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The Schrodinger equation is solved on a variety of fractal lattices using a recursive technique. In

this method, the energy levels and wave functions on a lattice with N„sites is calculated in terms of
the corresponding quantities on a smaller lattice with N„& sites, via a kind of decimation process.
As n~ao the resulting energy levels are discrete, very closely spaced, and highly degenerate.

Smoothed densities of states have a wide variety of singularities.

I. INTRODUCTION

A. Motivation

Recently, statistical physicists have begun' a sys-
tematic study of critical phenomena and statistical
mechanics on a set of lattices of noninteger fractal dimen-
sionality. In general, these lattices have self-similar prop-
erties but do not obey full translational invariance in any
ordinary (integral dimensional) space. One of the many
reasons for the interest in these lattices is that they serve
as models for the backbone of percolating systems.

In this paper we follow Ref. 3 in the consideration of
solutions to the Schrodinger equation on such lattices. We
are particularly interested in seeing how the density of
states behaves in such self-similar but nontranslationally
invariant systems. We hope that our results may be useful
for gaining some understanding of localization problems
on more random lattices.

Since localization problems are rather intricate and have
a structure which is still not fully elucidated, we shall seek
out a class of particularly simple problems which can be
exactly solved. These all involve special situations in
which the lattice has a finite ramification number, i.e., the
lattice will fall apart if a finite number of sites are re-
moved. We should not be surprised if such situations pro-
duce rather localized wave functions. However, we did
find one rather surprising result: The density of states for
the problems considered here are dominated by very high-
ly degenerate states.

An additional surprising result is the form of the densi-

ty of states. The energy levels are discrete and degenerate.
However, as the number of sites goes to infinity, the densi-

ty of states per site p(E) approaches a limit with an infi-
nite number of different kinds of singularities (all with
different critical indices) and —in two of our cases—an in-
finite number of band gaps.

ggl(x) =0

then translates into the statement

g (Pocosqa —
lb& )=0,

j=1

q=&2mE .

(1.2a)

(1.2b)

Equations of the form (1.2a) also arise when one tries to
describe the result of "decorating" on a tight-binding
model Hamiltonian, such as that in Eq. (1.1).

It is tempting to say that formulations (1.1) and (1.2) are
essentially equivalent. Indeed if all the tj in Eq. (1 ~ 1) are
equal to other, one can relate (1.1) and (1.2) by writing

1,2,3,. . .,m by bonds. In one kind of Schrodinger equa-
tion, we consider hopping along the links to the sites in
question. The hopping amplitude is given by tj
(j=1,2, . . .,m) and the Schrodinger equation at the site
has the typical tight-binding form

ESo= gtj 4, —
j

Typically, we then set all (or a subset of) the tj's equal.
The alternative formulation is due to Alexander. Set a
coordinate xj on each wire which runs from xj ——0 (the
joining point) to xj =a (the neighboring site). Along each
wire there is a wave function lb&(x), with f&(0)=go and

ft(a)=QJ. If
a'

@J(x)= 2mEPJ(x), —
Bx

then we have a wave function of the form

tbl(x) =g+t e&"+g, e e" with q =&2mE. Of course,

f+J and lb 1 are determined by lbj. and tto. The current
conservation condition

m cosqa = —E/t . (1.3)
B. Two problem types

Given a fractal lattice, we develop two separate and dif-
ferent kinds of Schrodinger equations. Look at a typical
lattice site numbered 0 connected to other sites labeled

The right-hand side of Eq. (1.3) describes the tight-binding
problem; the left-hand side, the Alexander "wire" formula-
tion.

The equivalence is indeed perfect if the couplings tj are
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all equal and if m, the number of bonds per site, is the
same for all sites. In two of our model problems these
equivalence conditions will be satisfied; in another they
will not.

neighbor sites. The eigenvalue equation has the form

H ~y&=E ~y&

in the tight-binding model, and

(2.2a)

C. Recursive method H
~

f&=0 (2.2b)

e„.=cos(2mE„~')'",

while in the tight-binding problems

E„~/t .

(1.4)

In each case, our decimation will imply a relationship be-
tween energies on the level-n lattice and those on the
level-(n —1) lattice of the form

In each of our problems we consider a succession of lat-
tices defined by an integer n. The level n lattice has N„
sites and hence N„energies E„~. As n increases, N„ in-
creases geometrically. We use a decimation method to
eliminate sites from the level-n lattice and thereby gen-
erate the level-(n —1) lattice.

At each level, and for each energy we shall characterize
the energy by a dimensionless parameter e„. For the
wire problem

in the wire model. We put these together by writing

H
~

f&=S'
~ g& (2.2c)

If now, using the second line of Eq. (2.3), we express

l W2& (@ H22) H21
l 4i&

and substitute into the first line, we get

jeff I ti'l &
=[H» +H12( g H22 } H21] I 6 &

(2.4a)

with 8' being E in the tight-binding case and 0 in the wire
model. We now divide our lattice (and our Hilbert space)
into two sublattices (subspaces), denoted by 1 and 2.
Denoting the projection of

~
g& onto these as

~
1(& & and

~ Pq &, the eigenvalue equation (2.2c) can be written as

Hii Hi2
(2.3)

2
n —1,a 0+ 1 n, p+b2~n, p s (1.6) (2.4b)

where the b's will depend only upon the lattice in question.
Since the relationship is quadratic for each energy in the
level-(n —1) system, there are two in the level-n system.
(In addition there will be some special energies not covered
by the recursion relation —this will be discussed later. )

Thus by knowing the energies in the level-(n —1}case, we
know them on the larger lattice. In this way, it becomes
easy to calculate all the energies.

