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We present a microscopic theory of the Hall conductance in a two-dimensional electron gas. Our
approach is based on a single-particle picture and explicitly accounts for the effects of a random im-
purity potential. Within the geometry introduced by Laughlin a general expression is derived from
which it is possible to evaluate the Hall conductance in terms of the properties of the electronic spec-
trum at the Fermi energy for any value of the magnetic field. When the chemical potential lies be-
tween the bulk extended states of well-defined neighboring Landau bands, the Hall conductance is
quantized in integral multiples of e2/h, even in the presence of a large density of localized states.
Within our model the exactness of this quantization depends on the shape of the confining potential,

the thickness of the sample, and the magnetic field.

I. INTRODUCTION

One of the most interesting properties of the two-
dimensional electron gas which can occur at a semicon-
ductor interface is the quantization of the Hall conduc-
tance.! At very low temperature T and high magnetic
field strength B, the Hall conductance oy, as a function of
the Landau-level filling factor v=ng(eB/hc)~!, ng being
the number of electrons per unit area, is characterized by
flat steps® at integral multiples of the fundamental value
e%/h. In those regions of concentration ng in which Oxy
has the quantized value, o, is essentially equal to zero (it
would presumably be zero at zero temperature). This ef-
fect was first indicated by Ando, Matsumoto, and Uemura
in a study of the effects of impurity centers on the proper-
ties of an otherwise noninteracting two-dimensional elec-
tron gas.}

This result suggests very strongly that if we think of the
density of states associated with a particular Landau level
as broadened by impurity scattering, extended states exist
only very close to the center of the Landau level and local-
ized states exist everywhere else. Establishing the validity
of this picture from microscopic theory remains a funda-
mental unsolved problem. Work in this direction has been
recently carried out by several authors.*~®

The quantized Hall effect has received particular atten-
tion within the single-particle picture in which a prom-
inent role is played by the electronic states which are lo-
calized by the impurity random potential.”~® Within the
same framework Kazarinov and Luryi have presented an
argument based on quantum percolation theory.!® Thou-
less and co-workers have investigated how the effect is in-
ﬂuetlllced by the presence of a periodic substrate poten-
tial.

The observation of a sizable cyclotron resonance shift in
Si inversion layers'? and of additional quantized steps in
the Hall resistance at 3h/e? and probably 3h/2e’ in
GaAs-AlGaAs heterojunctions in the extreme quantum
limit!? casts, however, some doubts on the validity of the
single-particle picture. The normal state of a two-
dimensional electron gas in the presence of a magnetic
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field is inherently unstable with respect to a many-body
charge-density-wave or Wigner-lattice type of ground
state.* It is not clear, however, what happens in the pres-
ence of an impurity random potential and what the mag-
netotransport of such an exotic ground state would be.
The implication of such many-body effects on the Hall
conductance of an ideal two-dimensional electron gas have
recently received a great deal of attention.!>~!7

In order to establish the relevance of the many-body ef-
fects in the quantized Hall-effect problem a complete and
reliable theory based on the single-particle picture must be
first at hand which can treat exactly the problem associat-
ed with the impurity random potential for any value of
the external magnetic field.

Laughlin has presented an elegant argument which at-
tempts to demonstrate that the quantization is due to the
long-range phase-rigidity characteristic of a supercurrent,
and that it can be derived from gauge invariance and the
existence of a mobility gap.® He does this by considering
the response of a two-dimensional metallic ribbon to a
change in the flux threading the ribbon. Because changing
the flux threading the ribbon is certainly not a simple
gauge transformation, the terminology of Laughlin’s argu-
ment is inappropriate.’® Furthermore, his argument con-
tains the implicit assumption that the only consequence of
adding an integral number of flux quanta hc/e is to re-
populate the current-carrying states. This assumption is
obviously valid for the ideal system, but it is not so obvi-
ous in the presence of disorder when localized states can
exist at the Fermi level.

In this paper we investigate, within a single-particle pic-
ture, the eigenfunctions, eigenvalues, and distribution
functions of the electrons in a two-dimensional metallic
ribbon using a cyclindrical coordinate system appropriate
to the geometry of the problem. In Sec. II we consider the
ideal system, free of impurities, and establish the notation.
There it is stressed that it is strictly necessary to mix orbi-
tals belonging to different Landau levels in order to be
able to describe localized states. In Sec. III we introduce
an effective random potential and discuss the structure of
the electric spectrum. In particular we prove that in a rib-
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FIG. 1. Geometrical arrangement for the ribbon geometry
used throughout the paper.

bon of finite radius the spectrum of the extended states (if
any) is countable. This analysis is used in deriving a virtu-
ally exact expression for the Hall current which explicitly
displays the dependence of this quantity on the tempera-
ture and the shape of the confining potential. The condi-
tions for observing a quantization of the Hall conductance
are discussed. Finally, Sec. IV contains a discussion of the
relevant physical questions and the conclusions.

