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Vacancy-assisted tracer diffusion in a multicomponent kinetic alloy consisting of x X atoms with

hopping rate J~ (where 1—:A, B,C, etc.) and uN vacancies (where u= 1 —gix ~) distributed randomly

over a regular d-dimensional (where d )2) hypercubic, or close-packed, lattice of 5 sites is analyzed

through a self-consistent renormalization of a recent theory of Tahar-Kheli and Elliott combined

with a generalization of concepts introduced by Manning. The result for the tracer-diffusion corre-
lation factor is the following: f'"=H"(tr)/[H"(tr)+2J ], where Jo ls the tracer-hopping rate,
H "(tr) is a generalized effective vacancy escape frequency, H"(tr) = [M/(1 —u)[J uf"+J' ], where
J' is an effective hopping rate of the background atoms averaged with a weighting factor propor-
tional to x and f, i e , J'"'.=. gi(J"x f )/gi(x"f ) and M= —(1+ (cos8))/(cos()). For a

single-component alloy, with particle concentration x, J =J, and vacancy concentration U =1—x,
our theory provides an excellent overall description of the correlation factor as long as J/J &z
Indeed, even for J~O, the calculated results agree with the Monte Carlo estimates, except in the im-

mediate vicinity of the percolation threshold, Uz, which is located self-consistently to an accuracy of
the order 1/z.

I. INTRODUCTION

Atonic diffusion in solids has long been known to ex-
hibit correlations' which are neglected by random-walk
descriptions of the phenomenon. In the limit of vanishing
vacancy concentration U, i.e., for a single vacancy in a
macroscopic lattice, exact results for the self-diffusion
correlation factor in a single-component alloy have been
available for several lattices for more than a quarter of a
century. More recently, the methodology for obtaining
these single-vacancy-limit results has been further
developed so that exact results can be obtained even when
the tracer-hopping characteristics are distinct from those
of the background atoms. (Note, this is true only when
the macroscopic lattice has a single tracer atom. )

In the opposite limit of large vacancy concentration,
namely for (N —1) vacancies in a lattice of 1il »1 sites,
the treatment of the problem (which now consists of only
a single atom) is even simpler. Here, in addition to the
diffusion coefficient, the complete frequency- and wave-

vector-dependent response S(K,co) can also be exactly cal-
culated. 5

However, once the system departs from these highly
idealized limits, the solution of the problem becomes far
from simple. This is true, not only for S(K,to) but also
for the simpler quantity embodied in the tracer-diffusion
correlation factor f". The latter involves knowledge of
S(K,co) only in the limit K~O, co~0.

Several years ago Fedders and Sankey ' (FS) undertook

the task of calculating S(K,co) throughout the concentra-
tion range. They presented a scheme which summed dom-
inant subsets of an infinite series of diagrams. For uni-
form lattices their calculations referred to the case where
the tracer is identical to the background hopping atoms,
i.e., to a single-component alloy with an arbitrary number

of vacancies.
Recently Nakazato and Kitahara (NK) have presented

a brief account of a treatment employing a projection-
operator technique. They found the Laplace transform of
the response in the form

S(K,u }= u++ D„(u)k„k„+

where u = ito For—sma. ll wave vectors this defines the
first set of terms in a convergent expansion and using the
limit u ~O they gave an expression for the tracer-
diffusion correlation factor valid for a simple (hyper)cubic
lattice of d dimensions. While the NK prediction for the
diffusion coefficient was noted to be exact in both the con-
centration limits, i.e., U =0 and 1, no rigorous statements
concerning either its rate of change in these limits or its
accuracy as a function of the particle concentration and
the ratio of the rates of hopping of the background parti-
cles and the tracer atom were provided.