Determination of the spectrum is now quite simple, ow-

ing to the fact that recursion relations of the form (1.6)
have been subjected to very considerable analysis. ' By
making a linear change of variables e„p——cx +d,
e„ i

——cx'+d, one can convert the recursion relation
(1.6} into the standard form

Thus, instead of solving an eigenvalue equation that in-
volves all sites of our lattice, it is sufficient to study a
problem with only a subset of the original sites. It should
be noted, however, that in general, the problem, as defined
in the subspace 1, is more complicated (i.e., it may involve
longer-range hopping) than the one defined on the original
lattice. Here we will concentrate on cases where the new
eigenvalue equation (2.4b) can be brought into a similar
form as the original Hamiltonian (2.1). In such cases vari-
ous properties of interest, such as the spectrum of eigen-
values, the eigenfunctions, and Green's functions of a
(practically) infinite lattice can be calculated on the basis
of very simple, single-parameter nonlinear recursion rela-
tions. We now turn to derive recursive solutions for some
lattices.x'=rx(1 —x )

with

(1.7)

A. Linear chain

r = 1+[(b ~
—1) —4boh 2]

' (1.8)

The three cases we shall study correspond to the stand-
ard form (1.7) with r=4, 5, and 6. Much of our
knowledge of the final answers will emerge from previous
work on the recursion relation (1.7).

~= —ry(
(
i &(i+ I

[ + [ i+1&(i
(

) (2.5a)

The simplest such example is the linear chain. In the
tight-binding model, we set u;=0, t;;+&——t; &; ——t, and
O'=E to find

II. DERIVATIONS OF SINGLE-PARAMETER
RECURSION RELATIONS

and the eigenvalue equation

E0 = —((i'+1+0 —l)r (2.5b)

Consider a set of nearest-neighbor hopping Hamiltoni-
ans of the form

while in the wire model we set a=0, u; =2 cosqa, and have
instead of Eq. (2.5b) the relation [see Eq. (1.2a)]

~=gu
I
i &&i

I

—g«" Ii &&j I
+r- Ij &&~

I
}

(2 cosqa )1(;=1(;+,+g; (2.6)

Here we imagine that we are working on some particular
lattice, e.g., the Sierpinski gasket of Fig. 1. This Hamil-
tonian operates in a Hilbert space spanned by local site
functions ~i &; by (ij & we denote a pair of nearest-

Of course, Eqs. (2.5b) and (2.6) are really identical. The
mapping between the two is given by Eq. (1.3).

Use the tight-binding picture to analyze this situation.
Work on a lattice of N„=2"+' sites with periodic boun-
dary conditions $0——tP~ . Then define the set 1 to include
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all even-numbered lattice sites i =2J and 2 to be the odd-
numbered sites. From Eq. (2.5b) we find

T

2t t
42j E (02j p2+ P2j —2) . (2.7)

Equation (2.7) is exactly of the same form as (2.5b), ex-
cept that the parameters have been changed. In place of t
there appears

Aj+ i
= —(i—t2j+ 02j+2)E

so that we can write a Schrodinger equation for the even-
numbered sites alone as

two energy eigenstates in the level-n system corresponding
to the given eigenstate in the level-(n —1) system. When
this condition fails, a special analysis will be necessary (see
Sec. III).

The recursion relation (2.10b) is most easily understood
in terms of the wire model. This linear chain is one wire
and the N„sites i are just equally spaced observation sta-
tions along the wire. From Eq. (2.6), e = —2cosqa so that
the recursion relation (2.10b) is 2 cosq'a= —2+4 cos qa or
q'=2q. Thus by doubling the lattice constant, we have-
as expected —doubled the observed wave vector. Finally
notice that by making the change of variables e=4x —2,
we achieve a recursion relation of the form (1.7) with
r =4.

t'= —t2/E (2.8a)

and in place of E, we have

E'=E—2t2/E . (2.8b)

One dimensionless parameter

~=~«=E~ ~/t =E/t (2.9)

E' =2—62 (2.10a)

or

describes the solution in the lattice of size N„=2"+'. On
the decimated lattice, the corresponding parameter is

e„1~——E'/t'=e'. From Eqs. (2.8), we find

B. Triangular Sierpinski gasket

We consider a sequence of fractal lattices, as shown in

Fig. 1. The boundary conditions used identify the corners
of two triangles on the largest scale; the lattice is generat-
ed by inserting sites (that form a downward-pointing tri-

angle) onto each upward-pointing triangle. Stopping after
any finite number n of such insertions, we consider the
tight-binding eigenvalue equation associated with the
Hamiltonian (2.1) for the special case in which u; =0 and
all the tj are equal to t. Once again we use the abbrevia-
tion e=E/t for the dimensionless energy parameter. Be-
cause each site has four neighbors, e is bounded in the re-

gion
2

1P——2 —e„(, . (2.10b) 4(g(4 (2.12)

This recursion relation may be interpreted in the follow-
ing ways. Given an eigenstate

of the system of size N„=2"+' with E'=E„~, there must
be a corresponding solution

with parameter e' on the lattice with N„1 sites. Alterna-
tively, one can work backward. For every solution

To obtain the recursion equations, we employ the general
method of Eq. (2.4). The set of one sites includes all those
that were present prior to inserting the nth generation; the
set 2 consists of these sites of the smallest scale.