II. IDEAL METALLIC RIBBON

In this section we consider an idealized model in which
the system of electrons is confined to an impurity free rib-
bon of radius 7y as shown in Fig. 1. Cylindrical coordi-
nates (r,0,z) will be used to describe the motion of the
electrons. The electrons are restricted to the radius r =r
by some confining potential, but they are free to move be-
tween the edges (0 <z <d) and around (0 < 68 < 27) the rib-
bon. For large values of r; any small section of the ribbon
will be indistinguishable from a similar small section of a
standard Hall bar, in that a current I will flow in the 0
direction and a voltage AV will be present across the rib-
bon. The ratio of I to AV will define the Hall conduc-
tance.

In order to mimic the behavior of a standard Hall bar,
we want a magnetic field B which is everywhere perpen-
dicular to the ribbon. We introduce a vector potential
K=(A,,A 94;) in the cylindrical coordinate system
in which 7, 6, and Z are unit vectors, and choose
A,=A,=0 and Ag=—(Bz+A,). Taking the curl of A
leads to a magnetic field

B=Bf—(Bz +A4,)5/r .

Now Bf'is exactly radial magnetic field we want. The oth-
er term r ~!(Bz +A4,)3 is extra. It does not bother us be-
cause the electrons are strictly confined to » =r( by a po-
tential of the type

0 if r =TIy (1)

Vir)=0 )
o otherwise .

Therefore, the Lorentz force assoicated with B, will have
no effect on the classical motion of the electrons. Of
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course, the constant vector potential 4; just leads to
“trapped flux” inside the ribbon which is independent of
the magnetic field B7, but does not affect the classical
motion of the electrons.

The flux through the ribbon at a plane z is given by

o(z)= [ (Bda=@ A-dT=—2mro(Bz+4,).
2)

We define ¢=—27ryd,; as the trapped flux associated
with 4, and we introduce the set z; of values of z defined
by the equation

—27rogBz;j+¢=—1dg, (3)

where ¢o=hc /e is the flux quantum and / is an integer.
Because 44 depends on z, the flux passing through the cir-
cle defined by the intersection of the cylinder r =r; and
the plane z =const depends upon z. The plane z =z; de-
fines the circle through which —/ flux quanta pass.

Now let us look at the Hamiltonian. To start we will
neglect boundary effects at z=0 and d. Because the elec-
trons are confined to the radius r =r, the radial coordi-
nate does not enter the Hamiltonian. We have

2
| 1 [(Pe e
Hy=— — |—+—44| ,
0= om Pt o r0+c 0
2

—# 3 1 | =i d e

e =424, , 4
2m 3z* 2m | rg 86+c 6] @

where for simplicity only the spatial degrees of freedom
have been retained. Because Ag is independent of 6 we
can assume that the eigenfunctions of H, are of the form

¥(z,0)=e"u(z), (5)
where [/ is an integer. Substituting this form into the
Schrddinger equation gives the equation

p:
2m

+1mol(z —z) |u(z)=Eu(z) . (6)

Equation (6) is just the Schrédinger equation for a simple
harmonic oscillator of frequency w, =eB/mc centered at
z =z;; thus, the eigenfunctions and eigenvalues of H can
be written

eiIB

Vit
Ep=fiw.(n +%) ’

1//"1(2,6) =
(7

where u,(z) is the nth harmonic-oscillator eigenfunction.
The quantum numbers n and / have here the following
meaning. n labels a set of well-defined Landau levels
whose energy spacing is given by #w,. ! represents the an-
gular momentum of the state. For a given n states with
different values of / are degenerate. If the system has unit
area the degeneracy of each Landau level is (27aj)~"
where ap =(c#/eB)!/? is the magnetic length. This degen-
eracy is lifted by any potential term depending on the
coordinate z added to the single-particle Hamiltonian (4).
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Note that in (7) the “orbit-center” coordinate z; is exactly
the value given by Eq. (3); this value was determined by
requiring the circle defined by r =r,z =z, to enclose —!
flux quanta. Changing the trapped flux by A¢ simply
shifts each orbit center by Az;=—A¢/2mryB. Any
change A¢ is allowed; the electron orbits simply adjust
themselves by shifting their centers to still enclose an in-
tegral number of flux quanta. In the absence of a poten-
tial which lifts the degeneracy, the eigenvalue E,;, given
by Eq. (7), is unchanged.

