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Thermal conductivity of crystals:
A molecular-dynamics study of heat flow in a two-dimensional crystal
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(Received 16 May 1983)

We have studied steady-state heat flow in a two-dimensional crystal by the method of molecular
dynamics. The model system contains 1000 particles on a triangular lattice interacting via the
Lennard-Jones potential. The system is 50 unit cells long and 10 unit cells wide. We find that the
thermal conductivity ~ of this system is consistent with 1/T behavior as expected when phonon-
phonon scattering is the dominant mechanism for thermal resistance. We have also carried out simi-
lar calculations for three-dimensional Lennard-Jones systems in both fluid and crystalline configura-
tions. The results for the fluid were in good agreement with earlier calculations but for the fcc solid
system, 16 unit cells in length, a was independent of temperature. We determined that boundary
scattering was the dominant resistive mechanism in this case. To escape the boundary-limited re-

gime, the length of the three-dimensional crystal needs to be increased by at least a factor of 3 ~ It is
feasible to simulate a system of this size with the use of modern computers.

I. INTRODUCTION

In this paper we report the results of a molecular-
dynamics study of heat flow in a fully dynamical, two-
dimensional, crystalline lattice. This is in contrast to the
first studies of nonequilibrium properties of crystalline
solids, performed in the late sixties, which were devoted to
steady-state studies of heat flow in spring-lattice
models. ' There has been little progress in this area of
research as most studies have been limited to one-
dimensional systems with the emphasis on determining
whether or not Fourier's law is obeyed for such systems.
The testing of the effect of various boundary conditions
on the results has been one of the major topics of investi-

gation. These studies have been limited to unrealistic in-
teractions such as harmonic potentials, hard rod, or
square-well interactions that lend themselves to analytic
treatment. The ensuing difficulties in establishing tem-
perature gradients in these model systems and the non-

physical results obtained have dominated the literature of
this subject. The only work to date that has given a
reasonable representation of heat transport in a crystal is
the molecular-dynamical study by MacDonald and Tsai
of the thermal diffusivity in a two-dimensional lattice.
They studied the transient thermal response of a system
interacting via a pair potential that had been fitted to the
elastic properties of iron. Another two-dimensional study
considered only a harmonic lattice, ' so thermalization
was not possible.

There has been considerably greater progress reported
with thermal transport in liquids. The molecular-
dynamics method has been used to good effect in obtain-

ing the time-averaged atomic quantities and their fluctua-
tions that are needed for the thermal conductivity. " ' It
now seems timely to examine thermal conduction in the
crystalline state, building on the experience gained with
the molecular-dynamical treatment of equilibrium proper-
ties of solids. ' '

II. MOLECULAR DYNAMICS

The molecular-dynamics simulations reported in this
paper were carried out using the Beeman algorithm' to
integrate the equations of motion for N particles interact-
ing via the Lennard-Jones pair potential,
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There are several reasons for selecting the thermal con-
ductivity for study. Firstly, the thermal transport proper-
ties are of obvious interest for high-temperature materials
and for this regime, lattice-dynamical perturbation theory
is probably inadequate. Secondly, the density dependence
of the thermal conductivity has received very little atten-
tion' and this can be studied readily by molecular dynam-
ics. Thirdly, defects are an important feature of crystals
at high temperatures and there is no theoretical treatment
of their motion under thermal gradients. One of the ob-
jectives of this study is to provide the basis for further,
three-dimensional investigations of heat flow in solids. In
particular, we show that it is feasible to simulate systems
larger than the mean free path of the heat-carrying pho-
nons.

This paper is organized in the following way. In Sec. II
we describe the molecular-dynamics techniques we have
used and we discuss the potential, the boundary condi-
tions, and the stabilization procedures essential to the es-
tablishment of a steady state.

In Sec. III, we present the results that have been ob-
tained for the two-dimensional Lennard-Jones crystal, to-
gether with some liquid-state results that served as a check
on our method of calculation. We also comment on some
problems which arose in our initial attempt to study a
three-dimensional crystal and indicate the sort of prob-
lems which will be encountered in the simulation of heat
flow in a three-dimensional crystal.
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FIG. 1. The two-dimensional Lennard-Jones crystal has the

triangular-lattice structure illustrated here. The system studied

consisted of 10'50 unit cells ( X j, of which 10 unit cells at each

end are explicitly shown. Two lattice planes with 10 particles

each, denoted by solid circles, serve to constrain the crystal. The

two rows of small dots represent the missing 480 unit cells.

