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Dispersion relations and sum rules are obtained for a gaseous insulating medium, under the influ-
ence of a weak constant external magnetic field. The application of the causality principle to the
constitutive equation of the medium together with the behavior of free electrons in the high-
frequency limit give the analytic behavior of the optical constants in the upper half complex plane,
new dispersion relations, and new sum rules. The fact that the average refractive index, as well as
the difference of the complex refractive indices of right and left circularly polarized waves, satisfies
dispersion relations is justified by the application of relativistic causality.

I. INTRODUCTION

The application of the principle of causality to the
birefringence phenomena to derive dispersion relations and
sum rules has been shown to be successful in the case of
natural optical activity. ' The Faraday effect exhibits also
a birefringence phenomena, but its source is different from
natural optical activity. Birefringence effects in the Fara-
day effect come from the presence of an external constant
magnetic field while natural optical activity is a conse-
quence of spatial dispersion. '

We will describe a gaseous, isotropic, insulating medium
in the presence of an external weak constant magnetic
field through its constitutive equations. Imposing the con-
dition that the reaction of the medium to the presence of
an external field be causal, and assuming that the free-
electron behavior in the high-frequency limit will give us
the analytical behavior of the optical constants and disper-
sion relations, we derive new dispersion relations and sum

rules, as well as the known ones.
Unlike Smith we show that the complex refractive in-

dex N+(to) of each type of circularly polarized wave satis-
fies a dispersion relation even though in the sum rules it is

necessary to consider a mixture of both types of complex
refractive index. The sum rules in the Faraday effect that
involve only the average complex refractive index, N(to),
are the same as in the case of natural optical activity.
However, the sum rules that come directly from the prin-

ciple of causality mix the average complex refractive index
N(to) with the complex rotatory angle e(to); for example,

7l N F CO N= KCO N N, 1.1

where n(to) and tc(to) are the real and imaginary parts of
N(to), respectively, and PF(to) and 8(to) are real and

imaginary parts of e(to).
In Sec. II we present the constitutive equation of the

medium, and the relations among the complex refractive
index, the complex rotatory angle per unit length, and the
optical constants that appear in the constitutive equation.
We show that those constants that appear in the constitu-
tive equation are causal. In Sec. III we derive the asymp-
totic behavior of the optical constants assuming that the

reaction of the medium at co~ co is described by a free-
electron behavior. In Sec. IV we obtain the crossing rela-
tions for the fields and the optical constants. In Sec. V we
derive the new sum rules for the optical constants through
the superconvergence theorem. ' All the sum rules are
rewritten in terms of N(co) and e(to) which are associated
with measured quantities. Finally, in Sec. VI we justify
the known dispersion relations and sum rules through the
principle of relativistic causality. Using its analytic
behavior, we show that N+(to) 1 satisfies th—e dispersion
relation. In Appendixes A and B we quote Titchmarsh's
theorem and the superconvergence theorem, respectively,
and in Appendix C there is a more careful derivation of
the crossing relations for the components of electric field.

II. CONSTITUTIVE EQUATIONS
AND CAUSALITY

D(to) =e(co)E(to) (2.1)

and

H(to) =B(co), (2.2)

for the Fourier components of the fields of frequency co.

We are considering the case when the external magnetic
field Bo is not strong so that the constitutive equation of
the medium is given by

D(to) =e(to)E(to)+iP(to)BpX E(oi),

H(to) =B(to),

(2.3)

(2.4)

and we note that e(to) and P(co} are the optical constants
that describe the reaction of the medium to the presence of
the external fields.

The constitutive equations (2.3) and (2.4} will give rise
to birefringence phenomena, in this case called the Fara-

Let us consider a gas of low density in the presence of
an external constant magnetic field Bp. We will give a
macroscopic description to the medium through its consti-
tutive equations. The medium in the absence of the exter-
nal magnetic field has the following constitutive equa-
tions:
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day effect. Thus the right- and left-hand circularly polar-
ized waves have different complex refractive indices (this
means that they have different phase velocity and in the
resonant region are attenuated in different ways). But the
optical constants e(m} and P(co) are independent of the

type of polarization of the propagating field.
Using the Fourier components of Maxwell's equations

and the constitutive equation (2.3) and (2.4), we get the
complex refractive index in the limit of the weak field

B p ', for waves propagating parallel to the direction of the
external field,

P(to)Bp
N+(to) = [e(co)]' +

[~( )]i/2
(2.5)

and

N+(to) =n+(co)+is(+co). , (2.6)

e(to) = [N~(to) N(to)]-
2c

(2.7)

where N+ (N ) is the complex refractive index of a left-
(right-) handed circularly polarized wave relative to the
direction of Bp (chosen in the z direction) and n+ (n }

and x+ (~ } are the real and imaginary parts of the com-
plex refractive index, respectively.

