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Renoii iialization of the H-point phonon anomaly in molybdenum
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The frequency of the H-point phonon of molybdenum obtained from precise frozen-phonon calcu-
lations differs from the experimental value by 9%. An analysis of this unusually large discrepancy
shows that nonadiabatic effects are small, while effects caused by the many-body renormalization of
electronic states near the Fermi energy are of the same order of magnitude as the discrepancy.

Frozen-phonon calculations provide an accurate first-
principles approach for the study of lattice dynamics. The
calculations (with no adjustable parameters) involve the
precise evaluation of the total electronic energy of a crys-
tal lattice which has been distorted by atomic displace-
ments corresponding to a particular phonon mode. From
the curve of total energy versus lattice displacement one
may obtain the phonon frequency as well as information
about anharmonic effects and lattice instabilities. The
method has been demonstrated for semiconductors and
yields phonon frequencies accurate to within a few per-
cent. ' We have recently applied the method to transi-
tion metals using a self-consistent pseudopotential ap-
proach within the local density formalism to evaluate the
total electronic energy. We obtained excellent agreement
with experiment for the equilibrium structural properties
(e.g., the lattice constant and bulk modulus) of Nb and Mo
and were able to show that at low temperatures the bcc
phase of Zr is unstable with respect to co-phase transfor-
mation. For phonon frequencies we made extensive tests
of precision and convergence and found that, except for
the H-point phonon in Mo, the agreement with experiment
was always within the experimental and theoretical error
limits (-2%). The 9' discrepancy for the Mo H-point
phonon amounts to a 0.5-THz difference in frequency.
This is larger than we would expect from the numerical
precision of the calculations and the quoted experimental
uncertainty. To investigate possible causes for the
discrepancy we have studied the approximations which are
assumed in the frozen-phonon method and have examined
the conditions under which there might be problems with
these approximations. In particular we have estimated the
frequency shifts caused by nonadiabatic effects which we
find to be negligible and many-body renormalization ef-
fects which we find to be significant.

The main differences between the Mo H-point phonon
and the other phonons we have investigated is that this
phonon is associated with a Kohn anomaly arising from
the well-known nesting feature of the energy bands near
the Fermi level. In isoelectronic Cr this same nesting
feature gives rise to a spin-density wave with a wave vec-
tor near H. In Mo, this causes a sharp dip in the phonon

dispersion curves at the H point. Measurements of the
phonon dispersion curves as a function of temperature
show that this dip diminishes at high temperature indicat-
ing the importance of contributions of states near the Fer-
mi level to the phonon frequency at the H point. An
analysis of the distorted band structure corresponding to
the H-point phonon confirms that the anomaly is caused
by large band splittings occurring at the Fermi level. The
frozen-phonon method relies on the adiabatic approxima-
tion which neglects the time dependence of the ionic
motions. Since the adiabatic approximation is suspect
when Fermi-surface nesting features occur in the electron-
ic band structure, ' "we investigated the possible break-
down of this approximation. Another correction we have
studied is the renormalization of electronic states near the
Fermi level by excitation of virtual phonon modes [shown
schematically in Fig. 1(c)]. Before giving our numerical
results we will briefly discuss each of these corrections.

According to standard lattice-dynamical theory, ' the
electronic contribution to the phonon frequency due to the
electron-phonon (e-ph) interaction is given to lowest order
by the real part of the diagram shown in Fig. 1(b). In the
random-phase approximation, this contribution can be
represented in abbreviated notation by

e ph (go&-i)tXogo

where X is the electronic susceptibility, g is the scatter-
ing matrix element between electronic states due to the e-
ph interaction, and @=1—v, X is the dielectric matrix of
the electron system which includes the screening due to
the electrons. Following Refs. 7 and 12, Eq. (1) can be re-
grouped into two terms which can be written as

co""=(g'e ') X'(e 'g') —(g'X) v (Xg')

where U, is the Coulomb interaction between electrons in-
cluding exchange-correlation energy and X=Xo/e '. The
second term may be interpreted as a contribution from
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charge distortions caused by the phonon whereas the first
term represents a band-structure contribution. ' Since we
are interested in the effects of band splitting near the Fer-
mi level, in the following we will concentrate on the first
teITl1.

For most cases, the effect of renormalization on phonon
frequencies is negligible and it is a good approximation to
replace the di'essed electroli propagator 111 Fig. 1(b} by tile
bare propagator. However, when the electronic response
contains a large contribution from electrons whose ener-
gies are in the range of the Debye energy (con) of the Fer-
mi level, the dressing effects due to the phonon cloud be-
come important. ' Taking into account this "renormaliza-
tion" effect on the electrons [Fig. 1(c)], the band-structure
contribution to the phonon self-energy obtained from
Dyson's equation and shown diagramatically in Fig. 1(b)
can be written in terms of temperature Green's function as

(o)
It, Qg

+ II

~-=Tgg ~g'(q, k)
~

G(k —q, e —co }G(k,e) .
k

The real part of n represents the phonon-frequency shift.
q

Following Ref. 14, it is given by

FIG. 1. (a) Dyson equation for the phonon propagator in the

electron-phonon system. The heavy and light wavy lines

represent the bare and normalized phonon propagator, respec-

tively, go is the bare e-ph interaction, and H is the proper pho-

non self-energy. (b) Equations (1) and (2) in diagrammatic form.