Very recently Tahir-Kheli and Elliott9 (TKE) have
presented an equation-of-motion method to calculate

S(K,to) at general K and co. With the use of the assump-
tion that the third-order fiuctuations may be ignored,
TKE solved the integral equation involving the second-
order terms (for both hypercubic and close-packed lat-
tices}. The neglect of third-order fluctuations in the TKE
theory was shown to be justified at both U =0 and 1, with
the additional statement that in the limit v~1, the initial
rate of change of the diffusion correlation factor with

respect to the particle concentration was also given exactly

by such a procedure. For general K and co the predictions
of the TKE theory were found to be in excellent agree-
ment with those of a very careful Monte Carlo work'

available for the face-centered-cubic (fcc) lattice where the
tracer-hopping rate J coincided with that of the back-
ground particles J.
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In the simple hypercubic lattice, the TKE result for the
diffusion coefficient has been found to be identical" to the
NK result. In addition, for the ease J =J, the TKE ex-

pressions for the diffusion coefficient also appear to
reduce to those given in the FS work. '

For general concentrations, the neglect of the third-
order fluctuations in the TKE theory is not fully justified.
However, using heuristic arguments supplemented by de-

tailed numerical computations, TKE have concluded that
in three dimensions (3D) as long as the background-
particle hopping rate J is faster than a number approxi-
mately equal to J /z (z is the coordination number of the
lattice), their theory provides an adequate description for
the entire response, S(K,co), throughout the concentration
range. This is also true in d dimensions with d &2. Con-
versely, when the background is slow, i.e., J & (J /z), the
TKE theory becomes inadequate at small frequencies, i.e.,
cu ~&(J /z). However, for larger frequencies, cu-zJ, the
TKE theory remains valid even for the case of a much
slower background. Because the behavior at small fre-
quencies and long wavelengths pertains to diffusion, the
TKE predictions for the diffusion correlation factor are
also inadequate when J falls below about J /z. In particu-
lar, for the worst case, i.e., J—+0, the TKE results are
quite unsatisfactory for vacancy concentrations of around
50% or smaller for the fcc lattice" (excepting, of course,
the region u ~0 where the TKE theory again becomes ex-
act). In lower coordination systems the corresponding fig-
ure for the vacancy concentration below which the TKE
results for the J~0 case would become poor is anticipated
to be even higher, about 70% for the quadratic lattice.

The goal of this work is to develop first a procedure
which leads to an adequate description of the diffusion
correlation factor throughout the concentration range even
when the background is relatively slow moving. Second,
the goal is to extend such a result to a more general alloy
comprising m different types of atoms with finite concen-
tration.

In this connection it should be mentioned that extensive
literature already exists on the subject of vacancy-assisted
diffusion correlation parameters in a general alloy. How-
ever, much like the earlier works relating to single-
component alloy, ' these works' ' also appear to be re-
stricted to vanishingly small u. On the other hand, quite
unlike the single-component alloy where the u~O limit
can be solved exactly in terms of an appropriately formu-
lated two-body problem, in the multicomponent alloy even
the u~O limit leads to a "many-body" problem. The
enormity of the present undertaking is therefore best ap-
preciated by noting, for example, that the dynamical site-
percolation problem is already contained within it even
when it refers to only a two-component alloy.

Recently Fukai er al. ' and Kutner and Kehr" (KK)
have reported some preliminary studies of the finite-
vacancy two-component alloy by using numerical simula-
tion and Monte Carlo procedures. While the work of Ref.
17 is directed toward the analysis of NMR experiments on
hydrogen-deuterium mixtures in niobium, the KK work is
directly related to the diffusion correlation parameters f"
Unfortunately, however, the KK data for the A-8 alloy re-
lates to only a narrow range of concentration, e.g., where

x is of order 4.6% or less. Also it refers essentially to a
single-vacancy concentration, i.e., u-7%, and deals with
only one lattice, i.e., the fcc lattice. More extensive Monte
Carlo work on the A-8 system would therefore be very
valuable.

In Sec. II, we present first a brief review of the TKE
calculation for the diffusion correlation factor. %e are
able to identify the primary source of the difficulty which
causes the quality of the TKE results for the diffusion
correlation parameter to deteriorate when the hopping rate
of the host atoms is chosen to be much slower than J /z.
To correct this problem, we institute a simple but power-
ful program of recurrent renormalization of the tracer
hopping rate as it diffuses through a kinetic sea of back-
ground particles.