Lengths are measured in units of o and energies are
measured in units of e The tim. e is measured in units of
r=(mn /e)' where m is the mass of a Lennard-Jones
particle. The equations of motion were integrated using a
time increment of 0.01~. The potential was truncated at
r =2.8cr.

The boundary conditions used to obtain a steady, none-

quilibrium state for a thermal-conductivity determination

were imposed as described below. The objective is the es-

tablishment of a stable, linear temperature profile so that
the thermal conductivity ~ may be obtained using
Fourier's law of heat flow,

J = —~gradT . (2)

The heat-current density J can be determined from the
microscopic expression, given in Eq. (3) below, or by
determining the amount of energy entering at the hot end

and exiting at the cold end of the system. Both methods
were used in these calculations. Agreement between the
results of the two methods is a necessary condition for
determining that a stationary state has been established.

The microscopic expression for the Cartesian com-
ponents of the heat current is

J = QEJUJ —
~ g g (UJ~+UJ )

p "I'k "fk Bp

j j k (+j) rjk Brjk

(3)

where a,P=x,y, z and the summation convention on P is
assumed. EJ is the energy of particle j, vj its velocity, rjk
is the distance between particles j and k, and V is the
volume (area, in two dimensions) of the system.

The two-dimensional system was taken to consist of
N=1000 particles initially located on a triangular lattice
as shown in Fig. 1. The lattice was specified to be 10 unit

cells wide (two particles per unit cell) and 50 unit cells
long. Periodic boundary conditions were imposed in the
short dimension which is transverse to the heat current.
The ends of the lattice in the long dimension were stabi-
lized by introducing an additional line of particles at each
end (solid circles in Fig. 1) which are fixed in position at
lattice sites and which interact with the other particles
through the Lennard- Jones interaction.

The temperature gradient was introduced by requiring
that a set of particles at the right end of the lattice have an
average kinetic energy greater than that of a correspond-
ing set of particles at the left end of the lattice. These sets
of reservoir particles were defined as follows. A coarse
grid of 25 layers was superimposed on the system. The
particles lying in the leftmost layer constitute the low-

temperature reservoir and the particles lying in the right-
most layer constitute the high-temperature reservoir. A
major advantage of this reservoir procedure is that the re-
sulting temperature gradient can be specified in advance,
something that could not be done in the earlier work on
one-dimensional lattices. ' This coarse grid was also
used to determine the spatial variation of the temperature,
density, stress, and heat current in the system.

The determination of the thermal conductivity required
first the establishment of a steady state. This was done by
scaling, at each time step, the momenta of the particles ly-

ing in the right-reservoir layer and in the left-reservoir
layer so that the desired temperature difference was main-
tained between the ends of the system. It is important
that the net momentum of the layer not change as a result
of rescaling momenta. This can be achieved by first ad-

justing the total momentum of the layer to be zero, next
rescaling momenta by the desired amount, and then restor-
ing the original net momentum to the layer. Failure to
follow this procedure can lead to uncontrolled heating of
the system via the impulse imparted to the system. Once
a linear temperature profile, as determined by averaging
over several thousand time steps, had been established, the
stationarity of the system was checked using three criteria.
First, the heat current in the direction of the temperature
gradient should be uniform. Second, the heat current
transverse to the temperature gradient should be small rel-
ative to the longitudinal current. Ideally the transverse
current should be zero; in practice the best that could be
obtained for the length of runs made in this study, was a
small value (10—20% of the longitudinal current) for each
layer, with a distribution of + and —signs. The average
of the transverse current over layers 2—24 is less than
10% of the longitudinal current. Third, the heat current
determined directly should agree with the value deduced
from the energy supplied to the hot end and the energy re-
moved from the cold end.

Once a stationary system had been developed, a produc-
tion run of 10000 time steps was made. The thermal con-
ductivity was determined from the ratio of the heat
current and the temperature gradient. The temperature
gradient was determined to be the difference between the
temperatures of the 24th and 2nd layers divided by the
center-to-center separation of those layers. In practice this
ratio was indistinguishable from the slope of the
temperature-position profile.
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FIG. 2. A portion of the phase diagram for the two-

dimensional Lennard-Jones system as discussed in Ref. 21. The
solid circles locate the states studied in this work.
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Some simulations of three-dimensional systems were
also made. The boundary conditions at the hot and cold
ends of these systems were mirror-image conditions with
the requirement that the reservoir layers were at least as
thick as the range of the pair potential. In this way, the
major effects of the boundary conditions should be con-
fined to the reservoir region, at least for fluid systems.
This approach works well for fluids in that no boundary
layer effects, such as those found when stochastic boun-
dary conditions are imposed, ' were observed. This indi-
cates that heat transport in a liquid is diffusive even on
the molecular level.