The heavy line is the dressed electron propagator, U, and U,

represent the screened and bare Coulomb interaction, respective-

ly, and g' is the screened vertex. (c) Electron propagator ~ith
phonon renormalization.

Ren = J de+ ~g'(q, k)
~

[1m'(k, e)ReGx(k —q, e—m )+ImGa(k —q, e)R Ge(i', @+co )]tanh
2w 2T

(4)

In Eqs. (3) and (4), g' is the screened e-ph matrix element,
and co is the phonon frequency. For electronic states
with energies far from the Fermi level, the replacement of
G~ by the bare propagator has a negligible effect. Howev-
er, when the bare electronic energies, E- and Eo

k k-q'
within the range of coa from the Fermi level, there is a ra-
pid variation of the electron self-energy, X, and the elec-
tron Green's function can be expressed as

i~& Z lg'(q k)
I (f-„—I-„,)

N-+
E —E-k k k —q q

iFsi ~g'{q, k) ~'(f- fo )—
I+~ «E'«-E'« --~-{I+~)

5~0+,
E-+i5 sgn(k —kI}-

k

where E-=Z-E-,0
k k k'

dX(e)
de

k

:—(1+A, )

where A, is the usual e-ph coupling constant.
Substituting Eq. (5) into (4), we find that the Fermi-

surface {FS)contribution to Rerr is given by

I+A,
k k k —q

which is reduced by a factor {1+A,} from the expression
obtained without considering the Ienormalization. The
last step is justified only when the correction for the time
dependence of the ionic motion is small. The summation
in Eq. (6) is over the region of Briliouin zone where E 's

are of the order coa from the Fermi level.
In the frozen-phonon calculations only one phonon

mode is present and the renormalization effect due to the
virtual phonons which give rise to the 1j(1 + A,) factor is
missing. Thus the frozen-phonon calculations overesti-
mate the effect of the Fermi-surface band splitting and
should have a correction given by
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I
g'(k q }

I
'(f'-„—f'-„,-, }

1+ gO go
k k k+q

where (ren) indicates the renormalization effect.
The (1+ )(,) factor has a simple origin. In the frozen-

phonon calculation, the contribution to N' " is given sym-

bolically as —N(0}
~

g'~, where N(0) is the portion of
density of states at the Fermi level affected by band split-
tings. The inclusion of the virtual phonon processes re-

normalize the electronic states near the Fermi level. This
effect will be refiected in the enhancement of the density
of states and the reduction of the scattering matrix ele-

ments. Thus in symbolic form

N(0) ~g'~ (I+A, )N(0)
z ~g'~

(1+k,)'

N(0) fg'[1+3.

where the arrow indicates phonon renormalization.
The correction due to the time dependence of the ionic

motions has previously been investigated in detail and is
given by' '"

hco(adi) = g ~

g'(k, q )
~

(f„f )—
k

1 1

E —+ +co E
k k+q q k k+q

(8)

where (adi) indicates the adiabatic effects.
Since both corrections involve electron states in a very

narrow energy region about the Fermi energy, we can sim-

plify the evaluation of Eqs. (7) and (8) by parametrizing
our first-principles band structure by the velocities and de-
viations froin perfect nesting of the bands at the Fermi
level. We can also obtain the fully screened electron-
phonon matrix elements (e 'g ) for the bands of interest
from the band splittings in our frozen-phonon calcula-
tions. Using these procedures, we estimated the contribu-
tion from states near the Fermi level and the corrections
that must be applied to the frozen-phonon results for the
Mo H-point phonon (see Appendix A for details). We
find that the he@(adi) correction is very small (amounting
to less than 2% of the Fermi-surface contribution to the
Kohn anomaly) even though the nesting occurs in a rela-
tively large portion of the Brillouin zone. However, the
correction bc@(ren) is not negligible. If we include only
contributions from bands within five coD of the Fermi lev-

el, we obtain a depression of the H-phonon frequency by
0.8 THz. ' According to our theory above, this contribu-
tion is overestimated in the frozen-phonon calculation,
and inclusion of phonon renormalization effects will cause
a reduction in the size of the dip by a factor of 1/(1 + A, )

[for Mo, A, —=0.47]. ' Taking this correction into account,
we find that the frequency of the H phonon as obtained
from the frozen-phonon calculations should be increased
by 0.25+0.1 THz. The renormalization correction is in
the right direction to account for the discrepancy between
our original theoretical result of 5.0+0.1 THz and the ex-