In order to obtain the analog of Eq. (2.4a), i.e., express
t(2 in terms of f„one needs to consider the 6X6 matrix
associated with nearest-neighbor hopping on the basic tri-
angle of Fig. 1(b). We have (ij =1,2, 3) (Hii),j ——0,
(Hi2);j =(H22),j.———I+5;j: hence, using (2.4b), we get

n= I

on the lattice of N„1 sites, there exist two corresponding
eigenstates

(2.11a)

with energy parameters

e„=+(2—e„ i p)' j (2.11b) 2 I 2 I' 3

and wave functions

yn, + gn
—i

(2.11c)

g.n, +
V'2j+1 = yn

—i +yn —i

n, +

Note that we have assumed e„+&0. Whenever this con-
dition holds, i.e., whenever e„ i ~2, there exist precisely

(b) (c)
FIG. 1. Construction of a Sierpinski gasket with (a) three

sites on the largest scale (n =0). (b) By inserting three sites into
each of the triangles in (a), the n =1 gasket is obtained. (c) Con-
tinuing the insertion procedure yields the n =2 gasket, from
which n =3,4, . . . can be constructed. The lower (upward-
pointing) triangle of (b) is a prototype of the "basic structure"
from which sites 1',2', 3' can be eliminated by decimation.
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for a single (upward-pointing} triangle of one sites the
Hamiltonian

Ha [H——)(+H(2(El —H22) 'Hp)];

e —2+ (@+2)5;,.

(E+2)(e—1}
(2.13)

4te
(@+2)(e—1)

and hopping interaction

2 —6
(a+2)(e—1)

(2.14a)

(2.14b)

The level-n system had u =0. To force the level-(n —1)
system into this same form we notice that u' only appears
in the combination E—u'. Hence if we replace E by
E—u', and u' by 0 we have changed nothing. The level-

(n —1}system has its properties determined by an energy
parameter

In order to construct the Hamiltonian for the entire (de-
cimated} lattice of one sites, note that each one site ap-
pears on the corner of two basic triangles; therefore the di-
agonal element appearing in the full H, ff is twice that of
H~. Therefore, for the level-(n —1) system the effective
Hamiltonian will be of the form (2.1}with on-site energy

which the four (corner) sites belong to set 1, while the six
internal ones belong to set 2 (see Fig. 2).

We now construct a single-tetrahedron Hamiltonian as
was done in Eq. (2.13); note that each site from one is
shared by two basic tetrahedra, and by the same manipula-
tion as used before we get

e'= —(e +6@+6) . (2.18)

FIG. 2. Basic unit of a Sierpinski gasket embedded in three-
dimensional space. The next generation of sites is obtained by
inserting six sites into each of the four tetrahedra (such as 3456)
in the same manner as sites 1,2,. . . ,6 were inserted into the
tetrahedron 1 2 3 4.

E—u'
t' (2 14c) This recursion relation is equivalent to

By combining Eqs. (2.14) we obtain a recursion relation
for the energy parameter

e'= —e(e+3) .

&n, +=

Note that if we make the change of variables e=5x —4,
Eq. (2.15}converts into the form (1.7) with r =5.

Thus given an energy eigenstate of the level-(n —1) sys-
tem with energy parameter e„]~ we can predict that
there will be two corresponding eigenstates of the level-n

system with parameters

—3+(9—4e„ i )
'i

2
(2.16)

x'=rx(1 —x ), r =6 . (2.19)

As before, Eq. (2.18) does not hold for some special ener-

gies, which are @=0, —4, + 2.

D. Berker lattice: Tight-binding version

This lattice is generated in the manner indicated in Fig.
3; to insert a new level or generation of sites, each bond of
the lattice is replaced by two bonds with a site centered on
each. The Migdal-Kadanoff recursion relations provide
an exact solution to spin models defined on this lattice.

In regard to the eigenfunctions, Eq. (2.4a) in the present
case will give the amplitudes f;'on the three internal sites
of an upward-pointing triangle as a function of the ampli-
tudes fz on the corner sites, through the following relation
[see Fig. 1(b) for the appropriate indexing of sites]:

3

g [e (a+2}5,J ]QJ .— (2.17}
(a+2)(E—1) J

The derivation, and thus Eq. (2.16), holds only for
e&—2, + 1, +2. For the first two of these special ener-

gies the matrix (el —H22} is singular; for @=+2the effec-
tive Hamiltonian has vanishing hopping amplitude
(t'=0), and thus these cases have to be considered

separately.

n=O

~ k=0
o k=l
o k=2

n=l

(a)

~ k= n- l o k=n

n=2

C. Three-dimensional Sierpinski gasket

This object is obtained by the construction indicated by
Fig. 2. Recursion relations are obtained in a manner simi-
lar to Sec. IIB, with a few differences. The basic object
(tetrahedron) that has to be considered now has 10 sites, of

FIG. 3. (a) Berker lattice: The level-n lattice is obtained by
replacing each bond of the level-(n —1) lattice by two bonds,
with one site of the nth generation on each. For lattices with

n =0, 1,2 the sites that belong to generations k =0, 1,2 are indi-

cated. (b) The basic structure from which the nth-generation
sites (open circles) can be eliminated by decimation.
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H= —g tk"'(
~
k,a)(n, a'~ +H.c.),

k, a, a'
(2.20)

where
~
k,a) denotes a particular site that belongs to the

kth generation; the nearest neighbors of any such site be-

long to the last, nth generation and are denoted
~
n, a').

Site
~
k,a) has 2" units such as those shown in Fig.