A compact expression for the tracer-diffusion correla-
tion factor which follows from the new procedure is

presented next in Sec. II. It is noted that the self-
consistent "dressing" of the tracer propagator becomes
progressively more important as J decreases belo~ J /z
toward zero. In particular, for J~O the self-consistent
dressing becomes crucial and its effects are most notice-
able when the diffusion is substantially slo~ed. Qf course,
this occurs as the concentration of the immobile atoms in-

creases toward the percolation threshold. Accordingly, for
finite but small J, the effects of such a renormalization
continue to be important throughout the forbidden con-
centration region (to use a phrase similar to that intro-
duced by Manning' ) until we reach the close vicinity of
u~O where the TKE prediction for f" once again be-

comes accurate and the additional dressing of the propa-
gator approaches zero.

In Sec. III an important theorem, relating the diffusion
coefficient of a single tracer in an alloy with immobile
background but arbitrary vacancy concentration to that of
a single vacancy diffusing in a two-component alloy where

only one of the species of atoms is immobile, is presented.
Thus, on rigorous grounds a common point in the results
of Sec. II and those' of a binary alloy with u~O is
predicted. It is then discovered that such a rigorous pre-
diction, true only for an exact set of results, is also obeyed

by the corresponding approximate results that follow,
respectively, from the present procedure and that given by
Manning' in a different context.

To exploit the above noted self-consistency, in Sec. IV
the results of Sec. II for the diffusion correlation factor of
an arbitrary tracer in a single-component alloy with arbi-
trary concentration of vacancies are cast in a form gen-
erally used for calculating the same only in the limit u~O.
Thus, a more general expression for what is referred
to ' ' as the vacancy "escape frequency" is derived. At
this juncture a procedure which parallels that of Man-
ning' is used to define an "effective escape frequency" for
the vacancy which refers to an m-component alloy but
with the new feature that the vacancy concentration is
now arbitrary. (Once again, this effective escape frequen-

cy reduces to that introduced by Manning' for an m-
component alloy in the limit u~0. ) With this generaliza-
tion, the stage is set for the derivation of the diffusion
correlation factors in the generalized alloy.

This is done in See. V where the expression for the
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tracer-diffusion correlation factor is presented in a com-
pact form. For u~0 this expression reduces to that of
Manning. '

The paper is concluded by a discussion of the general
result. In particular, the results are compared with avail-
able Monte Carlo data of KK (Ref. 11) and Kehr, Kutner,
and Binder. '

II. TRACER DIFFUSION IN A SINGLE-COMPONENT
ALLOY

Let us consider first a single distinct tracer atom with

hopping rate J in a host system consisting of xN atoms
with hopping rate J distributed randomly over a regular
d-dimensional (dD) lattice of N sites. (Here d &2.) The
lattice may be simple hypercubic or close packed. The va-
cant sites are to be treated as though they were occupied
by double occupancy avoiding entities called "vacancies"
whose concentration U is therefore equal to 1 —x.

As usual, " instantaneous but stochastic hopping of
atoms to unoccupied sites is assumed. Forbidding multi-

ple atomic occupancy of any site, the following rate equa-
tion is used:

involves the second-order propagator p(5), which refers to
a composite pair consisting of a tracer and a neighboring
background-particle fluctuation field (henceforth to be
called the composite pair), diffusing with relative momen-

tum K, i.e.,

U =n —
& n ) =n —x .J ) J J

The remaining notation is as follows:

+iK2 ( j —g ')]
(2.9)

(2.10)

p(5) =—g G'-„-„,-„,exp( i—K'.5)/G . (2.8)
+K'

Here 5 is a nearest-neighbor vector and

Gt,',,' —= «piU, ;p, ))
r '2

1 (2)g G'-„' - exp[iK, (1 —g')
Kl K2

(2.1)
cox =z(1 yacc), yg———g cos(K.5)/z,

5
(2.1 1)

Here 0;=p; or n; according to whether the site i is
currently occupied by the tracer or one of the host atoms,
respectively. Similarly, V; refers to the vacancy occupa-
tion of a site i.