If we introduce a constant electric field E in the z direc-
tion (across the ribbon), there is an additional term eEz in
the Hamiltonian. The eigenvalues and eigenfunctions of

the ideal system in the presence of E are

Up
Z —ZI+—_

(4

1 2
Tmvp,

] oil0
Yni(z,0)= Vo Un

En =%, (n +5)+eEz —

(8)

where the drift velocity vp is defined as vp=cE/B. If
E—O0 these equations reduce to Egs. (7). Clearly n and !/
are still good quantum numbers but the degeneracy with
respect to / has been lifted. Notice that in the presence of
an homogeneous applied electric field the orbitals ,,;(z,60)
are centered at z; —vp /w,, as compared to z; in the field-
free case.

It is worth mentioning here that

) the operator
0=0H/3pgy can be written

(mrd)~[pe+(erg/c)dq] ,

where Ag=—(Bz+A,). Because py is 2 constant of
motion with value #/, the Hall current I} carried by an
electron in state | nl) is

IM=—e(nl |6ry|nl)=ew.(nl |(z—z)|nl)=—evp .
9)
It is straightforward to verify that
(nl|z|nl)=0 (10

so that no current is carried in the direction of the applied
electric field. In (9) and (10), | n/) is the Dirac notation
for the state whose wave functlon is ¥,;(2,0). In the ab-
sence of an external electric field no current flows in the
system. If an electric field is present in the z direction, as
in (8), all the electronic states |nl) carry the same Hall
current, —evp, along 9. Equations (9) and (10) lead to the
values o,, =0 for the longitudinal conductivity and

w=—(e*N/h)dry/ag)~",

where N is the total number of electrons.
It is interesting to realize that exactly the same results
are obtained for any wave function ¢,,(z,0) of the type

Gna(2,0)=, caithn(2,6) . (11)
1

This implies that it is strictly necessary to allow for the
mixing of different Landau levels in order to describe a
non-current-currying state in a magnetic field.'
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A different and elegant procedure to evaluate the Hall
current in this geometry has been proposed by Laughlin.®
The approach is based on the following formula:

AEr

Ad
where E; is the total energy of the system and AE; is the
change in E7 caused by a change in flux A¢. This result

can be obtained by noting that the current-density opera-
tor is

3H, H,
e 04,

j&¥= —er00— —ery
Taking the expectation value of jg° and summing over oc-
cupied states leads to Eq. (12). We can calculate Er using
perturbation theory. Let us write

H=H,+AH , (13)

where
=(e/c)vgAd,=(e Ap/2mc)d

is the change in the Hamiltonian caused by a small change
in A, (or in the flux Ap=—2mr;AA4,). Let us think of
Ad, as varying in time as expliwt), where o is a very low
frequency. Then the perturbation AH causes a change in
the single-particle density matrix Ap=p—p,, where p, is
the density matrix in the absence of AH. The use of
linear-response theory gives

f nl) fOtenl)
€n'1r—€n —Fi0

(nl |Ap|n'l')= (nl|AH |n'l') ,

(14)

where fy(€) is the usual Fermi-occupation function. The
change in the total energy can be written

AE =Tr(pH —poH,) . (15)
Keeping terms linear in the small perturbation gives

AEr= 3 [folen){nl | AH |nl)+€yu(nl|Ap|nl)].

n,l
(16)
It is clear from Eq. (14) that the second term vanishes;
therefore

eNvpA
AE; =+ e—éﬁzfoe,,n(numnz)_—‘r’f, (17)
0

where we have made use of Eq. (9). Also 3, ; fo(€n)=N
since, as noticed above, every state |nl) carries the same
current. Another way to obtain this result is to notice that
a change A¢ in the threading flux displaces each orbit
center by the same amount, Az;= —A¢/B. From Egs. (8)
this leads to a change eEA¢ /B in the single-particle ener-
gy. Summing over all the occupied states the expression
(17) for AE7 is recovered.?’
Inserting (17) in (12) we get again
ecN

IH=—€NUD=— B —E . (18)
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FIG. 2. Schematic energy spectrum for an ideal two-

dimensional electron gas confined on a ribbon of width d. In the
bulk region the spectrum consists of Landau levels separated by
an energy fiw.. r. represents the cyclotron orbit radius for the
n =0 Landau level.

In the case in which an integral number n of Landau lev-
els are fully occupied we can write N =nrqd /a} and get

e?

IHz—nTEd y (19)

which amounts to the well-known expression for the quan-
tized Hall conductivity

e?
axyz-—n—h— , n=0,1,2,3,... . (20)

It is obvious that Eqgs. (18)—(20) do not provide a theory
for the quantized Hall effect since within this extremely
simplified model o, is just a monotonic function of both
B and the number of electrons N. The quantized expres-
sion (20) is recovered only for a set of values of N (or B) of
Zero measure.