Since left and right circularly polarized waves have dif-
ferent complex refractive indices, when a linearly polar-
ized wave is incident upon the medium, the emergent
wave will be, in general, an elliptically polarized wave, and
the direction of the principal axis of the ellipse will be ro-
tated relative to the direction of oscillation of the incident
linearly polarized wave. But unlike the case of natural op-

tical activity, if the field E(co) is reflected back to the
gaseous medium by a mirror, the rotated angle will not
vanish; this occurs because the presence of the external

constant magnetic field Bp breaks the isotropy of the
medium.

The complex rotatory angle per unit length is given by

must be causal by itself, so this implies that

e(t —t') =0 for t' & t . (2.10)

When we have an external magnetic field Bo, the second
term on the rhs of (2.9) contributes, and the only way that
the entire rhs of (2.9) can be causal, for arbitrary external
fields, is if

P(t t'—)=0 for t'& t . (2.11)

Our aim is to obtain dispersion relations a la Kramers-
Kronig for the optical constants that characterize the
medium. For this we will use the causal behavior of e(t)
and P(t), and through Titchmarsh's theorem (Appendix
A} we can get the analytic properties of the Fourier
transformation of those functions. However, to apply this
theorem we need information about the asymptotic
behavior of the optical constants for ~~ oo.

III. BEHAVIOR OF THE OPTICAL CONSTANTS
IN THE HIGH-FREQUENCY LIMIT

Let us discuss what is meant by the high-frequency lim-

it and whether we can still describe the medium through
its constitutive (macroscopic) equations. We mean by
high-frequency limit when the movement of the electron
can be described by the motion in the presence of the
external fields, neglecting the binding energy of the elec-
tron to the other particles of the molecule. However, the

wave vector k of the external oscillating field must satisfy
kd &&1, where d is a typical dimension of the molecule
and k is the modulus of the wave vector of the external
field.

So, to get the leading-order behavior of the optical con-
stants as a function of co, we solve the classical equations
of motion for each electron in the gas as a free particle of
charge e and mass m in the presence of a constant external

magnetic field Bp and an electric field E(t), that is,

and

~ ~ —ENEm x =eE(co)e '"'+ —x XBp .
c

(3.1)

e(co) =yt;(co)+t'e(to), (2.8)

Bp X f I3(t t')E(t')dt', —

(2.9)

where PF(to) is the Faraday rotation per unit length and
8(to) is ellipticity per unit length.

Rewriting Eq. (2.3) as a function of time, we find

D(t) —E(t) = f dt'~(t —t')E(t')2'

From the solution of the previous equation we can obtain
the induced electric polarization vector in the limit
N~ 00,

e'rt E(co) ie'q Bp&&E()
P(co) = — +

co m c co
(3.2)

where rt is the density of electrons in the gas. We should
note, however, that we did not take into account spin ef-
fects; these could change the factor that multiplies the
second term on the rhs of (3.2). Using the fact that

D(co) =E(to) +4irP(co), (3.3)
where e(t) and P(t) are the Fourier transformations of
[e(co)—1] and P(co), respectively.

The right-hand side (rhs) of (2.9) represents the reaction
of the medium to the presence of the external fields. As-
suming that the medium does not generate energy by it-
self, the rhs of (2.9) must be a causal response to the exter-

nal excitation. As E(t} and Bp are independent fields, so
in the absence of Bp the linear functional of E in (2.9) and

lim e(co) 1=——4~ed 1
2 2

m co co
(3.4)

and comparing this expression with (2.3), we conclude that
for to~ao, the optical constants have the following
asymptotic forms:
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lim p(to) = 4m.e
N~ oo mCN (3.5)

where Nz is the plasma frequency.
By equations (3.4) and (3.5) the functions [e(to) —1]

and p(to} are square integrable and'

Re[e(co)—1]=O(t0 2),

Im[e(co) —1]=o(to 2),

Rep(co)=0(to '),
Imp(to) =o(co ) .