3(b) attached to it; note also, that the next-nearest neigh-
bors of ~k,a& belong to the (n —1)th generation. In
writing the Hamiltonian (2.20) we have assumed that the

hopping element depends on the indices k, n only. By
eliminating in each basic structure [Fig. 3(b}] the two n

sites, we obtain

Ifk, —i= [{tk ) Ik a)(k,al

+(t„'"',)'
~

n —l,a') (n —l,a'
~

+t„'"'t„'"',(
~

k,a)(n —l, a'~+H. c.)] . (2.21)

When the Hamiltonian for the full decimated lattice is
considered, we get for site k a diagonal element

Qk= (tk ) 2

In order to be able to write the new Hamiltonian in a form
similar to (2.20), ug must be independent of k. Choosing

k 7 (2.23)

we get a recursion relation for e=E/t and e'= (E u')/t'—

Here we consider solutions of the nearest-neighbor hop-
ping tight-binding Hamiltonian. Again we consider a lat-
tice obtained by inserting n generations. It should be not-
ed that now the number of bonds incident on a given site
depends on the generation to which the site belongs. For
this reason, in order to derive simple recursive formulas,
we must assume that either the site energies or the hop-

ping depend on the location of the respective site on the
lattice. For this lattice a number of different problems
can be defined and considered.

Variab1e hopping. Consider a lattice of n generations of
sites,

for k &n

k, a 2 f., 4t, —

where in each case n, a' and k,a are nearest neighbors.
Thus the recursion relations (2.24) apply equally well to
the wire case with the identification

E= —2 COSY

With the identification (2.27}, the recursion relation {2.24)
can also be written in the very simple form

(2.28)

III. ENERGY LEVELS AND EIGENSTATES

In this section we show how the recursion relations, de-
rived in the preceding section, can be used in order to ob-
tain the spectrum of eigenvalues and the eigenstates. All
lattices considered will be built up by starting with a basic
"structure" of a small number of sites, into which levels of
new sites, each defined on a scale smaller than the previ-
ous one, are inserted. The eigenvalues of the system with
n such insertions are related to those of a system with
n —1 levels by relations (2.10}, (2.16), etc , which .can be
written generically as

X
~
k,a) =2'"-""

~
k,a),

we find that we have a new problem: the determination of
the zero eigenstates of

H2 ——XH)X

=ge2" "f k,a)(k,a
f

k,a

+ g (
~
k,a) (n, a'

( +H.c. ) .
k, a, a'

Since a kth-generation site has 2&2" nearest neighbors,
one can rewrite the Hamiltonian H2 in terms of a set of
wave-function equations of the form (1.2)—i.e., the wire
form —as

e = —E +2, (2.24)

which is identical to (2.10b), and therefore also corre-
sponds to r =4.

E. Berker lattice: Wire version

c„ i=f(e„) .

We shall not make use of Eq. (3.1) directly. Instead we go
backwards. Since f is a quadratic function, there exist
two inverse functions g+(e), such that

e=f(g+(e)) . (3.2)
The eigenvalue problem just considered can be written

as the determination of eigenstates with eigenvalue 0 for
the Hamiltonian

H, =pe
~
k,a) (k,a

~

+ g 2-'"-""(~k,a)(n, a ~+H.c.).
k, a,a'

(2.25)

The problem is to adjust e until the eigenvalue 0 becomes
possible. If we multiply Eq. (2.25) on the left and right by
operators X such that

Given an allowed parameter of the level-n system, e„~, we
derive two allowed values of the level-(n+1) system
&n+i, a, + as

&a+i, ,+=g+«., )- (3.3)

Equation (3.3) does not work for exceptional values of the
energy parameter e. Let us define S as the set of all e„+~

which are not properly generated by the recursion relation
(3.3).

Leaving these exceptional energies aside, it is very easy
to calculate the degeneracies of the various eigenstates.
Let N„(e') be the number of states in the level-n system
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with energy parameter e'. Let e+ be g+(e'}. Then if e+ is

not an element of S
30

N„+&(e+)=N„(e') . (3.4)

Notice that if N„+] & 2N„, Eq. (3.4) cannot exhaust all the
possible values —and degeneracies —of the energy parame-
ter at level n +1. Hence, in these cases, in order to gen-

erate the entire spectrum at level n +1, we must have con-
tributions from the exceptional energies.

0 20—

10—

A. Linear chain (ring)

The recursion relation
0 0

6'=2 —6 =f(E) (3.5)

g~(e}=+v'2 —e . (3.6)

We encounter difficulty only when the higher-level e
equals zero. Hence S contains one element, 0.

Now let us find the energy parameters. At level 1, we
have a two-site system with e] &

———2, e] 2 ——+2. From
the former energy parameter we find from Eq. (3.6), ele-

ments e2 i ———2, @22——2. Since the latter element gives
rise to E2 p=0, it is an exceptional case. But, we know
that this four-site system must have four separate eigen-
states. Hence e2 3

——0 must exist and be doubly degenerate.
In this way we find that the level-2 system has energy pa-
rameters ( —2, 2,0) and degeneracies N2( —2) =N2 ——1 and
N2(0)=2. This procedure is now repeated; after n =10
steps the density of states obtained is shown in Fig. 5. For
e„&2, the eigenstates |('„~+i are obtained by using (2.11c)
to construct the amplitudes g'„+i from 1('„'. For e„+,——0
the known two eigenstates, f„+i(l) =exp(+ ,

' i~i) appe—ar.

