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The vibrational frequencies of a 15-layer slab are calculated for a simple shell model of lithium
fluoride, and the surface modes occurring are analyzed. The static relaxations of a slab and of a sin-
gle surface are calculated for the same model, and the effects of the relaxation on the vibrational fre-
quencies are investigated. A puckering distortion of the surface layer is incorporated in the vibra-
tional calculations for the first time and is found in this case to introduce one extra surface mode.

I. INTRODUCTION

In recent years there has been growing interest in the
surface vibrations of crystals. The surface vibrations of a
crystal represent its means of coupling to the outside
world and play a central role in determining such phenom-
ena as energy exchange, trapping, adsorption, and desorp-
tion, and hence crystal growth. Most directly, the surface
modes of vibration can be used to determine the scattering
properties of the surface,' or, conversely, experimental ob-
servation of the scattering either of atomic beams or of
synchrotron radiation can be used to infer the vibrational
properties. Very recently, good-quality results on the al-
kali halides, sodium fluoride, and lithium fluoride, in par-
ticular, have been obtained using inelastic helium-atom
scattering.’

There have been a number of calculations of the vibra-
tional normal modes of jonic crystal slabs®*~® or of the
response functions associated with a single surface.” It
has been established that the effects of polarizability of the
ions, as described by the shell model, are significant. The
importance of surface relaxation is less well understood.
Static relaxation effects in a shell model have been stud-
ied,®® and some of the effects of relaxation on the vibra-
tions have been investigated for a rigid-ion model of a
sodium chloride slab by Tong and Maradudin,® who did
not include the possibility of t;?uckering in the outer atom-
ic layers. Chen and de Wette” have made some attempt to
modify the parameters of a fitted shell model to allow for
the surface relaxation, and most recently Benedik, Brivio,
Miglio, and Velasco’ have used empirically adjusted sur-
face polarizabilities to reproduce observed features of the
surface vibrations.

The main purpose of this paper is to show that relaxa-
tion effects can be included fairly completely in the calcu-
lation of surface vibrational frequencies, and that the re-
laxation can produce detailed changes in the structure of
the surface-mode spectrum. A simple mechanical shell
model of lithium fluoride was set up with fully defined
potentials between the cores and shells (not just force con-
stants), and surface relaxations, including puckering of the
surface layer, were studied as a function of slab thickness.
Calculations were then made of the vibrational frequencies
of a fully relaxed 15-layer (001) slab. The only approxi-
mation made was that the surface distortion was restricted
to the outermost layer. The effects of the relaxation are,
in general, small, as was expected from the smallness of
the relaxation itself, but a number of changes in the nor-
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mal modes of the slab were discovered.

The model used and some features of the shell-model
formalism, as applied to slabs, are described in Sec. II.
The incorporation of the translation invariance conditions
in the Coulomb sums has not previously been discussed in
detail. In Sec. III, we describe the general features of the
results and in Sec. IV, we discuss in detail the differences
between results for unrelaxed and fully relaxed slabs for
specific surface modes. Our result, which is not relevant
to the discussion of surface modes but is important for the
vibrations of a thin film is that the correct dispersion law
for flexing modes of a plate!” is obtained only for the fully
relaxed slab.

II. MODEL AND FORMALISM

Ideally the model used would provide an accurate
description of the dispersion relations of the bulk solid
and would also contain the exact volume and position
dependence of the various parameters, such as force con-
stants, so that the changes arising from relaxation can be
incorporated. A shell model fitted to bulk dispersion rela-
tions satisfies the first requirement, but not the others.
We have used such a model, derived by Dolling, Smith,
Nicklow, Vijayaraghaven, and Wilkinson,'! in a few calcu-
lations and obtained almost identical results to Chen
et al> However, it is difficult to incorporate relaxation ef-
fects in such a calculation. In particular, it is well known
that the smaller force constants and some of the polariza-
bility parameters in such a calculation are very sensitive to
the details of the assumed model. It is, therefore, unreli-
able to fit an assumed form for an interatomic potential to
the given force constants. We have, instead, used a simple
shell model with forms for the interatomic potentials, as-
sumed from the beginning, fitted to a small number of
well-defined experimental quantities. Such a model does
not reproduce exactly the bulk dispersions relations, but
should be a reliable indicator of the changes which surface
relaxation can produce.