(3.6)

(3.7)

(3.8)

By the previous asymptotic conditions, we can apply
Titchmarsh's theorem to the functions [e(co)—1] and
p(to) (see Appendix A," and as they satisfy the first state-
ment of Titchmarsh's theorem [cf. (2.10) and (2.11)] they
also satisfy the two Plemelj formulas, that is,

Re[e(to) —1]= —Pf, dto', (3.10)
1 " Im[e(t0') —1]

R
Im[e(to) —1]= ——Pf, dto', (3.11)

Rep(co) =—pf, dco',
1 " Imp(to')

(3.12)

and

Imp(to) = — P f— , dt0' .1 " Rep(to'}
(3.13}

Our next aim is to derive sum rules for the optical con-
stants through the superconvergence theorem ' (see Ap-
pendix B); however, to apply this theorem the integrals
that appear in (3.10)—(3.13) must be restricted to the inter-
val of integration [O, oo). To restrict the interval of in-
tegration of the mentioned integral we use the crossing re-
lations of the optical constants to relate the positive and
negative components of the Fourier transformation in the
N space.

IV. CROSSING RELATIONS

Using the fact that the fields that are propagating
through the medium are real, we obtain a relation between
the positive- and negative-frequency Fourier components
of the fields. Let us consider the case of the electric field
(see Appendix C)

E(t)= f E(co)e '"'doi . (4.1)

Taking the complex conjugate of both sides of this equa-

tion, and using the fact that E(t) is a real quantity, we ob-
tain

E( —co)=E (co) . (4.2)

This relation between the Fourier components of the elec-
tric field for positive and negative frequencies is valid also
for the other fields.

With these facts, we will obtain the relation between the
positive and negative components of the Fourier transfor-
mation of p(t) and e(t) For this we will .use the constitu-

tive equation for D(t) [cf. (2.3) and (2.9)], that is,

D(t) —E(t)=f [e(co)—1]E(co)e ' 'doi

+i B0x f" p(t0}E(t0)e '"'dt0 . (4.3}

Taking the complex conjugate of both sides of this expres-
sion, using the fact that the left-hand side (lhs) of (4.3) is
real, and that each term on the rhs must be real, ' we ob-
tain

e( —t0)=e (t0) (4.4)

and

p( —to) = —p'(to) . (4.5)

Now, using (4.4) and (4.5) we rewrite (3.10)—(3.13) re-
stricted to the positive frequencies and using the asymp-
totic behaviors (3.6}—(3.9) we can apply the superconver-
gence theorem to get the sum rules.

V. SUM RULES

A. Sum rules in the high-frequency limit

and

2t0 ~ Re[e(co') —1]Ime to = — P dN
7r 0 COI2 N2

2' f" Imp(to )
d

N —N

(5.2)

(5 3)

Imp( ) ———p f d
N —N

By (3.6) we have that

Re[e(to) —1]=O(to )

(5.4)

for to~ oo, so applying the superconvergence theorem to
(5.2) and making the change in variable y =to, by (B2) we
get for to~ oo that

00

Ime(co) =——f Re[e(oi') —1]de'+O(to '), (5.5)
7T N

so for (5.5) to be compatible with (3.7) we need to have
that

f Re[e(co)—1]doer=0 . (5.6)

As a consequence of (5.5} and (5.6), we obtain for
N~ 00

Ime(to) =O(co ) . (5.7)

We will now obtain through the superconvergence
theorem the sum rules for the optical constants that come
from the dispersion relations (3.10)—(3.13) and have the
asymptotic behaviors (3.6)—(3.9). We remark that, as op-
posed to Smith, we do not need to guess the asymptotic
behavior of any optical constant because the information
that we get from the behavior of free electrons for N~ op

and the superconvergence theorem is enough.
By (4.4} and (4.5}we can rewrite (3.10}—(3.13}as
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But if Ime(co) satisfies (5.7) for co~ ao, we have

Ime(co) =O(co ln co), a & 1

as co~00. Making the change in variable y=c0 in (5.1)

by (Bl) we find that for ~~ oo

Re[a(co) —1]= —— f Ime(co')d co'+ O(co ln' co) .
77 Q)

(5.8}

(5.18)

Now we are going to rewrite the sums that we got in terms
of the real and imaginary parts of the average refractive
index, and of the real and imaginary parts of the complex
rotatory angle per unit length.