B. Sierpinski gasket

The recursion relation for the energy, Eqs. (2.15), has no
stable fixed point or cycle. No interval of e maps onto it-
self under repeated applications of the recursion relation.

maps the interval [—2,2] onto itself. Energies outside this
interval map to e~ —ao,' since for a chain of any number
of sites the spectrum is bounded from below, this means
that no eigenstate with ~e~ &2 may exist. A ring with
2"+' sites is constructed as follows: The basic structure of
two sites connected by two bonds (n =0) of Fig. 4(a) is
"decorated" by introducing a site on each bond, to yield

the N] ——4=2 site ring of Fig. 4(b), from which the

N2 ——2 site ring is constructed, etc. Given the energy lev-

els e„,a=1,2, . . .jV„of the system with n levels, those
of a ring with N„+&——2"+ sites, i.e., e„+]p, can be ob-
tained by inverting the recursion relation (3.5). We have

FIG. 5. Density of states (number of states in interval Ae, di-

vided by total number of states) for the linear chain (ring) as ob-
tained by the algorithm of Sec. III after n =10 iterations.

In terms of the eigenvalues, this means that any value of e
other than a set of measure zero (points that belong to
some unstable cycle} will map, eventually to e~ = oo.

However, since the spectrum of eigenvalues is bounded
from below, this means that there exists no interval (i.e.,
band) of allowed energy levels for the infinite Sierpinski
gasket. If one disregards, for the time being, the special
values of e'=+2, +1 for which the recursion relation
(2.16) is inapplicable, one can generate a sequence of inter-

vals Ik that constitute gaps in the spectrum, as shown in

Fig. 6. The interval Io, defined by e & 1 or e & —4, maps
towards e = —ao and therefore cannot contain
allowed eigenvalues. The interval Ii ——[—(3+V 5)/2,
—(3—v 5)/2] maps under one iteration onto a subset of
Io, and therefore also constitutes a gap. Continuing in
this manner, we note that Iq, the union of two intervals as
shown in Fig. 6, maps onto I], we find that the sequence
of forbidden intervals generated in this manner, Ik, con-
verges geometrically to cover the entire range —4&E'(1
[or 0&x &1, in terms of the variable of Eq. (1.7)]. We
found, numerically, that for large k

Ik-Ap k, p=1.7380523. . . , A =0.7114374

Thus the set (of measure zero) of allowed values of e must
be either related to those values e' for which the recursion
is not applicable, or belong to (unstable) cycles of the re-
cursion relation.

As will be shown, the allowed energy values can be di-
vided into two classes, with respect to the gap intervals Ik,
defined above. One class consists of values lying inside
the gaps; another class is values that constitute the gap
edges.

Our basic, largest scale (n =0) structure of No ——3 sites
is shown in Fig. 1(a). The gasket generated after n inser-

n=0

(a)

n=l n=g
p~O~p

~
/

(b) (c}

-4 -3 -2
l

'
I

'
t

~ ~ ~ 0

0
I ] I

FIG. 4. Construction of a linear chain (ring). The n =0 lat-

tice of (a) transforms by decoration to the n =1 lattice of (b),
from which, in turn, the lattice (c) with n =3 is obtained.

FIG. 6. Gap intervals Ik of the spectrum obtained from the
recursion relation (2.16); k = 1,2,. . .,5 are shown.
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e„=g+{e„ i)=[—3+(9—4e„ i)' ']/2 (3.7}

provided e„&+2,1. These cases are now treated in detail.
Consider first an eigenvalue e„~———4, which gives rise,
via (3.7), to one eigenvalue with e„=—4; the other solu-

tion of (3.7), namely e„=1, is discarded. Therefore, if the
level-{n —1) system has N„ i( —4} states with energy

e„&———4, these give rise to

N„( 4) =Ng—i( —4)

tions, in the manner indicated in the figure, contains
3~+~ si

We now proceed to construct an algorithm that will

provide the energy levels e„and their multiplicities

N„(e„),calculated from those of the system at level n —l.
The parameters of the system with N„sites are &„' ',

a=1, . . . , N„. These are related to the parameters of the
system with N„& sites via (2.16):

$2(a'), defined on the level n-sites, can be calculated, using
(2.17). Thus Eq. (3.10},and therefore (3.11),are proved.

In order to obtain no more relation between N„( —2),
N„(1},and multiplicities at level n —1, we use the trace
condition

N„

g E„=TrH =0 .
a=1

(3.13)

The 2N„'
&

states generated by (3.7) contribute
2 (——,)N„'

&

———3N„'
&

to the sum (3.13). This does not
include the contribution of states with eigen values
e„=—4, —1 which has to be considered separately [only
one of the roots of (3.4) was taken]; these contribute
{—1)N„(—1)+ ( 4)N„(——4). In addition, the special
values e„=2,+ 1 must be added, thus obtaining

3N„' i
—N„( —1) —4N„{——4)+2N„(2)

—2N„( —2)+N„(1)=0 .
states, with e„=—4, at level n. The second "problematic"
value is e„ i

——2. If its multiplicity is N„ i(2), one gen- Using now (3.8), (3.10), and (3.11),we get
crates from (3.4) only

N„(1)—2N„( —2)=N„ i 2N„ i(2—)+N„ i( —4) .
N„( —1)=N„ i{2) (3.8)

(3.14)
states with energy e„=—1. The remaining N„'

~
states

have energies e„ i for which (3.7) can be used, and these
generate 2N„' i states of energies e„given by (3.7}. Thus,
so far, knowing the spectrum at level n —1, we know the
energies (and multiplicities) of

Equations (3.11) and (3.14) have the solution

N„(1)=N„ i/3+N„ i( —4),
N„( —2)=N„,(2)—N„ i/3 .