Consider next the problem associated with the edge of
the system. The electrons in our metallic ribbon must be
confined to the region 6 <z <d by some potential. If we
assume that there is an infinite potential barrier at these
positions, then the Landau-level energies will increase as
the orbit center comes within the cyclotron radius of the
wall. The energy as a function of z;, the position of the
orbit center, is sketched in Fig. 2 for the ideal case with
E=0. Note that the n =0 level with 2z;=0 and d has the
energy (3 )ha,, the value of the n =1 level in the bulk.
The reason for this is, of course, that for the potential ap-
propriate to these orbit centers, only the odd eigenfunc-
tions of the full harmonic-oscillator potential inside the
ribbon are solutions to the Schrddinger equation. Note
that for orbit centers outside the ribbon the energy contin-
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FIG. 3. Schematic of the classical orbits for extended and lo-
calized states in the ribbon geometry. Extended states are asso-
ciated with classical orbits which encircle any flux threading the
ribbon.

ues to increase approximately quadratically. These states
represent ‘‘skipping orbits” or edge states. The very pres-
ence of the edge states leads to a smooth variation of the
Fermi energy between the bulk Landau levels as they pro-
vide a nonvanishing density of states in such regions. The
role and the physical properties of the edge states of a
two-dimensional electron gas in a Corbino disk have been
discussed by Halperin.?! His treatment can be easily re-
peated for our cylindrical geometry and all his conclusions
apply also in the present case.

III. METALLIC RIBBON WITH IMPURITIES

A. Structure of the energy spectrum

Before attempting to evaluate the Hall current a discus-
sion on the nature and the structure of the spectrum of the
system in this case is in order. We start with the Hamil-
tonian

H=H,+ezE +V(z,0), (21)

where H), is given by Egs. (4) and where ¥V (z,0) is the ran-
dom potential caused by the impurities. As V explicitly
depends upon z and 0 in general; n and / are not good
quantum numbers, which is to say, the set of wave func-
tions ¥,; of Egs. (8) does not represent a set of eigenstates
of H. Accordingly we will introduce a new index (or set
of indices) a in order to label the wave functions ¥, and
eigenvalues E, of the system.

The precise nature of the electronic states of a system in
the presence of a random potential has not yet been eluci-
dated. In the absence of an externally applied magnetic
field it is believed on the basis of scaling arguments that
all the states must be localized.?> However, when a uni-
form magnetic field is applied to the system the situation
is different and it has been argued by several authors that
extended states exist at the center of each Landau lev-
el.#=%2! We will assume here that this is the case.”* Ac-
cordingly we will divide the states 1, into extended and
localized states. The particular geometry of our system al-
lows us a quite natural distinction between localized and
extended states. Following an analysis similar to that used
by Kazarinov and Luryi,'° we can define the extended
states as the ones associated with classical electronic orbits
which circle the entire ribbon, whereas the localized states
do not, as schematically pictured in Fig. 3. More precisely
a state 1, is extended if for any value of 6 between 0 and



27 there exists a value of z between O and d such that
| e |2 goes to zero such as rg ' as rg, the radius of the
ribbon, goes to infinity. A state ¥,; wili instead be local-
ized at z*,0* if | g (z*,6%)| % is of the order rg !, whereas
for any value of z, | ¥4, (2,6* 4+m)|? goes exponentially to
zero with rg as ry is made to grow.

We shall now give an argument to show that even in the
presence of impurities for a ribbon of finite size the energy
eigenvalues of the extended states are isolated and there-
fore constitute a countable set. Let ¥¢, and E ﬁe be the
wave function and the energy of a given extended eigen-
state ae of H?%, which is the Hamiltonian of the system,
Eq. (21), where the “trapped flux” associated with 4, is ¢
[see Egs. (2) and (3)]. Suppose now that the flux is adia-
batically changed to ¢+ Ad, with Ad < d. Since . is as-
sociated with an orbit linked to the flux change an elec-
tron in this state will experience an induced emf and will
respond to the perturbation. Accordingly ¢ﬁe and E¢,
will be mapped into ¢'ﬁ: 44 and E ﬁ:’ 84 which in principle
can be obtained by solving the Schrddinger equation for
H*+242% 1 the ideal case, where ¥ =0, the result of such
a flux change is readily established. If we start from a
state ¢%,EJ as given in Egs. (8), it is easy to establish that
two possible solutions of the problem are possible,

VAL ER— 9 M=oyl BRSO =EY 22)
corresponding to an increment of angular momentum by
#in, or