C. Sum rules involving only the average
refractive index

Thus by (3.4} we have that

f eN 2' 'ge
co Ime(co)dco =

0 m
(5.9)

From (2.5) and (2.6) we have

e(co) =n (co) ic—(a))+2iic(co)n(co), (5.19)

f co'ReP(co')dao' =0 .

From (5.10) and (5.11) it follows that for co~ oo

ImP(co) =O(co ) .

(5.11)

(5.12)

which is the Thomas-Reiche-Kuhn sum rule.
The sum rules (5.6) and (5.9) are the same as those for

natural optical activity and we will see that they are relat-
ed to the average refractive index. Using Rep(co)
=O(co ) for co~ oo [cf. (3.8)], we apply the superconver-
gence theorem to (5.4) in the form (B2); after making
y=co we find that

ImP(co) = — f co'ReP(co')des'+0(cg i) . (5.10)
7T Q)

However, for this expression to be compatible with (3.9)
we need to have

where

and

n(c0}= —,
'

[n ~ (co}+n (co)]

K(Cil) =
& [K+(CO)+K (CO)]

(5.20)

(5.21)

are the average real refractive index and average extinction
coefficient, respectively.

Using the previous expressions relating e(co) and the
average refractive index, we rewrite the relations (5.6),
(5.9},and (5.17) as

f [n (co} 1]den=—f x (co}dao, (5.22}

f con(co)ic(co)de= (5.23)
0 m

Finally, with the use of (5.12) and the superconvergence
theorem in the form (B2), (5.3) can be written for co~Do
as

pf
~ n co cc co)

d
ir

[
co 4

(5.24)

Rep(co) = ———f Imp(co')dc''+O(co ),
ee

7T CO

where in (5.24) we used (5.15) and (5.19) such that for
(5.13) co=0 we have

and comparing this expression with (3.8) we get

Im co m=0 . (5.14)

So, using the superconvergence theorem and the high-
frequency behavior we were able to derive some sum rules,
but we can also obtain other sum rules in the limit of
N =0.

B. Sum rules in the limit of co =0

Ime(co) =0 (5.15)

Let us go back to (5.1}—(5.4) and analyze these relations
in the limit of co=0. From (5.2) and (5.3) in the limit of
~=0 we have

a.(0)=0 . (5.25)

As in the case of natural optical activity, it is the aver-
age refractive index that satisfies the same sum rules for a
medium without birefringence phenomena. It is impor-
tant to remember that we are considering insulating
media, so that e(co) does not have a singularity at co =0.

D. Sum rules involving Faraday rotation

Let us rewrite the sum rules for p(co) in terms of the
average refractive index and the Faraday rotation. From
(2.5) to (2.8) we have

p(co) = j [n(co)pF(co) —ic(co)6)(co)]
—2c
Boco

and +i [n (co)e(co)+ lc(co)yF(co) ]j, (5.26)

ReP(co) =0 .

And from (5.1) for co =0 we have

and in the limit of co =0, (5.4) gives

(5.16)

(5.17}

where n(co) and s(co) are given by (5.20) and (5.21), respec-
tively.

From (5.26) we see that p(co) is not solely a function of
complex rotation angle per unit length as in the case of
natural optical activity. ' In the Faraday effect p(co} is
proportional to the product of average refractive index
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with the rotation angle {including ellipticity).
Thus (5.11), (5.14), and (5.18) can be rewritten as

J n(co}PF(co)dco= I «(co}8(co)dco,

- «~)A(~) n(m)e(~)
dQ) =- dQ) ~

N N

(5.27)

(5.28)

and imaginary parts satisfy the two Plemelj formulas (see

Appendix A). This is the justification for the dispersion
relations that Smith used.