The spatial range of the hopping integrals, JJ, is re-
stricted for simplicity to nearest-neighbor separation, i.e.,

J if i and j are neighborsJ;='
0, otherwise (2.2)

V;=1—p; —n; . (2.3)

and J =J or J depending on whether o; refers to p; or
n;.

Once the tracer and the background-particle occupancy
variables have been introduced, the vacancy occupancy is
completely specified, i.e.,

where z is the coordination number of the lattice.
Within the simplest mean-field approximation (MFA),

the second-order propagator p(5 ) is neglected and thus

X(K,co) —UJ cox .
MFA

(2.12)

D —UJ =D0.
MFA

(2.13)

If correlations were to be taken into account, the diffusion
coefficient of the tracer would, in general, be reduced, i.e.,

For long wavelengths the tracer motion is easily identified
with random-walk diffusion since cox -K . Thus the un-
correlated diffusion coefficient D of the tracer is simply
equal to UJ,

In the TKE formulation the tracer-occupancy-retarded
Green's function,

lim [X(K,co)/K ]=Dof",
a)~O, K2/a)~0

(2.14)

Gss (t) = —2mie(t) &ps(t)ps (0)), (2.4)

Gx [co+iX(K——,co)] (2.6)

X(K,co) =vJ cox —g [1 exp(iK 5)—]p(5), (2.7)
5

and the frequency and the inverse-lattice Fourier
transforms,

+ oo

Ggs'= «pgrpg )) = G (t)exp(idiot)d~,
2m

=(1/N) g Gx exp[i k (g g')]. , — (2.5)
K

are analyzed. (Here and henceforth the length of the ele-
mentary cube edge is chosen to be unity. This in turn also
fixes the scale for the inverse-lattice wave vectors. )

As demonstrated by TKE, the mass operator of Gz, i.e.,

and the diffusion correlation parameter f"(1 would de-
pend on both the lattice structure as well as the details of
the host alloy.

In order to take account of the correlations TKE
analyzed the equation of motion of the second-order prop-
agator G' '. Such an equation in turn involves G' ',

«pi U2U3, pit ~&,
1~2~3

(2.15)

which refers to diffusion of larger composites. Because in
d )2 dimensions, these terms are strictly of order v x G~,
their neglect relative to the G' ' terms is rigorously justi-
fied at both the concentration limits, namely, U~0 and 1.

Ignoring third-order fluctuations TKE were able to
solve the remaining set of equations in a compact form,
i.e.,
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p(5) =4(5)+g p(5 ') [a[P(5—5 ') —P(5)]

+P[P( 5+ 5 ') P—(5 —5 ')]j,

Therefore a fully iterated self-consistent treatment of
tracer diffusion both outside and inside the composite pair
is contained in the following:

(2.16a)

2P(cos8)
a'(1+cos8})

(2.19)

4(5)=(iP/N) g exp(iK' 5)[co- -,—co-,]/E(K'),

E(K')=co+i[Jco-,+vJ co- -,),K ' K+K '

(2.16b)

(2.16c)

P ( r ) = (1/N) g exp( i K ' r ) /E ( K '), (2.16d)

a=J+vJ, P=xJ (2.16e)

The 5' sum on the right-hand side of Eq. (2.16a) is taken
over z nearest-neighbor vectors. This makes Eq. (2.16a)
equivalent to a simple set of z simultaneous linear equa-
tions in the z unknowns p(5').

The following aspects of these simultaneous linear equa-
tions are of special interest here. First, the coefficients in-

volve inverse-lattice sums P(r) and 4(5), both of which
have the same denominator E(K'). Second, these sums
can all be carried out analytically in the diffusive regime
of interest, that is, when K —+O,co~0. Third, and most
important, in this regime all the coefficients depend
uniquely on two specific combinations of the rate parame-
ters, namely, a and P, and also E(K') can be replaced by
& @cod .