Crystals are another matter entirely. Heat is carried by
the phonons in an insulating crystal and the phonon mean
free path determines the length scale over which boundary
conditions can influence the transport of heat. A number
of variants of mirror boundary conditions were tried in an
attempt to minimize the mechanical mismatch between
the system and the reservoirs. None of our efforts with ei-
ther a 500-particle, or a 1024-particle three-dimensional
crystalline system were successful as the thermal resis-
tance was always dominated by boundary scattering. It
was for this reason that our effort was concentrated on a
two-dimensional system where we have estimated the
mean free path of the longitudinal phonons at the temper-

0.3
0.4
0.5

182
128
117

54.6
51.2
58.5

0.39
0.27
0.26

TABLE I. Thermal conductivity K of the two-dimensional
Lennard-Jones crystal at density n =0.9. T is the midpoint
temperature for the crystal. (J, ) is the average current density

in the direction of the gradient. K is given in units of kzv
The uncertainty in K is on the order of 10—15 %.

KTm

FIG. 3. Time-averaged temperature and heat current for

T =0.4 as a function of the coarse-mesh-layer position in the

crystal. The current is Ja, the heat-current density times a, the

area of a layer. Note that the current for layers 1 and 25 is not

shown. This is because its value is dominated by boundary ef-

fects.

tures of interest to be on the order of 10 unit cells. This
estimate is based on the decay of the intermediate scatter-

ing function' for an equilibrium two-dimensional crystal.
Thus with a manageable number of particles, the size of
the system could greatly exceed the phonon mean free

path.

III. RESULTS

The phase diagram for the two-dimensional Lennard-
Jones system has been discussed by van Swol et al. ' A
portion of the temperature-density diagram is shown in
Fig. 2 and we indicate where our heat-flow simulations
were made. We report temperatures and densities in the
usual reduced form T*=kqT/e and n*=No. /A, respec-
tively, where k~ is the Boltzmann constant and A is the
area of the system. Three states with mean temperature
T* =0.3, 0.4, and 0.5 were studied. In each case the cold
reservoir was maintained at T* —0. 1 and the hot reservoir
was maintained at T'+0. 1. The simulations were per-
formed as described in the previous section.

The results are summarized in Table I. As an illustra-
tion of how these results were obtained, we show in Fig. 3
the temperature and heat-current profiles for the T' =0.4
case. The scatter in the values indicates the uncertainties
associated with the heat current (5—10%) and the tem-
perature gradient (5%), so the uncertainty in Ir is on the
order of 10—15%. This is the level of uncertainty report-
ed in Ref. 14. The x T values are constant to within 10%,
so that within the sizable uncertainties involved, the
thermal conductivity is consistent with 1/T behavior, the
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expected result when phonon-phonon scattering is the
dominant mechanism for thermal resistance.

Finally, let us briefly consider the simulation of heat
fiow in a three-dimensional system. We performed a
simulation of heat flow in a 500-particle Lennard-Jones
liquid system with density n*=0.85 and temperature
T'=0.806 so that we could check our results against ear-
lier liquid simulations. Our value for the thermal conduc-
tivity agrees closely with that reported in Ref. 14. We also
carried out heat-flow simulations for the Lennard-Jones
crystal, an fcc lattice, 16 unit cells in length. Unlike the
results for the two-dimensional case reported above, the
thermal conductivities were found to be independent of

temperature, indicating that the scattering was boundary
limited. An equilibrium determination of the intermediate
scattering function' revealed that the mean free path for
longitudinal phonons was greater than the size of the sys-
tern we were studying. This means that boundary scatter-
ing will be a significant source of thermal resistance for
such a system. In order to reduce boundary effects and
have phonon-phonon scattering as the dominant source of
thermal resistance in three dimensions, it will be necessary
to simulate systems that are several times as long as the
present one, i.e., containing several thousand particles.
This is within the capabilities of modern computers, al-

though it is not a minor task.
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