By what was said before, N+(co) 1—also satisfies the
two Plemelj formulas, and we can write the first Plemelj
formula for N+ (co) 1 a—s

« ~(co')
n+ (co)—1= —PI, dco' .— N —N

(6.3)

n (co){)(co)+«(co)PF(co)
lim

~ n (co')PF (co') «(—co')8(co')
dco' . (5.29)

I2

These sum rules are new even though they could be ob-
tained by multiplying the functions that Smith' used in

obtaining his sum rules. However, the main point is that
Smith assumed that dispersion relations are satisfied by a
mixture of right- and left-handed polarized complex re-

fractive indices, and we shoiaed that this mixture is a
consequence of causality principle and the reality of the
fields (see Appendix C).

As Smith pointed out, we can derive new sum rules for
powers of the functions P(co) and e(co) by multiplying

them by polynomials of co Howev. er, to continue being

able to apply Titchmarsh's theorem we need to be sure

that the new functions of e(co) and P(co) are analytic in the

upper half complex plane and square integrable. Once we

have proved that P(co) and [a{co)—1] are analytic func-

tions in the upper half plane, the products will be analytic
functions also; we must only be careful to not introduce
singularities.

VI. JUSTIFICATION FOR THE KNOWN
SUM RULES

We have proved that «(co) is an analytic function in the
upper complex plane, but the relation between this func-
tion and the complex refractive index is given by [cf. (2.5)]

N(co) = [e(co)]' (6.1)

X(co}=,' [%+{co)+N (co)] .— (6.2)

From (6.1} we see that g(co) can have a branch point if
e(co) vanishes for any value of co. Our treatment up to
now has not given any information on whether e(co) has
zeros or not.

Thomaz and Nussenzveig' showed in the case of natural
optical activity, using relativistic causality' that the func-
tions N+(co) 1 are analytic f—unctions in the upper half
plane. In the proof, only the fact that different circular
polarizations have different complex refractive indices was
used. As this is the case in the Faraday effect, the proof
of analyticity of the functions N+(co) 1 is also vahd fo—r
the Faraday effect.

So by relativistic causality X+ —1 is analytic in the
upper half complex plane. By (6.1) and (3.6) we have that
%+{co) 1 is a square in—tegrable function, and so it satis-
fies Titchmarsh's theorem, and the same is true for the
average complex refractive index N(co) 1. Then the real—

When we restrict the integral to the positive region of in-

tegration, we need the crossing relation for «+(co), and
from (C5}we have

«.+( —co) = —«' (co), (6.4)

so in the sum rules that we will obtain both types of ex-
tinction coefficient will appear.

Since N(co) is an analytic function, e(co) cannot vanish
at any point in the upper half complex plane and as a
consequence of this we have that [ef. (2.5) and (2.7)]

8(co)= — 80
co P(co) (6.5)

[e(co)]'~'

is also an analytic function in the upper complex plane,
because P(co) and [e(co)]'~ are analytic functions and
[e(co)]' does not have any zero in this plane. As 8(co) is
a square integrable function by the asymptotic behavior of
P(co) and e(co), so, by Titchmarsh's theorem, its real and
imaginary parts satisfy the two Plemelj formulas.

VII. FINAI. REMARKS

As in the case of natural optical activity the applica-
tion of the principle of causality to the constitutive equa-
tions together with the behavior of free electrons in the
limit of co~ Oo permits us to obtain, through Titchmarsh s
theorem, the analytic behavior of the optical constants
that characterize the reaction of the medium to the exter-
nal fields as well as the dispersion relations involving
those constants, in our specific case P(co} and [e(co)—1].
Through the relations among P(co), [e(co}—1], g(co), and

8(co), we were able to derive dispersion relations and sum

rules involving functions of the real and imaginary parts
of the last two. This is really the point that differentiates
this work from that of Smith, because we did not need to
Inake any assumptions to derive the dispersion relations
for N(co) and 8(co} as was done by Smith. Smith started
from the assumption that N(co) and 8(co) satisfy the
dispersion relations directly.