We treat the lithium ion as a rigid point ion with charge
e, where e is the magnitude of the electron charge. The
fluorine ion consists of a shell with charge Ye and a core
with charge —(1+ Y)e, the two being joined by an isotro-
pic spring of force constant k. There is a potential energy
between the lithium ion and the fluorine shell, described
by the expression

Via=Vexp( —r/p) »
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TABLE I. Values of the parameters.

Parameters of the model

Vo 5.58988x 1010 ergs

12 4.55865x107° ergs
0.28738x10~% cm
2.17864 X 10~ ergs/cm®
—1.752 64

6.8031x 10° dyn/cm

x>~ 0O

and there is a potential between nearest fluorine shells
described by

V22=V,exp(—r/p)—C/r6 .

The model thus contains six parameters, which were fitted
to room-temperature values of the lattice spacing, two
elastic constants, ¢;; and cg4, the two limiting optical vi-
brational frequencies, and the refractive index. The
nearest-neighbor distance was taken to be 2.014 A, and the
values of the parameters are given in Table I. The use of
room-temperature values for the experimental quantities is
a crude way of absorbing some effects of anharmonicity.

The shell-model formalism, as applied to a slab, has re-
cently been discussed by Chen et al.® and will not be
described in detail here. Those authors describe the
short-range part of the self-interaction elements arising
from the condition of translational invariance, but they do
not discuss corrections to the Coulomb part of the dynam-
ical matrix arising from the same origin. When normal
coordinates are introduced the Fourier-transformed equa-
tions of motion of the ion cores and shells can be written
in matrix form as

mwzﬁc =Aﬁc +Bﬁs )
- . (1
0=8'0.+DT, ,

where ﬁc and ﬁ: are the displacement amplitudes for
cores and shells, respectively, and m is a diagonal matrix
of ionic masses. The Coulomb contributions to the ma-
trices 4, B, and D can be written explicitly as

A(Coulomb)=XC . X+4,,
B(Coulomb)=XC .Y,
D(Coulomb)=YC ,Y+D, .

X and Y are diagonal matrices of core and shell charges.
The matrices C ., C ., and C  describe the Coulomb in-
teractions between cores and cores, cores and shells, and
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shells and shells, respectively, with no self-interaction
terms included. Many authors have given explicit expres-
sions for the matrix elements. We actually used a ©-
function formula for the in-plane terms.'? If all cores and
shells are centered on the same sites C ., C ., and C  are
identical. The two matrices 4, and D, are chosen to
satisfy the conditions that when all cores and shells are
displaced uniformly, there should be no forces and no po-

larizing field acting on any ion. This leads to the results

(4 0ka,kp= — 8k Xk D[ Cee(k,a;k",B;q =0)Xy
<

+C,(k,a;k"”,B;q =0)Yy] ,
(2)
(D o)ka,k',6= — ki Y D[ Ces (k" Bsk, 039 =0)X
<

+C(k,a;k", B3 =0)Yy] .

Here k and k' number different sublattices.
It is usual to manipulate the equations of motion (1) by
adding the second to the first and introducing a relative

coordinate W:ﬁ, —Gc. The final form for the equations
is then
mo*U,=(4+B+B'+D)U,+(B+D)W,

0=B8'+D)U, +DW ,

and the matrices 4 o and D ( are included at all appropri-
ate places.

When the Coulomb matrices C ., and C  are equal, the
expression for D ( reduces to

(D o)ka,k'p=—Oik Y 2,C(k",B;k,a;9 =0)Z; .
<

This form should be used, for example, in calculations in-
volving an unrelaxed slab. It is interesting that it involves
the ionic charges Z,. The interpretation of this term is
simple. If the electrostatic potential seen by an ion is ex-
panded in a Taylor series about the ion site, there will, in
general, be quadratic terms (which happen to vanish iden-
tically in the interior of diagonally cubic crystals). These
terms modify the force constant linking the core and shell,
and hence change the polarizability of the ion.

