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Domain-growth kinetics of herringbone phases
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The growth of two-dimensional herringbone phases following quenches from high to low tempera-

tures is analyzed by computer simulation. The herringbone ordering is threefold degenerate and

governed by an anisotropic —planar-rotor model on a triangular lattice. The model describes the

orientational properties of N2 on graphite. The growth with time of the average domain radius is

shown to be algebraic with a rather low growth exponent n =0.25.

The kinetics of domain growth in systems undergoing
crystallization is strongly dependent upon the relation be-
tween the number p of thermodynamically degenerate or-
dered phases and the spatial dimension d of the system.
Building on some early ideas proposed by Lifshitz, '

Safran has recently advanced a time-dependent
Ginzburg-Landau theory which predicts that the domain
size at low temperatures equilibrates as a power law for

p &d+1 and as a logarithmic function of time for
p)d+1. In the former case, power-law behavior has
indeed been observed in experiments on binary alloys
(d =3, p =2) as well as in simulations of simple antifer-
romagnetic Ising models 5 (d=2, p=2). In the latter
case, the system is subject to frustration and may evolve
metastable glasslike states characterized by a distribution
of coexisting domains with different types of ordering
separated by slowly relaxing domain walls. Such slow re-
laxation behavior has been reported in experiments on
grain growth in polycrystalline metals (d =3,p~ ee) and
on the ordering of 0 on W(110) (Ref. 7) (d =2, p =4), as
well as in various model studies of chemisorbed and phy-
sisorbed monolayers ' (d =2, p &3), of magnetic sys-
tems, "and of Potts models' ' {d=2, p & 3; d =3,p & 4).

In this paper I present the results of the first Monte
Carlo simulation of the domain-growth kinetics of a
specific physisorbed system, N2 on graphite, using a realis-
tic microscopic interaction Hamiltonian. The Hamiltoni-
an contains not only the correct symmetry of the system
but also the appropriate energetics. The computer simula-
tion thus provides experimental information on a system
which is difficult to study by conventional experimental
techniques since contamination and surface inhomo-
geneities are likely to influence the kinetics.

At temperatures below 30 K, the registered
(v 3Xv 3)30' commensurate phase of N2 tnolecules phy-

FIG. 1. Unit cells of the three types of herringbone domains
on a triangular lattice. The planar rotors represent the intera-
tomic axes of diatomic molecules (e.g., N2) adsorbed in a com-
mensurate (&3&(V 3)30' overlayer on a hexagonal substrate of
graphite. The angles P; and gv enter the Hamiltonian in Eq. (l).

8 (t)=At", E»1 (2)

with a growth exponent n=0.25 which is considerably
smaller than the classical value' n = —,

' for binary alloys
and simple antiferromagnetic Ising models. ' Further-
more, n is found to be independent of details of the local
excitation mechanism by which the domain walls relax to
equilibrium.

I have calculated the time evolution of the model in Eq.
(1) following a quench from T=oo to T=O by using
standard Monte Carlo sampling. The rotors are arrayed
on rectangular-shaped triangular lattices subject to
toroidal periodic boundary conditions. To reduce possible
boundary effects, the main results are obtained for a very
large lattice with 152' 152 sites. Also, in the low-t regime
some results are reported for a 40&(40 lattice. The system
of rotors is brought towards the low-temperature states by
a single-site Glauber-type excitation mechanism which
takes the system from state a to state P with a probability
P tt

P'
exptt[ (Ett E——)IkttT]. The e—rgodic —stochastic

matrix P' basically sets the time scale of the problemP'-r '. In order to examine the dependence of the
domain growth upon details of the local excitation
mechanism, P' is chosen in two different ways corre-

sisorbed on graphite' orders orientationally in a (2X1)
herringbone structure' ' as shown in Fig. 1. The effec-
tive Hamiltonian governing the herringbone ordering can
be shown to be that of classical planar quadrupoles on a
triangular lattice. ' ' The dominant pa of this Hamil-
tonian is the anisotropic —planar-rotor Hamiltonian'

4 =E g cos{2(();+2'—48;~), lt.'&0
&I',j&

where P; is the polar angle of the ith rotor and 8;I is the
directional angle of the line joining the centers of the ro-
tors on sites i and j (cf. Fig. 1). The sum is over nearest-
neighbor pairs only. The anisotropic —planar-rotor model
defined by Eq. (1) has recently been shown to undergo a
fluctuation-induced first-order phase transition. ' There
are three equivalent orientations of the herringbone struc-
ture and thus six thermodynamically equivalent ground
states (p =6). According to the theories by Lifshitz' and
Safran, the domain-growth kinetics of the herringbone
phases are therefore expected to be slow. This is indeed
borne out by the present calculation which at low tem-
peratures, where fluctuations and roughening are unim-

portant, demonstrates that the growth of the average
domain radius is algebraic
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FIG. 2. Snapshots showing the distribution of herringbone domains at various times, t (MCS s/site), following a temperature

quench. The system contains 152)& 152 sites. Only the domain walls are displayed. Panels (a) and (b) correspond to unrestricted and
restricted single-site excitation mechanisms, respectively.

sponding to random reorientations (rotational diffusion} of
the rotor angle P;~P;+hP;, without (a) 0& hP; & ir and
with (b) 0&6/; &n/5 an angular restriction. To provide
ensemble values the results are averaged over several
quenches corresponding to different initial high-
temperature (random} configurations as well as different
randam number sequences. The time t is measured in
units of MCS's/site (Monte Carlo steps per site).

