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The resistance of two-dimensional electron systems such as thin disordered films shows deviations

from Boltzmann theory, which are caused by quantum corrections and are called "weak localiza-

tion. " Theoretically, weak localization is originated by the Langer-Neal graph in the Kubo formal-

ism. In the present paper this graph is translated into a transparent physical picture. It represents

an interference experiment with conduction electrons split into pairs of waves interfering in the

backscattering direction. The intensity of the interference (integrated over the time) can be easily

measured by the resistance of the film. A simple derivation for this quantum correction to the resis-

tance is given. A magnetic field introduces a magnetic phase shift in the electronic wave function

and suppresses the interference after a "flight" time proportional to 1/H. Therefore, the application

of a magnetic field allows observation of the fate of the electron as a function of time. Spin-orbit

coupling rotates the spin of the electrons and yields an observable destructive interference, thereby

demonstrating the change of sign of the electron-spin function by rotation. Magnetic impurities de-

stroy the coherence of the phase. Therefore, with magnetoresistance measurements one can deter-

mine the inelastic lifetime, the spin-orbit coupling time, and the magnetic scattering time of the con-

duction electrons.

I. INTRODUCTION k,
'
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The resistance of a disordered two-dimensional electron
system like a thin film shows interesting anomalies at low

temperature. This was first pointed out by Abrahams
et al. ,

' who concluded that a two-dimensional conductor
with a finite concentration of defects becomes an insulator
at T=0 K. Anderson et al. and Gor'kov et al. calculat-
ed that at low but finite temperature the conductance is

not constant but has a temperature-dependent correction

hL =Lppp lnT+const, Lpp e2I2tr A. ——
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Here p is of the order of unity (see below) and L~=&0
kQ ' is a conductance which depends only on universal
constants. Altshuler et al. showed that the weak localiza-
tion is sensitive to a magnetic field and gives a negative
magnetoresistance in a field range where usual orbital ef-
fects are negligible, i.e., the product co,rp«1 (co, is the
cyclotron frequency and 7 p indicates the elastic lifetime of
the conduction electrons). Hikami et al. ' found that the
sign of the correction A&. is changed when the spin-orbit
coupling is sufficiently strong. A further consequence is a
change in the sign of the magnetoresistance. Prior to the
theoretical magnetoresistance calculations, Kawaguchi
et al. found such an anomalous behavior in Si inversion
layers, and the author in thin Pd films. In the latter ex-
periment the destructive influence of paramagnetic impur-
ities was observed. Meanwhile the theoretical predictions
for the magnetoresistance of weak localization have been
investigated experimentally for MOS inversion layers,
and for thin films. ' In particular, experiments on
quench-condensed metal films show surprising good
agreement with the theory. ' However, weak localiza-

FIG. 1. (a) Fan diagram, introduced by Langer and Neal,
which allows calculations of quantum corrections to the conduc-

tance within the Kubo formalism. (b) Physical interpretation of
the fan diagram in (a). The electron in the eigenstate of momen-

tum k is scattered via two parallel series of intermediate scatter-~
p t

ing states: k~k 1 ~k 2~. . . ~k „ 1~k „=—k and
ttk~k l ~k 2 ~ ~k „ i~k „=—k into the state —k.

The change of momentum is gl, g2, . . . , g„ l, g„ for the first

series and g„,g„ l, . . . , g2, gl for the second one. The amp i-

tudes in the final state —k are identical, A'=A" =A, and inter-

fere constructively, yielding an echo in backscattering direction
which decays as 1/t in two dimensions. Only for times longer
than the inelastic lifetime w; the coherence is lost and the echo
disappears.
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tion is more than just a new effect in the resistance of
low-dimensional systems which can be well described by
theory. It offers a new method to measure characteristic
times of the conduction electrons such as inelastic life-

time, spin-orbit coupling time, and magnetic scattering
time. The physical reason is that weak localization corre-

sponds to a time-of-flight experiment with conduction
electrons.

The correction to the "classical" (Boltzmann) resistance
is calculated in the Kubo formalism and given by the so-
called fan diagram [see Fig. 1(a)]. This fan diagram was

first considered by Langer and Neal more than 15 years

ago and it is intensively studied for two-dimensional sys-
tems in connection with superconducting fluctuations and
the Maki-Thomson graph. ' The translation of this
electron-hole propagator in terms of a physical picture is
not obvious. I want to show in this paper that the fan dia-

gram in the Kubo formalism has a very transparent mean-

ing. It describes a process which is quite identical with a
common interference experiment with particle waves. The
(integrated) interference intensity is measured by an ex-

treinely simple "counter, " the resistance of the system. By
the application of a magnetic field the interference is

strongly modified since it changes the phase of the elec-
tronic wave function. As we will see below the magnetic
field allows observation of the scattering of the electrons
as a function of time. We will come to these conclusions

by a one-to-one translation of the fan diagram into a phys-
ical picture.