The physical roles played by the parameters a and P are
quite distinct. Whereas a provides the signature of the
composite-pair diffusion [e.g., in the denominators on the
right-hand side of (2.16a)], P plays no such corresponding
role. In this connection we also note that the signature of
the diffusing tracer (without an accompanying back-
ground field) is provided by the rate factor vJ .

In the TKE formulation, all correlations altering the
tracer-diffusion rate within the composite pair were totally
ignored. This is clearly justified for d)2, when either
x~O or V~0, because such effects are vanishingly small
in these limits. On the other hand, for finite x (or finite v),

the effect of correlations on the tracer diffusion both
without and within the composite pair must be taken into
account. Moreover, if possible, this should be done self-
consistently.

The new procedure, therefore, is the following. Calcu-
late f" as in TKE. Introduce this f" into the diffusion
coefficient of the composite pair by replacing a by its
correlated value n' such that

The nature of the approximation involved in (2.18) is quite
different from that inherent in (2.19}. Equation (2.19}as-
sumes the third- and higher-order propagators have much
the same effect on the tracer diffusion within the compos-
ite pair as the second-order propagators have on the tracer
diffusion of the tracer by itself. In contrast, Eq. (2.18) ig-
nores all contributions from third- and higher-order prop-
agators, especially on the diffusing composite pair.

Note, the quantity (cos8) mentioned in Eqs. (2.18) and
(2.19) is the well-known average cosine of the angle be-
tween the directions of successive vacancy-tracer inter-
changes,

(cos8) = '

—0.209 841 70, sc
—0.157 947 42, bcc
—0.122 68007, fcc
—0.363 380 23, quadratic lattice .

Clearly for v~O the replacement of a with a' does not
affect the results. Away from this limit, we write
schematically

f"-fEKE+~ i

and hence

where

g=J/J

(2.20)

(cos8) (f" 1)—
(1+(cos8}) (v+ri)(vf '"+ri) '

(2.21)

(2.22)

f "=1+2x(cos8}/[v(1+(cos8})]. (2.23)

Therefore, when x is small or when g is large, the new for-
mulation reduces to TKE. Any differences 5 between the
two are important only when g is small compared to uni-

ty. Moreover, this is especially true for that range of va-
cancy concentration where f"«1. As is well known, the
latter occurs in the "forbidden" range of concentrations'
(where for g~O, f"~0).

The new equation for f" given in (2.19) has a simple
solution. This is especially the case when the background
is immobile, i.e., J=0,

a'=J+vJ f".
Repeat the cycle until no further changes in f '" occur

The TKE expression for f" as evaluated from Eq.
(2.16a) without renormalizing the composite-pair diffusion
was as follows:

v~ =2(cos8) /((cos8) —1), (2.24)

where f"~0. Below v~, the tracer cannot diffuse at all,
hence the forbidden vacancy concentration region, i.e.,
vp (v (0.

In Fig. 1, f" given by (2.23) is plotted (as continuous

2P(cos8)
TKE R(1+ (cos8) )

(2.18)

(2 17) This gives a physically acceptable (that is, "positive")
value for f" until the vacancy concentration falls to the
percolation threshold vz,
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FIG. 1. Tracer-diffusion correlation factor f" is given as a

function of the background-particle concentration x. The lattice
is fcc and the background particles, which are assumed to be im-

mobile, are considered to be randomly distributed. Solid curve

represents (2.23) of the text. Data marked P are taken from
KK's Monte Carlo work (see Ref. 11, Fig. 7). Both the open and

closed circles represent different sets of Monte Carlo results for
the same quantity (see Sec. III of the text) as given by Murch

and Rothman (see Fig. 1 of Ref. 16).

curve) versus the immobile-particle concentration x. The
corresponding Monte Carlo data of KK (Ref. 11) are sig-
nified by the symbol I. Closed and open circles represent
an equivalent set of data given by Murch and Rothman'
which will be discussed later in Sec. III.