We believe that these corrections, which in the present
application are very small, have not been included correct-
ly in any previous slab calculations. Similar complications
arise in calculations on bulk solids, when the ions do not
sit at centers of symmetry, and have been discussed in that
context by Cran and Sangster.'3

As indicated above, we used a ©-function formalism to

TABLE II. Parameters of the relaxed structure as a function of slab thickness.

Number . .

of layers ro (A) ry (A) uy/ry uy/r wy/r
5 1.98704 2.036 82 —0.009 24 0.00377 —0.00522
10 1.999 72 2.02591 —0.00957 0.003 94 —0.00543
15 2.004 30 2.02208 —0.009 70 0.00399 —0.00552
25 2.008 09 2.01892 —0.009 81 0.004 02 —0.005 60
100 2.01252 2.01528 —0.009 94 0.004 06 —0.00570
200 2.01328 2.01466 —0.009 96 0.004 07 —0.00572
© 2.01404 2.01404 —0.009 98 0.004 07 —0.00573
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TABLE III. Surface reconstruction and surface energy o for three models of LiF.

Model u,/ro uy/ro w,/ro o (erg/cm?)
Rigid ion —0.00105 —0.004 42 745.89
Point dipole —0.05521 —0.01107 —0.038 58 648.47
Shell —0.00998 0.004 07 —0.00573 731.25

transform the Coulomb sums into a rapidly convergent
form. However, for the changes in the sums when the sur-
face plane puckers, this proved inconvenient, and we used
a simple real-space summation for the changes. This is
inelegant, but gave adequate accuracy for a rather small
effect, which has not previously been considered at all.

ITII. RESULTS

A. Static relaxation

The static energies of both a finite thickness slab and a
single surface were minimized with respect to the posi-
tions of the atoms in the surface layer. For the single sur-
face, the outward displacements u,, u,, and w, of the
lithium ion, fluorine core, and fluorine shell were deter-
mined by a numerical iterative procedure. In the case of
the finite thickness slab, the nearest-neighbor distances
parallel to the slab, 7y, and perpendicular to the slab, r,
were also allowed to vary. These, in fact, are the most im-
portant relaxation effects. The details of the electrostatic
sums required are almost all available in the literature.>'*
The short-range contributions to the energy were evaluat-
ed using a literal interpretation of a mechanical shell
model, e.g., the distance from the lithium ion to the
fluorine shell appears in the nearest-neighbor potential.
The results of the energy minimization for slabs of vary-
ing thickness are given in Table II. The infinitely thick
case corresponds to a single surface. The displacements of
the outermost lithium ion, fluorine core, and fluorine shell
relative to the second layer are u,, u,, and w,, respective-

Reduced Wave Vector, T Direction

FIG. 1. Bulk phonon dispersion relations for the simple shell
model projected onto the =, [£,0,0] direction. The modes are
divided into SP vibrations with polarization vectors (x,0,z) in
the sagittal plane, and SH vibrations with polarization vectors
(0,,0). Also shown are characteristic surface modes found for
the fully relaxed slab.

ly; u; and w, are negative (inward relaxation).

As a matter of interest, the calculations for the single
surface were repeated with two slightly changed models.
In the point-dipole model, the parameters were un-
changed, but the short-range interatomic forces were as-
sumed to act on the fluorine core, rather than on its shell.
In the rigid-ion model, the fluorine core and shell were
constrained to move together. The results for the three
models are shown in Table III, together with the surface
energies. The results are similar to those found by other
authors®!* in that the rigid-ion model gives very small re-
laxations and a correspondingly small correction to the
surface energy, while the point-dipole model greatly
overestimates both.

B. Normal modes of vibration

The vibrational frequencies of a slab are best discussed
in terms of the corresponding bulk normal modes. If the
faces of the slab are perpendicular to the z direction, the x
and y components of the wave vector are still good, and
the dispersion relations resemble those of the bulk crystal
projected onto this two-dimensional wave vector.* The
hatched areas in Figs. 1 and 2 show such projections for
the present model for the X, [100] direction and the A,
[110] direction, respectively. In both cases, the normal
modes can be classified* as sagittal plane (SP) modes, hav-
ing eigenvectors lying in the sagittal plane which contains
z and q, or as shear horizontal (SH), modes with eigenvec-
tors perpendicular to this. Most of the calculated frequen-
cies for the slab lie in the hatched regions, but a few
modes are split off from the bulk continuum. These are
the surface modes which are of interest in the present cal-