"1 nhvp
¢3.’1,E,?1—>¢ﬁ1“"’=¢$1,E$+A"=E:’“¢—2— . (23
'TTrO
Here
~ zZ—z14v
U =)~ explil)u, | —————
(20 +7703 /rO

corresponds to a rigid displacement of the orbit center by
exactly the amount required to maintain an integral num-
ber of flux quanta threading its orbits. In (22) and (23),
n=A¢/¢p,. Because the wave function must be single
valued, it is clear that for 7 < 1, the solution (22) is not ac-
ceptable and the response of the system will be character-
ized by the orbit-shifting process of Eq. (23). Notice that
this implies that Ef does not belong to the spectrum of
H#*+%4_ An analogous phenomenon occurs in the system
in the presence of impurities. Although exg(i 70)¢, is an
eigenfunction of H?+4% with eigenvalue E%,, such a solu-
tion is not acceptable for nonintegral 7 since it is not a
single-valued function of 8. Thus, E, does not belong to
the spectrum of H$+4925 Therefore, the energy of the
state ae will change with ¢. Furthermore, due to the ran-
dom nature of V(z,0), it is reasonable to expect that for
very small values of 7, E4} 24 will be smaller than E%, by
an amount linear in 1. This process is exemplified in Fig.
4(a). It is obvious that here the change in y¢, will be
much more complicated than a simple rigid shift of the
center of the orbit since the potential ¥(6,z) has a compli-
cated local structure. Now, since 1/1$e+ 44 in an eigenfunc-
tion of H*+24, the wave function exp(—in0)y2}2¢ is an
eigenfunction of H?® with eigenenergy E®}2%. The fact
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FIG. 4. Evolution of an extended state level E,. (with wave
function ¥,.) upon an adiabatic change A¢ of the threading flux.
n=A¢/do () <1, exp(in®)yf, is not an acceptable wave
function; (b) 1 < 1, exp(—in@)tt 24 is not an acceptable wave
function and E, is isolated; (c) n=1, Eg, °=E%, _, as

dae O —explig)u, _,

that dzﬁj 44 is an acceptable (i.e., single-valued) solution
implies that exp(—in@)y¢. 24 is not and that the eigen-
value E 2e+ A4 does not belong to the spectrum of H?.
Since the flux change A¢ is completely arbitrary we con-
clude that for a ribbon of finite size the eigenvalues E¢, of
H? are isolated and the spectrum of the extended states of
the system is countable. This situation is represented in
Fig. 4(b).

If =1, i.e., Ap =4y, then exp(—i 0)1&:: %o is an accept-
able solution of H? with eigenenergy E,, °, which
by definition is nothin% other than y¢, _, [see Fig. 4(c)}.
The spectrum of H $+m %, m being any integer, is the same
as the one of H?; the wave functions simply differ by the
phase factor exp(im6). We have established that by
changing the trapped flux ¢ by one flux quantum each ex-
tended state 1,, is mapped into its nearest-neighboring
ll}ae —b with

+
ESr®

=E¢,_,. (24)

This expression will be useful later.
It is obvious that formally the same argument can be
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FIG. 5. Schematic illustration of how the spectrum of the
system is modified by an adiabatic change of the flux threading
the ribbon. aL and aL label the localized states of H* and
H ‘“0; ae and de are the corresponding labels for the extended
states. After a whole quantum of flux ¢, has been added, the
states ae are mapped into @ =ae — 1. The localized states are
unaffected by the flux change.

carried out for a localized state 1,; . However, the nature
of a localized wave function is such that this electronic
state will not be significantly modified by any change of
trapped flux. This amounts to the fact that it is only for
the localized states that a change in the trapped flux ¢ has
the same effect of a gauge transformation. The situation
for both extended and localized states is schematically pic-
tured in Fig. 5.

If the external magnetic field is large enough the spec-
trum of the extended states of the system will still be
characterized by a Landau-level structure. Each Landau
level will, however, be broadened by the effect of the ran-
dom potential. In such a case the label ae can be resolved
into a Landau band index v and a generalized orbit-
position quantum number A. With this notation Eq. (24)
can be written as

é+4o

E, "=E%,_,, (25)

where it has been recognized that for a macroscopic sys-
tem @, is a very small change of flux and cannot possibly
induce a change of the Landau band index v.

A word is in order here about the occupation of the ex-
tended states while the trapped flux ¢ is changed. If the
step-by-step change in ¢ is adiabatic, we can make use of
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time-dependent perturbation theory as done in Sec. II. By
a direct inspection of Eq. (14) (valid also in the presence of
the potential V'), it is easily realized that in this situation
the occupatlon of the states does not change. If an elec-
tron occupies an extended state Y2, after a full quantum of
flux ¢y has been added to ¢, the state ;va o , i.e., ¢V;_ 1
will be occupied. This is the transfer process originally
suggested by Laughlin.® However, notice that for the ex-
tended states the flux change by no means can be thought
of as a gauge transformation.