III. THEOREM

dpi, o

dt J
(3.1)

This equation of motion is linear because the set of sites
over which "f' ranges are those with vacancies. (These

It is interesting to examine the equations of motion and

hence the diffusion characteristics of a tracer atom hop-

ping through a background consisting of Nx completely
immobile atoms distributed randomly over a lattice of N
sites and to compare it with the corresponding diffusion
characteristics of a single Uacancy hopping through the
same lattice with the same configuration of Nx completely
blocked sites (on which immobile atoms reside) while all

the remaining sites are occupied with mobile atoms that
can hop via the vacancy-exchange mechanism. These two
sets of equations of motion as well as their complete
hierarchy are found to be identical, thus proving the
equality of the two diffusion coefficients.

Let the set of Nx blocked sites be denoted as [bi }. Here
0&x &1. These sites are shown schematically in Figs.
2(a) and 2(b) as closed circles. Let the tracer p; be at posi-
tion i [see Fig. 2(a) where the tracer is denoted by the sym-
bol T]. All the remaining sites in Fig. 2(a} are vacant
(denoted as open circles). The tracer can hop through the
unblocked channels with the equation of motion

T T

T T T T

T T T

FIG. 2. To illustrate the argument of Sec. III, two equivalent

atomic configurations are shown. The tracer (indicated by T)

diffusion for configuration (a) is identical to the vacancy (indi-

cated by open circles) diffusion for configuration (b). Closed cir-
cles represent immobile atoms.

sites are the subtraction from "N" of the set [bi} on
which immobile atoms reside. This fact is denoted by
adding a prime to the summation symbol. )

Let us compare Eq. (3.1) with the equation of motion
for the single vacancy V;, shown schematically in Fig.
2(b). Again, the same set of Nx sites [bi} have been
blocked off by immobile atoms. However, all the remain-

ing sites are considered to have atoms that are identical to
the tracer of Fig. 2(a). Therefore, we have

dt
= —g' J,q ( V; —VJ ) . (3.2)

~k =1—pk (3.3)

where k ranges over i (or j not contained in I bi }}. Thus
the diffusion coefficient as well as the entire response
function of the tracer self-correlation function of the sys-
tem shown schematically in Fig. 2(a) is identical to those
for the uacancy in the system shown in Fig. 2(b).

As mentioned in the preceding section, the recent
Monte Carlo work of KK (Ref. 11) provides estimates for
the tracer-diffusion coefficient in a system such as that
shown in Fig. 2(a} as a function of the immobile particle
concentration x. Through a helpful coincidence accurate
Monte Carlo work' for the vacancy diffusion coefficient

[Note the prime on the j sum in Eq. (3.2).] Not only are
Eqs. (3.1) and (3.2) identical, even the variables are related,
&.e.,
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in a system such as shown in Fig. 2(b) is also available.
According to the relationship demonstrated in this section
these two seemingly different diffusion coefficients are in

fact identical. This is confirmed in Fig. 1, where both the
closed and the open circles represent Monte Carlo results
for the vacancy diffusion in a system as shown in Fig.
2(b). Here the solid line indicates the results given by our
renormalized theory explained in Sec. II whereas the data
points marked X are those supplied by KK (Ref. 11) for
tracer diffusion in a corresponding system of the type
shown schematically in Fig. 2(a).

There is yet another helpful coincidence to report. The
celebrated work of Manning" on tracer diffusion in a
multicomponent alloy with only a single vacancy is readily
applied to a binary alloy where one set of atoms is immo-
bile. The vacancy diffusion in this alloy then corresponds
to Fig. 2(b) and is thus identical to tracer diffusion in a
system such as described in 2(a) for which our theory of
Sec. II yields the result given in Eq. (2.23). As it happens,
for this particular limit Manning's result also reduces' '
to that given in Eq. (2.23).

The foregoing implies a certain self-consistency between
the predictions of the extended TKE procedure discussed
in Sec. II and that of Manning" in the sense that for the
only point at which their relevant physical systems "over-
lap,

" the two sets of necessarily approximate results are
(like the corresponding exact ones) identical.