Frequency (1013 rad/sec)

Reduced Wave Vector, o Direction

FIG. 2. Bulk phonon dispersion relations for the simple shell
model projected onto the A, [,£,0] direction. The SP modes
have polarization vectors (x,x,z) and the SH modes have polari-
zation vectors (x, —x,0).
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TABLE IV. Selected frequencies in units of 10'* rad/sec at the I, X, and M points in the surface
Brillouin zone: (a) unrelaxed shell model fitted to bulk phonon frequencies, (b) unrelaxed simple shell
model, (c) simple shell model with relaxed lattice spacings, and (d) simple shell model with relaxed lat-

tice spacings and reconstructed surface layer.

(a) (b) (© (d)

I' ®max 12.384 12.347 12.263 12.264
S, 9.345 9.309 9.352
Sas 5.319 5.539 5.781 5.787
X  ®max 11.555 12.771 12.831 12.832
S3 10.285 11.031 11.160 11.162
Sy 5.636 5.776 5.822
S, 5.486 5.391 5.389 5.432
Ss 4.744 4.804 4.984 4.990
4.114

S, 3.671 3.700 3.691 3.686
S 2.988 3.283 3.375 3.418
M wga 8.567 9.438 9.577 9.579
S 5.829 5914 5.790 6.040
S 3.793 3.722 3.676 3.697

culation. Various surface modes at I'(4=0) and at the
two zone boundaries are indicated by the arrows and la-
bels. We have followed as far as possible the notation of
Chen, de Wette, and Alldredgc:s'6 in labeling the surface
modes. Thus S, is the lowest branch in each direction. In
the = direction, this is the SP Rayleigh wave, but for most
of the A direction it is an SH vibration. Benedek et al.’
have used the label S; exclusively for the Rayleigh wave.
At q=0, S, and S are the transverse-optic surface modes
identified by Lucas.!” S5 remains a true surface mode
over much of the zone. S, lies in the continuum of SP
modes and is not a true surface mode. Chen et al. label it
MS,. We have indicated this branch in the regions where
it could easily be identified.

We have made calculations of the frequencies for four
models: an 11-parameter shell model fitted to bulk pho-
non dispersion relations with no allowance for relaxa-
tion,!! the present potential model with the ions occupying
undistorted bulk positions, the present model with values
of ry and r; corresponding to the relaxed slab, and the ful-
ly relaxed model in which the parameters u,, u,, and w,
are introduced. A comparison of the results indicates
which variations are model dependent and which arise
from the surface relaxation. The frequencies of the la-
beled surface modes are given for these four models in
Table IV, together with the maximum frequencies at the
three wave vectors, to indicate the variations of the bulk
bands between the different models.

IV. DISCUSSION

The model we have used is sufficiently simple and phys-
ically well defined that we have been able to carry out a
consistent calculation of the effects of surface relaxation
on both the static and vibrational properties. However,
because of this simplicity, the model does not reproduce
exactly the properties of the bulk solid. Columns (a) and
(b) of Table IV show some frequencies for an unrelaxed

slab calculated with a model fitted to the bulk solid and
with the present model. There are differences of up to
10% in some of the surface mode frequencies between the
two models, and, in addition, column (b) shows two extra
surface modes for the simple model. The results of
column (a) are almost identical with those of Chen et al.’
for the same model, most of the difference arising from
our use of the mean atomic mass for Li. The S, mode at
I" was found by Chen et al. for a number of alkali halides.

The remaining columns show the effects of relaxation
on the surface mode frequencies and should be compared
with column (b). The results in column (d) show the effect
of puckering in the surface layer of atoms. The fluorine
ions relax outward relative to the lithium ions and also ac-
quire a dipole moment even in their equilibrium positions.
This effect has not previously been included in any calcu-
lations. It has the effect for our model of introducing one
extra surface mode at the point X. This mode, which we
have labeled Sg, and an additional mode Sy do not seem to
correspond to any of the labels given by Chen et al.> Both
are shear horizontal modes in which the maximum vibra-
tion amplitude occurs in the second atomic layer. Sy is
split off from the transverse-acoustic bulk band and is
predominantly a vibration of the fluorine ions. Sy is split
off from the transverse-optic band and is predominantly a
vibration of the lithium ions.

