodes (ui&co&) that exist
in a metallic slab. " They have the same physical

origin and they have a similar relation with the opti-
cal properties, i.e., the eigenfreguencies in both cases
correspond to peaks in the absorption spectrum.

It is worthwhile ta point aut that the virtual
eigenmodes with co & roz have a different (not geome-
trical) physical origin and exhibit a quite different
behavior. Their lifetime is decreasing with increas-
ing radius a and decreasing order n.
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