B. Hall current

Within our single-particle picture. the Hall current Iy
can be evaluated as follows:

2‘,f<E Wa|jP (26)

Iy=Tr(pj§ |a),
where the sum runs over the possible states of the system.
f(Eg), p, and jgP have been defined in Sec. II. Making use

of the relation

(26) can be written as
aEae

8¢ ’

where we have restricted the sum to the extended states
only because as discussed in Sec. III, 8E,; /3¢ is zero.
Notice that in absence of extended states the Hall current
is zero.

In a macroscopic system we can expand Eq. (24
powers of ¢, and get

In=c¢ 3/ (B @)

) in

oE,, 1 oE,,
8¢ _¢0 dae

where we have also made use of the fact that the extended
states are closely spaced. Corrections to Eq. (28) are readi-
ly shown to vanish with the inverse of the ribbon radius.
By using (28) in (27) we obtain

(28)

aE
Ef ae (29)
0 ae
after integrating by parts we find
0f (E,e) OE,,
I —E,. 0
H="4, % dE, dae * (30)
Here we have used
Of (Eqe) | 8f(Ege) | | OEq,
dae | OEg dae

At low temperatures the derivative of the Fermi function
is essentially the negative of a § function which picks out
the value of E,, for which E,,=¢, the chemical potential.
Because of the possible presence of an electric field along
the z direction, § can, in general, vary with position and
each extended state will experience some average value
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FIG. 6. Schematic energy spectrum for the extended states of
a two-dimensional electron gas in the presence of an effective
random potential ¥ (z,0) at a fixed value of 6. Here the strength
of V(z,0) is assumed to be much smaller than #iw, so that the
Landau levels still provide an approximately good description

scheme. Localized states levels (not shown) can be present
everywhere in the energy range.

$qe- We introduce the set of values ae; for which
E,. =4, the local value of the chemical potential, and
make use of the result

-1
J

8(f(x))= ?8(x —x;) ™

to obtain

oE

e e

IH=—;§ ;8(ae —ae;)sgn Ta: ];ae . (31)
When the Landau bands are well defined, Eq. (31) can be
specialized to

oE .,

oA

NI (32)

1

Iy=-%< >, sgn
h i,v
where we have made use of the indices v and A introduced
in the preceding section. In (32) the sum over v extends to
all the Landau bands which cross the chemical potential at
some value of A.

First, let us apply Eq. (32) to the ideal case with boun-
daries for which the energy diagram of Fig. 2 applies.
When the chemical potential lies between two Landau lev-
els, say, n and n + 1, then the only crossings occur close to
the boundaries. In the absence of an applied electric field
there is no current unless the local values of the Fermi en-
ergy at the two edges differ by AEr. In this case Eq. (32)
gives Iy = —neAEr/h which is the current carried by the
edge states discussed by Halperin. If an electric field is
applied along z with the use of (32) we obtain
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FIG. 7. When curves like those of Fig. 6 are drawn for all
values of 0, the Landau levels are broadened into Landau bands
labeled with the index v, as shown schematically.

e2
Iy=—n"-AV, (33)

where AV is the potential drop across the ribbon and » is
the number of occupied bulk Landau bands. Equation
(33) is a generalization of Eq. (19) to the case in which the
electric field need not be homogeneous. In absence of im-
purities Eq. (33) is valid only for a very restricted range of
values of N once B is fixed (or of B when N is fixed). The
reason is that the chemical potential changes very rapidly
between the Landau levels because the density of edge
states is relatively small. In this case the width of the pla-
teaus described by Eq. (33) would be a surface effect
heavily dependent on the size of the sample.

The situation does not change in an essential way when
the effect of the random potential is considered. In this
case, the diagram of Fig. 2 no longer applies since / is no
longer a good quantum number. However, for a particu-
lar value of 6 we can still draw energy levels as a function
of the orbit center (taken as the average value of z for that
particular value of 6 for the particular eigenstate in ques-
tion). Then, instead of Fig. 2, something like the picture
shown in Fig. 6 results. The wavy lines in Fig. 6 result
from the particular distribution of impurities close to the
value of 6 for which the curves are drawn. If we repeated-
ly draw the equivalent of Fig. 6 for a large number of
values of 0 between 0 and 27, we obtain a picture like that
shown in Fig. 7. Again, if an electric field is applied and
¢ lies between the broadened Landau bands in the bulk,
the value (33) for the Hall current is obtained, in spite of
the presence of not current carrying states.

