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Some Monte Carlo calculations for the Lennard-Jones solid
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Monte Carlo calculations of the thermodynamic and elastic properties of a classical

nearest-neighbor Lennard-Jones solid have been carried out, for comparison with previous

calculations using the cell-cluster method. The agreement between the results obtained by
the two methods is very good. The dependence of the Monte Carlo results on sample size

and on number of configurations was investigated. A simple correction for finite sample

size is shown to be very accurate.

I. INTRODUCTION

The primary purpose of this work is to provide an
accurate set of values of thermodynamic data, from
a Monte Carlo calculation, to be used as a test of ex-
isting cell-cluster calculations. The author has pre-
viously calculated the thermodynamic properties
along the zero-pressure isobar for a nearest-neighbor
Lennard-Jones solid, using what seemed to be a
highly accurate development of the cell-cluster
method. ' The results were compared with experi-
mental data and with some existing Monte Carlo re-
sults, but neither comparison was conclusive since
the experiments do not refer to a classical nearest-
neighbor solid and the Monte Carlo results were
quite old and hence not of the accuracy presently
possible.

The Monte Carlo method is recognized to be in
principle exact in the classical limit and limited only

by computational restrictions, and some detailed re-
sults for the rare-gas solids are available. However,
it is extremely time consuming, so that the possibili-

ty of finding a formalism which is almost as accu-
rate and about 2 orders of magnitude faster is still
attractive. We have therefore performed Monte
Carlo calculations at the six nearest-neighbor dis-
tances used in the cell-cluster calculations' and com-
pared the various thermal properties calculated by
the two methods. Because the results were to be
compared with the earlier work, no attempt was
made to correct for quantum-mechanical effects or
for more distant neighbor interactions.

It turned out that the pressure calculated by the
Monte Carlo method was zero within the statistical
uncertainty, and hence our results can be viewed as a
calculation along the Monte Carlo zero-pressure iso-
bar. As such they are interesting in themselves, and
we have included details of elastic constant calcula-

tions which were not made with the use of the cell-
cluster formalism.

II. NUMERICAL PROCEDURE

In the Monte Carlo method configurations of a
model crystal are generated by successive small ran-

dom displacements of individual atoms. Each new

displacement is tested, and either accepted or reject-
ed according to a prescription adjusted so that aver-

ages over all configurations tend to averages over
the canonical ensemble. Formulas are available in

the literature expressing the various thermodynam-
ic3 and elastic properties in terms of such averages.

The accuracy of the results is limited by the
necessarily small size of the model crystal and by
the statistical uncertainty of the averages, which de-

pends on the number of configurations sampled. It
is reasonable to adjust the calculation so that the un-

certainties from these two sources are comparable.
Earlier calculations ' have used a sample of 108
atoms, and a string of a few hundred thousand to
one million configurations. We believe that the first
of these choices is more satisfactory than the second.
When a simple correction is inade, the primary aver-

ages calculated with even a 32-atom sample are ap-
parently within about 0.5% of fully converged
values. The correction is based on the idea that for
a classical quasiharmonic crystal with periodic
boundary conditions the thermal energy and the
specific heat are exactly proportional to N —1 rather
than N For the vibr. ational contributions to other
quantities such as the pressure and bulk modulus,
the proportionality to N —1 is not exact, but a direct
quasiharmonic calculation shows that it is very
close. The static contributions to the energy, pres-
sure, and bulk modulus are, on the other hand, ex-

plicitly proportional to N. Our procedure was there-
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TABLE I. Representative results at T =0.5e/k, R =1.17454cr for samples of 32, 108, and

256 atoms.

32 atoms
108 atoms
256 atoms

(4) /NkT

—10.055 +0.002
—10.050+0.003
—10.049+0.002

PV/NkT

—0.007+0.03
0.011+0.015
0.013+0.01

C„/Nk

2.65+0.02
2.66+0.02
2.66+0.02

B,V/NK

35.9+0.6
35.8+0.8
35.7+0.5

2.85+0.02
2.86+0.03
2.86+0.03

fore to calculate the averages only over the vibra-
tional contributions to the various quantities, and to
normalize them by N —1 before combining them
with the static contributions. As an illustration of
the insensitivity of the final results to N we show in

Table I values calculated at the highest temperature
considered, for samples of 32, 108, and 256 atoms.
The differences are all small and probably not signi-
ficant. The pressure is the property most affected

by this normalization, because the static and vibra-

tional contributions almost cancel. If the vibrational
contributions were normalized by N instead of by
N —1, the ratio PV/NkT for the 32-atom sample
would be —0.25+0.03. We have used a 108-atom
sample in all calculations described below, and be-
lieve that errors arising from finite sample size are
less than 0.01 for PV/NkT and less than 1% for
other properties.

To estimate the statistical uncertainty of the aver-

ages we have used a method described by Wood. 3

The sequence of configurations is broken up into a
number of smaller sequences, typically ten to twen-

ty, and the standard error of the mean of results
from these small sequences calculated on the as-
sumption that they can be treated as independent. If
the chain is broken into too many subsections the
values from successive subsections are correlated.
We did apply a simple test to check that adjacent
values were not significantly correlated. The uncer-
tainties quoted are reasonable estimates of standard
errors, with the corresponding statistical implica-
tions; e.g., there is a 68% probability that the fully
converged value is within one standard error of the
quoted value.

To achieve a given precision it was necessary to
use more configurations as the sample size in-

creased. Quantities such as the specific heat and the
bulk modulus, which depend on averages of fluctua-
tions, seemed to require a fixed number of configu-
rations per atom for a given uncertainty. The results
shown here were obtained with 960000 configura-
tions for the 32-atom sample, 2160000 configura-
tions for the 108-atom sample, and 7680000 config-
urations for the 256-atom sample. These chain
lengths give an uncertainty of slightly less than 1%
in C„.