IV. EFFECTIVE ESCAPE FREQUENCY
FOR THE VACANCY

IN A SINGLE-COMPONENT ALLOY

One of the traditional approaches to discussing the
tracer-diffusion correlation factor f" in a single-
component alloy with vanishing vacancy concentration is
to write4'3

Of course, as v~0, these reduce to (4.1) and (4.2).
The quantity H'(tr) is the effective escape frequency for

the vacancy in the more general system with arbitrary va-

cancy concentration. As is clear from the discussion
presented in Sec. II, H'(tr) is exact not only in the limit
v~0 but also for v~ l. Also, in the intermediate concen-
tration, H'(tr) gives an extremely accurate estimate for the
effective escape frequency whenever J &(J /z ), thereby
implying that when the background is not too slow, the re-
normalized theory works well.

V. TRACER DIFFUSION IN A MULTICOMPONENT
ALLOY

On its own the derivation of the effective escape fre-
quency for the vacancy given in the preceding section, i.e.,
H'(tr), is of no particular physical interest. However, it
enables us to achieve an important objective of generaliz-
ing a procedure previously employed by Manning' for
calculating the tracer diffusion in a multicomponent sys-
tem with only vanishing vacancy concentration.

To this end, let us define a generalized escape frequency
for the vacancy H"(tr) in a multicomponent alloy through
the introduction of an "effective hopping rate" J' for the
background atoms,

H"(tr)= (vJ f '+J' )
M

1 —v
(5.1a)

This expression is similar to that for H'(tr) given in (4.5)
except for the as yet undefined hopping rate parameterJ', which for a single-component alloy is simply equal to
J (the hopping rate of the background atoms). Next, let us
introduce the physically reasonable assumption that J' is
a weighted average over the background with the weight-
ing being proportional to the concentration x as well as
the effective diffusion correlation factor of each of the
components, i.e.,f" = H(tr)/[H(tr)+2J ],

v=0
(4.1) Jeff g JA(xxf A,

) g(xi' A.
) (5.1b)

where J is the hopping rate of the tracer (to one of the
neighboring vacant sites, that is). The quantity H(tr) is re-
ferred to as the effective escape frequency of the vacancy
from a neighboring site of the tracer. For a single-
component system with v =0, H(tr) is well known, ' i.e.,

It is clear that for v~0 this will lead to Manning's result
referred to earlier.

Thus, for a generalized multicomponent alloy the
tracer-diffusion correlation factor is

H(tr) =JM, (4.2) f '"=H"(tr)/[H"(tr)+2J ], (5.1c)

where

M = —(1+(cos8) )/(cos8) (4.3)

and J is the hopping rate of the background atoms. Thus
H(tr) depends on the crystal structure as well as the back-
ground atom-vacancy exchange rate J.

It is therefore instructive to recast the renormalized ex-
tended result for f" given in Eq. (2.19) into an analogous
form, i.e.,

where H"(tr) is as given in (5.1a) and J' as in (5.lb). The
unknown diffusion-correlation parameters f~ are easily
found by assuming the tracer to belong to each of the m

species of atoms (one at a time, that is), i.e., by setting
J =J"and f"=f", and solving the set of m equations so
obtained in terms of the corresponding m unknowns f".
Once this is done, f" for an arbitrary tracer is given by
Eq. (5.1c) where J' is now a known parameter.

f "=H'(tr ) /[H'(tr) +2J ], (4.4)
VI. RESULTS AND CONCLUDING REMARKS

where

H'(tr) =
1 —v

(vJ f +J) . (4.5)

The equivalence of the diffusion-correlation factors of a
single tracer, diffusing through a concentration x of im-
mobile sites, and a single vacancy, diffusing through the
same lattice with the same configuration of blocked sites
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FIG. 3. Monte Carlo data of Kehr, Kutner, and Binder for
the fcc lattice (see Ref. 18, Fig. 3) are shown as a function of the
ratio rt. The ordinate represents log&of"and the abscissa log&p'ft.