Strictly speaking, Iy turns out to be slightly smaller
than (33). In the evaluation of the chemical potential
differences we have assumed the value —eAV for each
Landau band. However, it takes the full energy —eAV to
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transfer an electron in the n =0 Landau level across the
ribbon, it takes somewhat less than —eAV to transfer an
electron in a higher level across the ribbon.

We make one final argument which gives somewhat dif-
ferent insight into the mechanism of the Hall quantiza-
tion. Let us once more think of slowly changing, in time,
the trapped flux ¢ by an amount A¢ < exp(iwt).

According to Faraday’s law the rate of change of ¢
gives rise to the induced emf, F= —c”(a¢/6t)a. If we
assume that o,, =0, then the only response the system can
make to this emf is a current flow I, perpendicular to F,

193¢

34
¢ ot (34

I,=o0y

If we integrate this to obtain the charge transfer associated
with a flux change A¢ we find

0= [ Ldi=— %oxym;s . (35)

But due to the fact shown above that for A¢ =¢, each or-
bit center moves exactly one step into the position of its
neighboring orbit center, we know that Q =en, where n is
the number of filled Landau levels. Thus we obtain

en =ny(—c—1)ﬁe;c- , (36)
and we again find o,,=—n (e?/h). The point to be em-

phasized is that, for the topology of the metallic ribbon,
the change in flux is not a gauge transformation. There is
a real emf associated with the rate of change of flux. The
electrons sense this emf and their response leads to a flow
of charge across the sample.26

IV. DISCUSSION

In this paper we have provided a microscopic theory of
the Hall conductance for a two-dimensional electron gas
in the presence of an impurity random potential. Our
main result is Eq. (32) where the value of the Hall current
Iy is related to the electronic spectrum at the Fermi level.

In previous works on quantized Hall conductance, the
results are first derived for free electrons and then qualita-
tive arguments are given why the impurities cannot de-
stroy the quantized nature of the Hall conductivity. No
explicit calculations were done for the disordered system.
In addition, the question on the accuracy of the quantiza-
tion was not satisfactorily addressed.

We have analyzed the electronic level structure in the
presence of impurities. We show explicitly that for the ex-
tended states, when the trapped flux is adiabatically
changed, the spectrum shifts in a way analogous to the
behavior of free electrons and maps into itself when the
change in flux is precisely one quantum. For the localized
states, the change of the flux does not shift the level and
amounts to just a gauge transformation. These are exact
results that enable us to derive the quantized Hall conduc-
tance for electrons in the presence of impurities and the
result can be considered as a nontrivial generalization to
the many-impurity case of Prange’s simple result concern-
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ing the single-impurity problem.!” It is also worth men-
tioning that the analysis of Sec. III provides a firm
theoretical ground for justifying and assessing the limits
of the picture put forward by Laughlin.® Our general ex-
pression (32) for the Hall conductance can also be used in
the case in which a weak periodic substrate potential acts
on the electrons.!! Making use of it one easily finds that if
the Fermi level lies between two of the magnetic subbands
in which each Landau band is split by the periodic sub-
strate potential, the Hall conductance is still an integer
multiple of e?/h in agreement with the conclusions of
Thouless and co-workers.!!

The other major point in our theory is the careful in-
clusion of the edge effects. We find that whenever the en-
ergy of an extended state crosses the local Fermi level £, a
term +e?¢/h is contributed to Iy, the sign being the same
as that of dE,,/0ae. When the Fermi level lies between
two Landau bands, for instance, n and n +1, the only
crossings of this type occur at the edges and I is found to
assume the quantized value —ne?AV/h, AV being the
voltage drop across the sample. As discussed at the end of
Sec. III, however, the local values of { at the two crossing
points at the edges of a given Landau band differs in gen-
eral by an amount smaller than AV. The correction is
found to be dependent on the ratio of the corresponding
skipping-orbit radius to the size of the sample. If our pic-
ture is correct the exactness of the quantization of Iy
must depend upon the specific shape of the potential con-
fining the electron gas in the plane. In the case of a shal-
low confining potential the Hall conductance will not be
quantized as in Eq. (33). In the Appendix we present a
model calculation in which this phenomenon is explicitly
demonstrated.

It must be stressed here that the Hall current is not car-
ried by the edge states only but is typically a bulk
phenomenon. The restriction of Iy to the nature of the
confining boundary potential is the result of a great num-
ber of cancellations of bulk contributions. This situation
is reminiscent of the Landau diamagnetism in which a
similar phenomenon occurs. Finally, as clear from Eq.
(27), temperature effects will also cause I to deviate from
the quantized values.