In all cases the atoms were stepped consecutively,
and the step size was adjusted so that 30—40% of
the moves were accepted. Each sequence was start-
ed with the atoms at their equilibrium positions, and
a preliminary sequence of one thousand attempted
moves per atom was carried out before the averaging
began. This initializing sequence is longer than has
usually been used before. The calculations were per-
formed on IBM 370/168 and Hewlett-Packard 3000
series computers. Some runs were performed on
both computers, and no significant differences were
found.

III. RESULTS

Table II shows the results obtained with 108-atom
samples for a variety of thermodynamic properties.
The temperature T' is measured in units of e/k,
where E is the well depth of the Lennard-Jones po-
tential. For a nearest-neighbor model fitted to low-
temperature data, the zero-pressure melting tem-
perature is close to T' =0.5. The highest point may
thus be a metastable state. The second column gives
the nearest-neighbor distances calculated by the
cell-cluster model, ' expressed in terms of the hard-

TABLE II. Thermodynamic properties calculated by the Monte Carlo Method for the nearest-neighbor Lennard-Jones
solid.

PV/NkT C„/Nk Cp/Nk B,V/NkT B,V/NkT

0.125
0.225
0.3
0.375
0.45
0.5

1.13208'
1.140 87
1.148 39
1.15692
1.16680
1.174 54

0.0 +0.02
—0.01+0.02

0.02+0.02
0.01+0.02
0.03+0.03
0.01+0.02

2.87+0.03
2.86+0.03
2.82+0.03
2.73+0.02
2.69+0.03
2.66+0.02

3.09+0.04
3.35+0.03
3.53+0.04
3.73+0.05
3.97+0.06
4.28 +0.06

323.2k 1.1
151.1+0.8
98.6+0.9
68.2+0.7
46.7+1.0
35.8+0.8

348.7+0.5
177.0+0.4
123.4+0.5
91.1+0.4
69.0+0.5
57.5+0.4

' 2.98+0.03
3.01+0.03
2.97+0.03
2.90+0.03
2.88%0.03
2.86+0.03

This number differs slightly from the value given in Ref. 1, which contained a typographical error.
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FIG. 1. Specific-heat capacities C„and C~. Circles are

the Monte Carlo results. The line is drawn through the
cell-cluster results of Ref. 1.
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FIG. 2. Gruneisen parameter y. Circles are the Monte
Carlo results. The line is drawn through the cell-cluster
results of Ref. 1.

T E MPE RAT URE (6/k)
FIG. 3. Isothermal bulk modulus 8, (plotted as

8, V/X). Circles are the Monte Carlo results. The line is
drawn through the cell-cluster results of Ref. 1.

sphere radius of the Lennard-Jones potential. The
third column gives the values of the pressure, in di-
mensionless units, calculated by the Monte Carlo
method, and an important result is that the pres-
sures are zero within the statistical uncertainty.

The values of C„, C~, the Gruneisen parameter y,
and the bulk modulus (plotted as VBT/N) are shown
in Figs. 1—3, compared with the calculations by the
cell-cluster method. The agreement is generally
within the uncertainties, though there are small sys-
tematic disagreements in the cases of C, and C~.

The isothermal elastic constants were also calcu-
lated, and the adiabatic constants can be obtained
from the usual thermodynamic corrections. The re-
sults are given in Table III. As has been noted else-
where, there is a partial cancellation of fluctuations
so that the adiabatic constants are given more pre-
cisely than the isothermal. We estimate that the un-
certainties are about halved for the adiabatic values.
With the number of configurations used in this
work even the isothermal constants are good to
about 1%. It should be noted, however, that the in-
clusion of the elastic-constant calculation roughly
doubled the computation time.

CONCLUSIONS

The agreement between the present Monte Carlo
results and the value calculated by the cell-cluster
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C )2/XkT

TABLE III. Elastic constants calculated by the Monte Carlo method for the nearest-

neighbor Lennard-Jones solid at zero pressure.

T Ci~ V/XkT Cii V/NkT C i2V/XkT C~ V/XkT

0.125
0.225
0.3
0.375
0.45
0.5

494.0+1.1
237.0+0.8
157.1 + 1.0
111.0%0.7
78.4+0.9
61.720.7

519.6+0.5
262.9%0.4
182.0+0.5
133.9%0.4
100.6+0.5
83.5%0.4

237.8+1.1
108.2%0.8
69.3+0.9
46.8+0.7
31.0+1.0
22.8+0.8

263.3+0.5
134.1 +0.4
94.1+0.5
69.7%0.4
53.2+0.5
44.5+0.4

250.0+0.2
121.9+0.2
82.2+0.2
58.1%0.2
42.0+0.3
33.820.2

method is excellent. The heat capacity C„shows a
systematic discrepancy of about 1% at the higher
temperatues. However, in order to reveal this it was
necessary to use extremely large numbers of configu-
rations in the Monte Carlo calculation. The cell-

1
cluster method requires about, ~ of the computer
time of the Monte Carlo method carried to this ac-
curacy.

Our results for the specific heat C„and for the
Griineisen parameters are rather lower than earlier
reported values. While this may be only a statisti-
cal effect, it does reduce the disagreement both with

the cell-cluster results and with other techniques
such as improved self-consistent theory. It would
be helpful if more independently programmed calcu-
lations on simple inodels were performed, as well as
studies of the way in which the rate of convergence
of a Monte Carlo calculation depends on the rejec-
tion rate of moves and other parameters.
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