As we saw, the mixture of the two types of complex re-

fractive indices in the sum rules comes from the fact that
we cannot write a real field as a superposition of only one

type of circularly polarized waves (cf. Appendix C). We
would like to mention that in order to derive the sum rules
from the superconvergence theorem we did not need any
extra assumption about the asymptotic behavior of the

P(co) and [e(co}—1] given in (3.6)—(3.9). Finally, now that
we have information about the analytic properties of
N(co), 8(co), P(co), and [e(co)—1] and their asymptotic
behavior, we can get new functions of these quantities that
satisfy the conditions of Titchmarsh's theorem and from
them derive new dispersion relations and new sum rules.



3062 M. T. THOMAZ 28

ACKNOWLEDGMENTS

I would like to thank M. Ebel, S. Epstein, C. J. Goebel,
and R. W. Robinett for useful suggestions and for reading
the manuscript, and M. Ebel and the Theory Group at the
University of Wisconsin —Madison for their hospitality
during my stay. I also thank the Fundaqao de Amparo a
Pesquisa do Estado de Sao Paulo (FAPESP) for financial
support.

APPENDIX A

The following is Titchmarsh's theorem. " If a square

integrable function G(co) fulfills one of the four conditions

below, then it fulfills all four of them:
(i} The inverse Fourier transform g (t) of G (co) vanishes

for t(0:

oo

g(y) =—f f(x)dx+0(y 'ln' y),
y 0

if (B1) is valid, and second,

g (y) =—f f(x)dx+0 (y t'),
y 0

if (B2) is valid.

APPENDIX C

In the medium in the presence of the weak external

magnetic field Bo, right- and left-hand circularly polarized
waves propagate differently. For any field E(t) in this
medium its Fourier transformation can be written in terms
of a circularly polarized wave, that is,

g (t) =0 for t &0 . (Al)

(ii) G(u) is, for almost all u, the limit as v —+0+ of an
analytic function G(u+iv) that is holomorphic in the
upper half plane and square integrable over any line paral-
lel to the real axis:

E(x, t) =f I e (co)(x+iy)exp[iN (co)coz/c]

+e+ (co)(x iy )e—xp[iN+ (co)coz/c] )

)(e ' de, (Cl)

where E is propagating parallel to Bo (which was chosen
along the z direction). We have that e+(co) [e (co)] is the
amplitude of frequency co for left (right) circularly polar-
ized waves, and N+(co) [N (co)] is the complex refractive
index for left (right) circularly polarized waves. Equation
(4.1) is shorthand for (C 1).

Taking the complex conjugate of (Cl}, using the fact
that E(x,t) is a real quantity, and the independence of the
Fourier components for x and y components of the previ-
ous expression, we get the following relations:

f ~

G(u+iv}
~

du &C for v&0. (A2)

(iii) ReG(co) and ImG(co) verify the first Plemelj formu-
la:

ReG(co) =—Pf, dco' .
1 " ImG (co')

'IT —co N —N
(A3)

(iv) ReG(co) and ImG(co) verify the second Plemelj for-
mula:

ImG(co) = ——Pf, dco' .1 ~ ReG(co')

7T —cN CO —Q)

APPENDIX B

(A4)
e (co)exp[iN (co }coz/c]+e+ (co)exp[iN+ (co)coz/c]

= [e ( —co))'exp[iN' ( —co)coz/c]

The following is the superconvergence theorem. ' Let
g(y) be defined by and

+ [e+ ( —co)]*exp[iN+ ( —co}coz/c] (C2)

g(y)=P f dx,

where f(x) is a continuous differentiable function that
goes to zero faster than x ' for x~op. Let us consider
the following alternative asymptotic behaviors for f(x)
and its derivatives:

f(x)=0(x 'ln x), f'(x) =0 (x ln x), a & 1

e (co)exp[iN (co)coz/c] e+(co)exp—[iN+(co)coz/c],

= —[e ( —co)]'exp[iN' ( —co)coz/c]

~ [e+ ( —co)]'exp[iN+ ( co)coz/—c],
where z is any point in the medium.

From the above equations we get

e ( —co) =[e+ (co)]'

(C3)

(C4)

f(x)=0(x ~), f'(x)=0(x ~ '), 1&P&2.

(B1) and

N+( co)=N' (co) . — (C5)

So, fory~oo we have first,

(B2) From (C4) and (C5) we see that it is not possible to have a
real field constructed as superposition of only one type of
circularly polarized waves.
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