The Hall conductance will maintain its quantized value
as long as the Fermi level remains in the localized region
of the density of states between two Landau bands. The
width of such plateaus depends, therefore, on the capacity
of the impurity potential to localize the electronic states.
The presence of extended states in the bulk of the sample
is necessary for our model to give a finite value for I;.!
When the Fermi level is within one of the Landau bands,
i.e., within one of the shaded regions of Fig. 7, Eq. (33)
need not be valid because several crossings of the local
chemical potential by extended states can occur, leading
via (32) to a completely different value of Iy;. This situa-
tion is schematically exemplified in Fig. 8 where the Hall
conductivity is plotted against the fractional occupation
number a3 N /rod.

Our approach is based on a single-particle picture and
no explicit reference is made to the electron-electron in-
teraction. It must be understood, however, that the
present theory implicitly contains some of the effects asso-
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FIG. 8. Behavior of the Hall conductivity o,, in the quan-
tized region. The plateau regions correspond to a situation in
which the chemical potential lies between two Landau bands and
localized states are being filled. Corrections associated with
edge effects discussed in the text are neglected here.

ciated with this interaction. In particular, the random
potential-energy term V(z,60) of Eq. (21) can be thought of
as the total effective potential seen by a single quasiparti-
cle including the Hartree-Fock contributions within the
normal state. Many-body effects!>~!7 possibly responsible
for an instability of the normal state'* have been neglected
and are currently under investigation.
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APPENDIX: HALL CONDUCTANCE OF AN IDEAL
TWO-DIMENSIONAL ELECTRON GAS
CONFINED BY A HARMONIC POTENTIAL

In Sec. IIT we have shown that within the single-particle
picture the occurrence of the quantized Hall effect crucial-
ly depends on the shape of the confining potential. If the
latter is too shallow the Hall conductance will not be ex-
pressed by Eq. (33). In particular, for a realistic system,
an edge correction will arise which is of the order of the
ratio of ap to the sample size. For the sake of illustration,
we explicitly demonstrate this phenomenon here, making
use of the exactly solvable model of an ideal system con-
fined by a harmonic potential. Within the geometrical set-
up discussed in the text, we write the following Hamiltoni-
an:

2 2
Pz 1 Po
Hg= — ==
o 2m+2m ro m@e2
d 2
+eE,z +3mQ? == (A1)
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FIG. 9. Schematic energy spectrum of a two-dimensional
electron gas confined on a ribbon by a harmonic potential. The
Landau levels are parabolas. Energy is plotted vs z;=a2l/r,.
Various Landau levels are separated by an energy #@. [Eq.
(AS)]. Crossing points between the parabolas and the local
chemical potential { (dashed line) determines the Hall current Iy
via Eq. (32). “Edge corrections” are very large in this case and
0,y is not quantized.

where we have chosen 4;=0. The last term represents a
confining potential. Hg can be readily solved exactly in
the same way as done for H in Sec. II, as py is still a con-
served quantity. The problem reduces to the following
Schrodinger equation for the z-dependent part of the wave
function:

p:  ma;

2m+ 2

(z—%)*+AE;—E |u(z)=0, (A2)

where the integer / has the same meaning as in Eq. (5) of
the text. In (A2) we have defined

B =(0?+0Y)'% (A3)
2
_ 1 a ’da w
= g+ |— | £ -2, (A4)
T 14H(0/0) {’ o | 2 o
mw? d o, Pop |?
AE =______c— V4 ——+ - i +const ’
Tt |27 Q] o,
(AS)

with z;=a}l/ry. The eigenfunctions and eigenvalues of
Hg can still be classified by making use of the quantum
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numbers n and / as in the free case. We have

1 =
e eMu,(z—3),

1,[’?](2, )=
(A6)

Eft=tid,(n +3)+AE; .

Notice that as {1—0 these equations reduce to Egs. (8).
The spectrum of the system is composed by a series of
parabolic Landau levels separated by an energy #@, as
described in Eqs. (A6). This spectrum is represented in
Fig. 9.
The Hall current carried by each state 1[/{,)1 is easily
evaluated and is given by
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2
Up
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ew,
14+(w, /Q)?

W

Q

nl

Ig= 21—i+ (A7)

2

Notice that in this case even in the absence of an electric
field every state carries a finite current proportional to
z;—d /2. This is in contrast with the picture discussed by
Halperin in which only the eigenstates carry a finite
current in this field as the localizing potential is flat in the
bulk region.?!

Making use of the Eq. (A7), it is straightforward to
evaluate the total Hall current. The result for T~0 K is
given by the general expression Eq. (32) obtained in the
text. Looking at Fig. 9 it is now obvious that Iy is not an
integer multiple of e®/A since the value of the local chemi-
cal potential cannot be approximated by either zero or
eAV as in the case of a sharp confining potential such as,
for instance, the one represented in Fig. 2.
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