(3.15)

(3.16)

2N„' i +N„ i( —4)+N„ i(2)

=2N„ i
—N„ i(2}—N„ i( —4}

states. Thus we have

N„—[2N„ i N„ i(2) —N—„ i( —4) ]

=N„ i+N„ i(2}+N„ i( —4)

states at level n with unknown energies. These energies
must be +2, 1 [otherwise they would be related to e~„ i i by
(3.7)], and thus we must have

N„(2)+N„(—2)+N„(1)=N„ i+N„ i(2)N„ i( —4) .
(3.9)

We will immediately show that

(1) For all n N„( —4)=1.
(2) N„(2)=N„
(3) N„(1)=N„)/3+ 1.
(4} N„( —2)=5(n, 1).
{5) For all other energies

=—e{e+3).
N„(e)=N„,e'); e'

For all N & 0 we have N„(2)=N„/3 and thus N„( —2) =0;
only for n =0 one has No{2}=2 and hence N i( —2) = l. It
is also trivial to show that the state with lowest energy
E„=—4, is nondegenerate; N„( —4)=1. The eigenfunc-
tion for this level has a constant amplitude on all sites.

The spectrum and multiplicity of a system with n levels

is thus generated from that of the system with n —1 levels

by the algorithm outlined above, and summarized below.

N„(2)=N„ (3.10)

and therefore Eq. (3.9) becomes

N„( —2)+N„(1)=N„ i{2)+N„ i( —4} . (3.11}

To prove Eq. (3.10), we assume that there exists a solution
of the eigenvalue equation at level n, with e„=2with am-
plitudes P,(a) on the N„ i sites a present at the n —1 lev-

el and amplitudes $2(a') on the sites a' that are introduced
at the nth level. The latter can be eliminated from the
eigenvalue equation and the remaining N„& amplitudes
fi(a) satisfy an eigenvalue equation which for e=2 is
parametrized by u'=2t and t'=0, and therefore reads
2/i(a) =2/;(a), which has N„ i "solutions"
(P=1, . . . , N„ i)

P(a) =5(a,P) . (3.12)

From these N„&-independent functions the amplitudes

The density of states obtained after ten iterations (i.e., that
of a gasket with 3" sites) is shown in Fig. 7. In this histo-
gram the fraction of states within an interval De=0.01 is
plotted versus e.

First, note that the state with energy parameter —4 and
the states resulting from the (n =1}state with e= —2 are
nondegenerate, and in effect do not show up on the histo-
gram. Also note, that the highest peak (with —,

'
weight} at

@=+2is not shown.
Second, we can now identify the state with a=2 and its

"descendents" at all generations, i.e., e= —1,
( —3+~13)/2, . . . as the set of "midgap states" mentioned
above; they occur inside the gap intervals I~. On the other
hand, the states with a=+1 and its "descendants, " i.e.,
e=( —3+v 5)/2, . . . form the edges of the gap intervals.

Figures 8 and 9 display a set of histograms that reveal a
strikingly self-similar structure. In what follows, we ex-
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FIG. 7. Fraction of states p(e) within intervals he=0.01 vs t. for the Sierpinski gasket with n =10 (3" sites). The notation 2' '

(1' ') indicates a state obtained after k iterations of Eq. (3.7) from an @=2(a=1) state.

plain the origin of this self-similar (or scaling) behavior,
and characterize it quantitatively.

Figures 8(a)—8(d) present scaling behavior near the
fixed point e'= —4. Denote De=a+4, and N(he) the
number of states at he. We find

N(b e)=
1

a
I
"N(he/a) (3.17)

with eigenvalue a =5 and exponent v= ln3/ln5. To
understand this result note that the states with nonvanish-

ing weight at level n are descendents of either the a=+2
or the a=+1 eigenvalues that resulted at some earlier
stage. We denote by 2' ' the eigenvalue obtained using
(3.4} with the minus sign, k times, with a=2 as the initial
value. Similar notation, i.e., 1' ', is used for states that
originate at a=1.

Thus for the n-generation gasket 2' ' stands for the kth
descendant of the @=2 state that resulted at the (n —k)th
generation. This sequence of states is identified in Figs.
8(a)—8(d).

For any initial energy tother than one that belongs to
some cycle of (2.16)], a sequence generated by repeated ap-
plication of (3.4) can be characterized as r)i, r)i,rli, . . . ,
with g; =+1 corresponding to the sign chosen when (3.7)
is used for the ith time. All sequences that satisfy

i)J ———1 for j&jo converge towards e= —4 (or he=0}.
For small enough b,e this convergence is governed by the
eigenvalue of (2.15}at the fixed point;

Nk(2)=3, and therefore N„ (ikey')=3 . Obviously this
same he' is reached at level n by applying (3.7) I times on
the same initial eigenvalue, but evolved at level k+1;
therefore N„(he')=3 +'. Thus we have

Ng(~&) =Nfg ](~& ) =Nff(~& )/3 ~ (3.19)

(3.20}

If we now substitute Le=he'/5 we get the scaling relation
(3.17). Indeed, when we scale the energy axis by 5 and the
multiplicity by 3, the sequence shown in Figs. 8(a)—8(d} is
generated and displays the expected self-similar structure.