) f -(1 fo- )—
~e-Ph y ~gs(q k) ~2 i, k 2, k+q

q E ~ —+ ~ +co~O 0
k 1k 2k+q q

—QP~
0
2k 1k —q q

(Al)

The adiabatic approximation corresponds to setting
co-=0 in Eq. (Bl).

q
Since we are only interested in a narrow energy range

around the Fermi level, we can assume linear bands in the
z direction:

and

E -=—Vi(k, —kf),1, k

(A2)

E -= Vi(ks —kf —Q),
s

where the linear velocities V's and the nesting wave vector
Q are functions of k„and kz. The z direction is along the

q vector which is equal to (0,0,2n /a) for the 8-point pho-
non.

perimental result of 5.5+0.1 THz. ' Our method of es-
timating the renormalization effect is of course approxi-
mate and only indicates the magnitude and direction of
the effect. The actual pieces of the Fermi surface respon-
sible for the Kohn anomaly may have a A, value which
differs from the average, and more precise calculations
would treat the electron-phonon matrix elements explicitly
rather than assuming a constant value.

Since phonon renormalization affects only energy bands
in a very narrow energy range near the Fermi level, its ef-
fect on the phonon frequency can be neglected except in
the ease of a phonon anomaly where there is an appreci-
able contribution from electronic states right at the Fermi
level. For this case renormalization is a significant effect
which is not included in frozen-phonon calculations. It is
interesting to note that there are no corresponding effects
of renormalization on the phonon linewidth (see Appendix
B for details}.
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APPENDIX A

In this appendix, we will give the details on the evalua-
tion of Eqs. (7) and (8). For the Mo H-point phonon, the
phonon anomaly is caused by the nesting bands (labeled as
1 and 2 in the following) near the Fermi level. The
Fermi-surface contribution to the phonon frequency
without renormalization can be rewritten as
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The e-ph matrix elements can be obtained from the
magnitude of the band splittings in the frozen-phonon cal-
culation. For an atomic displacement of -2% of the lat-
tice constant, we obtained splittings around the Fermi lev-
el ranging from 0.55 to 0.65 CV. Therefore, it is a good
approximation to assume constant matrix elements over

the Fermi surface to simplify the calculation. Also we
found that the linear velocities V's are essentially indepen-
dent of k„and k„ in the region of interest, thus constant
velocities have been used. Integration over k, in Eq. (Al)
g1VCS

,.p, Ig'I' II ( Vt+ V2)'(~, )

V, + V, 4~3 " ' [V((q —Q)+~, l[Vz(q —Q) —~, l

Q =a+b(k„—k„) (A4)

where a is a function of k»; k» and b are constant.
Substituting Eq. (A4) into (A3), we can do the integra-

tion over k„analytically; it is then easy to perform the
remaining integral over k~ numerically.

~, in Eq. (A3) represents the region where E, and E2
are of the order of several coD from the Fermi level. How-
ever, the exact choice of ~, is not critical since the con-
tribution to the integral goes as 1n(~, ) which changes
slowly with hX, . The first-principles band calculations
indicate that the nesting vector Q can be well
parametrized over the region of interest by the expression

APPENDIX 8

In this appendix the effect on phonon linewidth caused
by thc rcnormalization of thc clcctlonlc states near thc
Fermi level are derived with the methods of many-body
theory.

The phonon linewidth due to t.-ph interaction is ex-
pressed as

co ImII (g}= lirn
g-+0

In analogy to the RCII already discussed, the imaginary
q

part is given by'

ImII (g)= g Ig'(q, k) I'(f-„f-„)5(E—-„E0-„—g—(1+l{)) for g&coD .
k

If we introduce a factor

1= I de5(e E-„)f d—e'5(e' E- )—
into the integrand of Eq. (82), and define

[N(0)] I'(e, s')=—g Ig'(q, k) I'5(e E-„)—
X5(e' —E-„), (83}

(compared with the other (e,e'} dependent factors remain-
ing in the dude' integrals . There ore we can replace
I2(e e') byI2(00}-=&I2q & Thus Eq. (84) b omm

lim Im II (g) = [N(0)]2{I }
g 0 q ]+X

X f de[f'(e) —f (s+g(1+A, )}]

[N(0)] (I- }(1+A,g'

then Eq. (82) can be written as

ImII (g)= I dsde'[N(0)]'II(e, e') I'

X [f'(e)—f'( ')]e

X5(e—e' —g(1+1,)) . (84)

=~[N(0)]'(I' }g.
Substituting (85) into (Bl), the phonon linewidth is then
given by

5 =me [N(0)]'(I- },

For /~0, I (&,&') in Eq. (84) varies slowly with e and e'
which is identical to the expression obtained without con-
sidering the renormalization effect. '
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