Experimental results have recently become available,
mainly for the S, branch along the = direction.? An in-
teresting feature of the results is that, near the zone boun-
dary, the branch is flatter than the calculations suggest, so
that at the M point the calculated frequency is too high.
The measured value is about 3.4 10" rad/sec. All calcu-
lations to date give values higher by 5—12 %. Benedek
et al.” have shown that if the fluorine-ion polarizability is
increased by 17%, the measured frequency is obtained,
and they suggest using different values for the polarizabil-
ity in the interior of the crystal and at the surface. We
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Reduced Wave Vector

FIG. 3. Lowest three branches of the dispersion relation for
small wave vectors in the 2 direction for the fully relaxed model.
T is a transverse mode with polarization vector (0,y,0). S and 4
are polarized in the sagittal plane and are, respectively, sym-
metric and antisymmetric with respect to the center of the slab.

would like to point out that the shell model already in-
corporates this effect, since the removal of neighboring
layers of atoms removes some contributions from the
dynamical matrix, one result being a change in the polari-
zability perpendicular to the surface. In our model, the
polarizability is increased by almost 9%. Similarly, the
shell model does attempt to describe changes in the Szigeti
effective change at the surface. Relaxation of the surface
layer does reduce the S, frequency at M somewhat, and if
the decrease which we calculate due to relaxation were in-
corporated into the more sophisticated breathing shell
model of Benedek et al.,” about half the discrepancy with
the experiment would be removed.

Of the remaining changes which occur when the surface
layer is relaxed and reconstructed, one of the largest is
that the Lucas modes, S; and S5 at =0, increase in fre-
quency and move back to the edge of the transverse-optic
band. A consequence of this is that the S5 branch is less
well separated from the continuum. It may make unambi-
guous identification of these modes more difficult experi-
mentally.

We have also examined the behavior of the lowest-
frequency surface acoustic modes at long wavelengths.
Figure 3 shows the results for the = direction. Over most
of the zone, there is a doubly degenerate branch S, which
is the Rayleigh surface wave. As the wavelength in-
creases, the penetration depth of the wave also increases,
and for a finite thickness slab, it ceases to be a surface
wave. The two branches now split. The symmetric
branch moves into the bulk continuum band and takes on
the character of a longitudinal-acoustic mode. The an-
tisymmetric branch becomes a flexing mode of the plate
with the unusual property that the frequency varies as the
square of the wave vector. The branch marked T in Fig. 3
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FIG. 4. As Fig. 3, but for the unrelaxed shell model fitted to
bulk frequencies. The upper results are for fitted value of the
parameter B, and the lower results have B adjusted, as described
in the text.

is a conventional transverse-acoustic branch, polarized in
the plane of the slab. This behavior was discussed on the
basis of macroscopic elasticity theory by Lamb.!® The
upper part of Fig. 4 shows similar results for the unre-
laxed model, fitted to bulk dispersion relations. Note that
only very small wave vectors are shown. The quadratic
region in the antisymmetric branching is missing. We in-
terpret this as indicating that the model represents a plate
under stress. In fact, if the parameters of the model are
interpreted in terms of two-body forces in the usual way,
even the bulk solid is under stress. In the bottom part of
Fig. 4, we have adjusted the value of a single parameter B
to satisfy the bulk equilibrium condition. The behavior of
the antisymmetric branch is seen to be much more nearly
quadratic.

This illustrates the main source of difficulty in this
work. While the models used in calculations of bulk
dispersion relations can reproduce the experimental results
closely, the physical interpretation of the parameters is not
straightforward, and the fitted lattice-dynamical model
can contain, implicitly, unwanted stress effects. Use of
such a model to predict relaxation phenomena is then un-
reliable. The model we have used is a very simple one.
Only one ion is polarizable, the ionic charge is fixed at e,
and breathing effects are neglected. Probably by eliminat-
ing some of these restrictions, we could get better agree-
ment with experiment. However, because the model is so
basic, it is probably a good indicator of the importance of
effects such as relaxation in both static and vibrational
properties. This is a difficult problem, and we believe that
our approach gives valuable insight into it.
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