In Fig. 2 snapshats are given of the configurational
state of the large system for a series of selected times. For
clarity, only the domain walls are displayed. In a lattice
model with continuous single-site variables, the walls are
soft (in contrast to Ising ' ' and Potts' ' models) and
the extension of the walls is a matter of definition. I have
chosen to consider rotors as part of a domain wall if their
value of P; deviates more than m/15 from the ground-
state values of the adjacent ordered domains. The value of
this discrimination angle, which only influences the thick-
ness of the wall and not its position, is of marginal impor-
tance at low temperatures. However, at higher tempera-
tures and especially near the phase transition, where
roughening fluctuations are important, ' the criterion
for locating the domain walls has to be reconsidered and it
may be more convenient to determine the domain sizes via
the structure factor. Figure 2 shows that for small t the
cluster distribution is very ramified and the shapes of the
clusters are irregular. The regularity in shape increases
with t. No significant decrease in domain-wall thickness
with time is observed for t &50. For the range of times
studied here, no general form has been found for the inter-
nal structure of the walls. Neither da there seem to be any
preferred directions of the walls relative to the lattice.
However, for the smaller lattice there is some indication of
the optimal directions being the three cananical axes of
the triangular lattice. The two panels in Fig. 2 show that
the excitation mechanism based an a restricted reorienta-
tion angle facilitates formation of larger clusters. When
two domains of the same type of ordering meet, they
coalesce. The coalescence processes occur most frequently

for small t. From visual inspection of snapshots such as
those presented in Fig. 2 some general conclusions on
domain growth for large t can be drawn: (i) the domains
change size by migration of the walls, (ii) the driving force
of the migration is the curvature of the walls, and (iii) the
points where three domains meet act as pinning
centers, ' ' the effectiveness of the pinning being com-
mensurate with the similarity of the angles at which the
domain walls meet. These observations are in line with re-
sults found in classical work on recrystallization phenome-
na ' and in model studies of q-state (q&3) triangular
Potts models. ' '

A quantitative analysis of the domain growth can be
carried out by studying the average domain radius R (t) as
a function of t. R (t) is calculated from the instantaneous
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FIG. 3. Average domain radius R (t) as a function of time, t
(MCS's/site). Results are shown for two different local excita-
tion mechanisms: (a) unrestricted and (b) restricted reorientation
angles. Data are given for systems with 40&(40 sites (0) and

152' 152 sites (0). Horizontal bars on selected data points indi-

cate typical statistical fluctuations.
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domain distribution by defining the radius of a domain as
the square root of the number of sites in the domain. Fig-
ure 3 shows the results for R (t) in a log-log plot. Data for
the smaller lattice are only given for small t where finite-
size effects have not yet set in. For both excitation
mechanisms a and b there are two time regimes, an initial
fast time regime separated from a slower late-time
behavior by a crossover region. The position and exten-

sion of the crossover region depend on the excitation
mechanism. The most important conclusions to be drawn
from Fig. 3 are that the growth is algebraic with time in

both time regimes and that the associated growth ex-
ponents are the same for both excitation mechanisms. In
the early regime n=0.40 and in the late regime n=0. 25.
These results suggest that n is universal and independent
of details of the local excitation mechanism. In contrast,
the prefactor 3 in Eq. (2) is a function of the details of the
excitation mechanism and its intrinsic characteristic time
scale.

The finding in the late-tine domain of a nonzero (al-

though small) growth exponent for a system with

p & d + 1 contradicts Safran's theoretical prediction of log-
arithmic behavior. However, Safran's theory assumes a
continuum and presupposes that the equilibrated domains
are ideal six-sided hexagons. The present system is a
discrete lattice model, and as Sahni et al. ' have pointed
out, domain-wall defects on a triangular lattice are easily
transmitted through the pinning centers leading to a more
rapid migration of walls. Also, it is obvious from Fig. 2
that odd-sided irregular domains frequently occur, which
again facilitates the overall relaxation of the system. '

The late-time exponent n=0. 25 determined in the present
study is dramatically lower than the classical value'
n = —, found for binary alloys and Ising models. ' More-

over, it is smaller than n for any q-state Potts model, q & 3,
for which n decreases from 0.495 for q =3 to 0.41 for
q~ao. " The much slower kinetics of domain growth
found in the present study is probably caused by the con-
tinuous nature of the site variable P;, which makes it pos-

sible for the system to form soft domain walls. The soft-
ness of the walls screens the interaction between the dif-
ferent domains and decreases the driving force for the
growth. It now seems obvious that the explanation of the
presence of a separate early fast time regime is that the
high frequency of coalescence processes at low t to some
extent outbalances the slow kinetics caused by the screen-
ing of the domain-domain interactions. The conclusions
drawn in this study about the late-time behavior are, of
course, subject to the usual condition in computer simula-
tion studies that the asymptotic region of growth has
indeed been attained. For any run of finite length it can-
not be excluded that further relaxation will occur and that
the cited value of the growth exponent is only an upper
bound. The situation thus parallels that of determining
critical point exponents (in real as well as computer exper-
iments) over a range of finite reduced temperatures.

In conclusion, I have shown that the domain growth of
two-dimensional herringbone phases is algebraic with time
and that there are two characteristic time regimes. The
growth exponents are independent of the details within the
local excitation mechanism (rotational diffusion) in terms
of which the relaxation proceeds. The predictions made in
this work may, therefore, be tested by measuring the time
dependence of the width of the diffraction peaks resulting
from diffraction studies, e.g., low-energy electron diffrac-
tion, ' of N2 on graphite after a temperature quench. Fi-
nally, herringbone ordering in liquid crystals may obey a
similar growth kinetics. However, since the ordering in
smectics is governed by a close-packing condition rather
than electric quadrupole-quadrupole interactions, the
internal structure of the domain walls is expected to be
different.
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