The statements made above concerning the neighbor-

hood of e' = —4 are valid for any member 7 of any cycle,
with eigenvalues determined by the derivative of the recur-
sion relation at e. For example, the sequence q&,gz, g3, . . .
with g; =+1 for i &io converges to the fixed point a=0,
giving rise to scaling behavior there. Figures 9(a) and 9(b)
show the scaling behavior near Fi ———1 —v 3
= —2.732 05. . ., which belongs to the two cycle
(eq ———1+~3). The sequence that tails with rl;, . . .=+ 1,
—1, + 1,—1,. . ., converges to the two cycle via the pat-
tern L&RzR&Lz. This means that a point to the left of e~

iterates to the right of eq, then to the right of e~, to the left
of eq, and only then back to the left of e~ where it started.
The reason for this is the negative sign of the eigenvalue
that corresponds to the two cycle,

d6a=
dE' e= —4

=5. (3.18)

The scaling relation (3.17) now takes the form

Thus if after n iterations we observe a state with (small)
b,e and multiplicity N„(he), it is a direct descendant of a
state with be =5b,e, whose multiplicity, after n —1 itera-
tions, N„ i(he'), was exactly N„(he) Now, say, he' w.as
reached at level n —I by applying (3.7) l times on the
eigenvalue a=2 that resulted at level k, with multiplicity

N(he) = 3 N( —b,e/11) (3.21)

and therefore v=2 ln3/ln11.
We now turn to describe the eigenfunctions generated

by our iterative procedure. There is a single state with
e= —4 at each level. At level n = 1, there is one state with
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FIG. 8. Increasing "magnification" of Fig. 7 near e= —4, obtained by successively expanding the e scale (by a factor of 5) and the
p(e) scale (by factor of 3.) A fixed (self-similar) distribution is approached.

each level n; orthogonality at level n —1 does not ensure
orthogonality of the functions [obtained by (2.17)] at level
n.

At each level new states result [i.e., not via {3.7)] with
energies e„=2 and e„=1. A particular choice of the
N„/3 states with energy + 2 was identified above [see
(3.12)]; they are completely localized with respect to the
(n —1)-stage gasket sites, with amplitude 1 on one of this
set of sites and zero on all others. The amplitudes on the
sites that belong to the nth generation are then calculated
using (2.17), giving rise to functions such as that of Fig.
10.

In this form the functions are not orthogonal. They all
have the same normalization. Moreover, only functions
belonging to nearest-neighbor sites on the (k —1)-stage
gasket overlap. Thus the orthogonalization only involves
one overlap integral which depends on the "age" of the

E=—2; at level n, 2" ' descendants of this state appear.
All the remaining states at level n are descendants of
states that resulted (with energy 2 or 1) at levels k (n If.
e„&+2,1 we can use Eq. (2.17) to construct eigenfunc-
tions from those of level n —1. The amphtudes on the
sites of the (n —1)th- generation gasket are those of the
eigenfunction P„~(a), and the amplitudes on the sites
that belong to the nth generation are given by (2.17). If
there are two or more independent eigenfunctions

~(+), P= 1, . . . , &„~(e ~), we generate N„&(e„&)
eigenfunctions with energy e„+' and the same number with

energy e„' ' [the (+) sign corresponds to the sign used in

Eq. (3.7)]. Although it is obvious that the X„&{a„&)
functions with eigenvalue e'„', for example, are also in-
dependent, it should be noted that they are not orthogonal.
Thus within each degenerate subspace an orthogonaliza-
tion procedure should be used. This has to be done at
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state a =n —k (but not on n or k separately). This sug-

gests a straightforward orthogonalization procedure.
The functions are labeled on the (k —1)-state gasket.

%e first orthogonalize the functions for the new sites on
this gasket. This gives

1 1 1
y =y /~1 —a ——

3 v'1 —a &1+2a

for each triangle. The remaining functions are labeled on
the (k —2)-stage gasket. We orthogonalize them to the P;
and calculate the overlap of the new functions [nearest
neighbors on the (k —2)-stage gasket]. One finds

a (1—2a)
(1+a)

One can now proceed as before with a' replacing a. Thus
the functions are all localized on the (k —1)-stage gasket
decay exponentally outside their {k—1)-stage triangles
with a cutoff depending on the smallest (k —l)-stage gas-
ket to which they belong.

The eigenfunctions with e„=1 [with multiplicity
N„(1)=N„/9+ 1] can be characterized as follows. The
amplitudes are nonzero only on sites that belong to the nth
generation. In this set of sites we consider loops that sur-
round "holes, " i.e., triangles whose corners belong to gen-
eration 1 & k & n —1. On these loops we place amplitudes
+1, with alternating signs. Two such states, that loop
around the (n —1)- and {n —2)-generation holes are
shown in Fig. 11. Since the number of holes that belong
to generation k is 2&3 ', the total number of states gen-
erated in this manner is given by
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FIG. 9. Increasing magnification of Fig. 7 near e= —1 —V3= —2.73205. . ., obtained by successively expanding the e scale (by
—11) and the p scale by 9. A self-similar distribution is approached.

2+3k '=3" ' —1=N„(1)—2.
k=1

The remaining two independent states loop around two of
the holes that were created by our choice of boundary con-
ditions.

We can obtain orthogonal functions by a Schmidt pro-
cedure always orthogonalizing a function belonging to a k
hole to all those with larger values of k (smaller holes)
which it intersects. This never generates an overlap be-
tween functions belonging to the same generation.

C. A lattice with a continuum spectrum

functions are generated in later generations (as ek ——2 or
Ek=l) and are not even exponentially sensitive to the
boundaries. It is interesting to see how this affects a prob-
lem with more general boundary conditions. We consider
the lattice of gaskets (i.e., each upward-pointing triangle
of an infinite triangular lattice contains an nth-generation
gasket). Thus instead of the three discrete solutions at
stage zero we now have the continuum of eigenstates of
the triangular lattice:

iq ~ r,.
f'] =8

eq =—2cosq —4cos(q /2)cos(~3'/2),
—6&eq &+3 .