Solid curves follow from Eq. (2.19) of the text for the three con-
centrations x =0.644, 0.816, and 0.988.

while the rest of the sites are occupied by atoms similar to
the tracer, was demonstrated in Sec. III. The correspond-
ing Monte Carlo results also corroborate this fact {see Fig.
1). What is even more interesting, however, is that the
predictions of Eq. (2.19), or more conveniently of Eq.
(2.23) of the text (shown as the solid line in Fig. 1), are
roughly as accurate as the Monte Carlo data they are be-

ing compared with. Nevertheless, discrepancies appear
near the percolation threshold.

This fact is further elaborated in somewhat greater de-
tail in Fig. 3, again referring to the fcc lattice, where

logic f" is plotted as a function of log&oi) with ri as de-
fined in (2.22). For a concentration x =0.644, which is
well above where the original TKE theory begins to fail,
namely, x -0.45, but which is well below the percolation
concentration, x& -0.816, the results are excellent' down
to iI=10 and indeed to i)~0 (see Fig. 1). A somewhat
similar level of accuracy is available for small vacancy
concentration, i.e., u =0.012 (note that for this one-
component system the results are exact in the limit u~0).
In dramatic contrast to the above, at the percolation
threshold the predictions of this paper noticeably depart
from those given by Monte Carlo methods when

i) & I /(2z).
Finally, in Fig. 4, our calculations for a genuine binary

system are compared with those provided by KK's Monte
Carlo work. Here the vacancy concentration, v-7%, is
well within the forbidden region. (Note that u-0. 07 is
completely outside the small-vacancy regime. ) We notice
that for ri &z, the results are very good. (Note that here

g refers to J"/J since one of the B atoms is acting as the
tracer, but discrepancies arise when g is lowered toward
z and below. )

Thus we anticipate that in 3D our theory would provide
an excellent treatment of the single-component alloy as
long as the relevant ratio of the hopping integrals involved

log {J/J )

FIG. 4. KK's (Ref. 11) Monte Carlo data (large closed circles
and the symbol I) are compared with the results obtained from
Eqs. (5.1a)—(5.1c) of the text (small closed circles). A binary al-

loy, with concentrations x" and x of A- and B-type atoms and
vacancies v =1—x"—x, is modeled on an fcc lattice. The
tracer belongs to the B species of atoms. For J /J = 1, 10, and
100, our results lie within the large circles provided by KK (see
Fig. 6, Ref. 11). The ratio W= J /J and the concentrations x"
and x relating to the eight data points supplied by KK are as
follows: W= 1,x"=0.875~ =0.04625; W=10,x =0.875,x
=0.04625; and x"=0.9155,x =0.005 75. (Both sets of concen-
trations for W=10 lead to the "same" result. Moreover, our
calculations for both these concentrations also fit within the sin-

gle closed circle given by KK.) For W = 100, the upper circle re-
lates to x"=0.875,x =0.04625, whereas the lower circle refers
to x"=0.9155~ =0.00575. Our results lie within the shown
circles. For W = 1000, the upper circle refers to
x"=0.8935,x ~=0.027 55, whereas the lower one is for
x"=0.91925~ =0.0095. Our results lie somewhat below these
(shown by smaller circles). Finally for W =10000, the upper re-
sult is for x"=0.912,x =0.00925 and the lower one (shown by
the symbol J) for x"=0.9155,x =0.005 75. Again our predic-
tions lie somewhat lower.

(i.e., rt) is greater than about z, and moreover if the sys-
tem is well removed from the forbidden concentration re-

gime. Inside the forbidden concentration regime (but

away from the percolation threshold) the accuracy of our
results appears to be of order z . In contrast, at or near
the percolation threshold the corresponding ratio must not
be much smaller than z '. (After all this threshold itself
is located only to within such an accuracy. ) In lower di-

mensions, namely, d =2, similar but somewhat more
stringent conditions would apply.

Another point worth making is the following. As noted
previously, for a multicomponent alloy (with at least two
species of atoms with finite concentrations), the present
theory reduces to that of Manning's in the limit when
v~0. And Manning's theory has been tested extensively
for binary systems by Monte Carlo methods' ' with the
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conclusion that is consistent with the statements given
above regarding the accuracy of the present theory. In
short, the present theory provides a useful extension of
Manning's work to general vacancy concentration.
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