In our analysis we used the convenient boundary condi-
tions of Fig. 1. We found, however, that almost all eigen- We exclude the special values E'q 2, —4. There are also
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no solutions on the gasket for eq & 4. All other states

map on 2" bands. The lowest of these extends on both
sides of the e= —4 fixed point. These extended state
bands have a very strange density of states. Their edges
are the mappings of the points eo ———6, + 4, and the den-

sity of states there reflects that of the triangular lattice
and is constant. Superimposed on this is the singular
structure imposed by all the cycles of the iteration process.
In addition one does, of course, have the "new" states of
the gasket which show up essentially in the same way as
on the single gasket and are localized. Altogether the ex-
tended states represent only a fraction (-—', )" of the total
number of states. The solutions at or originating from
a=1 are embedded in the continuum. On the other hand,
a=2 and its descendants always sit in the gaps of the con-
tinuum spectrum.

D. Berker lattice

The recursion relations for the energy parameters in the
Berker lattice are identical with those of the linear chain.
For both cases, we can write the energies as

e„z= —2 cos2mq„& (3.22)

where the q„& are given by

p nqnp=
2m +1 p=0, 1,. . ., 2 (3.23)

The states with the largest and smallest p's are nondegen-
erate. The others are doubly degenerate.

Since the level-0 energies (eo ——+2) and recursion rela-
tions are the same for the Berker lattice as the linear
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Nn(enr )=Nk(0)= 2X4 +4
(3.27)

This degeneracy statement holds for all e values except
a=+2, which do not arise as "daughters" of the e=O
states. In these two cases we have

N„(+2)=N„( —2) = 1 . (3.28)

FIG. 10. A typical (unnormalized) eigenfunction with e=2;
on sites not shown the amplitude vanishes.

chain, the spectrum (3.22) and (3.23) holds in both cases.
However, for the Berker lattice, the number of sites is
given by

E. Phonon interpretation

Additional physical information can be derived from
the spectra we have calculated. For example, the Sierpin-
ski gasket which was just solved in terms of electronic
wave function can be interpreted in terms of transversal
phonons, i.e., a two-dimensional lattice of point masses m

linked by strings with an elastic constant k and allowed to
move perpendicularly to the plane of the lattice. It is then
straightforward to show that the eigenfrequencies are re-
lated to the energies previously found by

4n+1+2
N„=

3
(3.24) rOn, a 0(~n, a+ 1/2 (3.29)

N„=N„(0)+2[N„ i N„ i(2)—] .

Since N„ i(2) = 1, we find

2 X 4"+4
3

(3.25)

This state with ek ——0 has p=2 ' so that p2' =1.
This level and all its higher-n "daughters" will have a de-

generacy Nk(0} They can a. ll be recognized because they

obey

which is, for n &0, larger than that for the linear chain.
Hence the degeneracies of the levels must also be higher
for the Berker lattice.

This higher degeneracy arises from states with e=O or
p=2" ' which are born at level n. To find the degenera-
cies, Nn(E'n p), notice that all energies at level n —1 except
the energy e„1——2 give rise to precisely two energies at
the next level. Hence

where coo
——~k/m. The phonon heat capacity is given by

'2 ' —2

C„=kJdco sinh
CO

2

x QN„(e„)5(oi co„) .— (3.30)

Here P is the inverse temperature in energy units.
COnSider the lOW-temperature limit p cOOT '~no.

Then C„ is dominated by the part of the spectrum near
e= —4. In this limit we have N(hs }-(he)"and hence

C T2v T1 365 (3.31)

Figure 12 shows the low-temperature specific heat derived
from Eq. (3.30}. Apparently the convergence to the result
(3.31) is rather slow since our observed specific heat is
better fit by C„-T'

p2' =1 (mod2)

and hence have degeneracy

(3.26) F Green's functions

Further analysis of the localization problem on these
lattices would be considerably helped if we knew the
Green's function

G,J(E)=[(H—E) '],J . (3.32)

In general, the evaluation of this function is quite diffi-
cult. However, the analysis of Sec. II shows that if i and j
lie on sublattice 1, then

G,J (E)= [H,rr(E) E]— (3.33)

with H,~f given by (2.4a). This rather powerful result en-
ables us to calculate G,J for a lattice with N„sites in terms
of one with Nn 1 sites. For the case of interest, the Sier-
pinski gasket, we get, using (2.14),

0 I 0 where

FIG. 11. Two states with @=1,one loops around the smallest
scale "hole," the other around a "hole" one scale larger.

f(E)=(E+2)(E—I )/(2 —E),
e'= —e(@+3) . (3.34)
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We emphasize again that this relationship holds only
when both i and j belong to the subspace of N„~ sites
that were not eliminated. To demonstrate the manner in
which (3.33) can be used, consider the case where ij are
two sites of level 0 (i.e., the largest scale). For a lattice of
N„sites, we get

0.2
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l
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n

G"E=g [f( k)]G, ( o)—
k=1 t '

where

e„=E/t,
~k —i = —~k(~k+3) s

(3.35)

(3.36)

5.0

and G$J is the Green's function of the level-0 problem
(with three sites),

G ),(e)=2/(a+ 4)(e —2) . (3.37)

O 2.0

~ 1.0

0.0 8 I2

T (10 sj
l6 20

Thus we see that G;~(E) will have poles at those values of
E which after k iterations of (3.36) map onto e„k=2. It
is straightfoward to show that for large n —k the residue—I.-k~&from the pole, e„k——2, is -e " where L„=2" is
the distance, in terms of the smallest scale lattice spacings,
between the two sites i,j. This result shows plausibly that
the orthogonalized eigenstates with e„k——2 are exponen-
tially localized.
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