II. THE ECHO OF A SCATTERED
CONDUCTION ELECTRON

tered into the state —k; for example, after n scattering
events. This scattering sequence,

k~k')~k 2~ . ~k „' )~k „'=—k, (2a)

is drawn in Fig. 1(b) in the k space. The momentum

transfer is gi, g2, . . . , g„. There is an equal probability
for the electron k to be scattered in n steps from the state

k into —k via the sequence

k~k )'~k 2' —+ ~k „" ]~k „"=—k, (2b)

where the momentum transfer is g„,g„ i, . . . , gi. This
complementary scattering series has the same changes of
momentum in opposite sequence. If the final state is —k,
then the intermediate states for both scattering processes
lie symmetric to the origin. The important point is that

the amplitude in the final state —k is the same for both
scattering sequences. This is caused essentially by the pro-
portionality of the final amplitude to the product of the
matrix elements, i.e., g V(g; )—where V(g;) is the Fourier
component of the scattering potential —and this product is
the same for both sequences. Secondly, the transition
probability is identical because of the symmetry of the two
complementary processes. In addition, the energy of the
corresponding intermediate states is the same so that the
time-dependent phase changes (Et lfi) are identical.

Since the final amplitudes A' and A" are phase coherent
and equal, A'=A" =A, the total intensity is

At low temperature one has to distinguish between two
different lifetimes of the conduction electrons, the elastic
lifetime Tp and the inelastic lifetime r;. Here rp is the life-
time of the electron in an eigenstate of momentum,
whereas r; is the lifetime in an eigenstate of energy. Al-
ready at 4 K, the latter can exceed the former by several
orders of magnitude. As a consequence of this, an elec-
tron in state k can be scattered by the impurities without
losing its phase coherence. Owing to the statistj. cal distri-
bution of the impurities, the multiple scattered waves
form a chaotic pattern. The usual Boltzmann theory
neglects interferences between the scattered partial waves
and assumes that the momentum of the electron wave

disappears exponentially after the time rp [or r„(transport
mean free path). In the following consideration we as-
sume s scattering so that rp and arre equal. ] This is,
however, not quite correct. There is a coherent superposi-
tion of the scattered electron wave which results in back-
scattering of the electron wave and lasts as long as the
coherence of the scattered wave is not destroyed.

The correction to the conductance is given by the fan
diagram [Fig. 1(a)]. The corresponding scattering process
is described in Fig. 1(b) in k space. We consider at the

time t =0 an electron of momentum k which has the
wave function exp(ikr). The electron k is scattered after
the time 'Tp into a state k'~, after 270 into the state k2, etc.
There is a finite probability that the electron will be scat-
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If the two amplitudes were not coherent then the total
scattering intensity of the two complementary sequences
would only be 2

~

A
~

2. This means that the scattering in-

tensity into the state —k is by 2 ~A
~

larger than in the

case of incoherent scattering. This additional scattering
intensity exists only in the backscattering direction. For
other states at the Fermi surface, sufficiently far away

from —k, there is only an incoherent superposition of
every two sequences (with momentum transfer in the op-
posite sequence) and therefore as an average the scattering
intensity per sequence with n scattering processes is only
/A /'.

The fan diagram in Fig. 1(a) gives just the product
A "A", i.e., the interference intensity. It consists of two

parts, the upper electron propagator and the lower hole

propagator. The upper one yields the amplitude of the

electron k which is scattered into the state —k via the
scattering sequence ('). If we invert the direction of the ar-

rows for the lower propagator then it yields the amplitude

of the electron k which is scattered into the state —k via

the scattering sequence ("). The reversed direction of the
arrows (i.e., it is a hole propagator) yields the complex
conjugate of the amplitude.

At high temperature the scattering processes are partial-
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FIG. 2. Contribution of the electron state k to the momentum
as a function of time. The original state and its momentum de-

cay exponentially within the time wo (s scattering assumed). But

an echo with the momentum —k is formed which depends on
time as 1/t. This echo reduces the contribution of the electron
to the current and yields a correction to the resistance which is

proportional to ln(~;. /~0).

ly inelastic. As a consequence the amplitudes A' and A"
lose their phase coherence (after the time r;) and the inten-
sity of the backscattered value is only 2 ~A ~, i.e., the
coherent backscattering disappears after the time w;. In
Fig. 2 the contribution of the (original) electron k to the

momentum is plotted as a function of the time. (k(t)) is
the expectation value of the momentum. The original
momentum decays within the elastic lifetime. At later
times a momentum in the opposite direction is formed;
this decreases inversely proportional to the time. One ob-

tains an echo of the original state k in the opposite direc-
tion, which vanishes only when the two processes lose
their coherence. Obviously the integrated momentum of
the electron k decreases with increasing r;. In the follow-
ing we treat this scattering semiquantitively.

After the elastic lifetime ~o the electron k is scattered
into Z intermediate states. The amplitude in the inter-

i5l i5
mediate state ki is (I/O Z}e ' where e ' is essentially

given by V(gi )/
~
V(gi ) ~. The intensity in the next inter-

mediate state k2 at the time 2' is Z . After n scattering

processes the intensity in the final state —k is Z " and
the amplitude Z "~ exp(i+5„) The s.econd scattering
series yields the same amplitude. The cross product or in-

terference term is A "A"+A'A"*=2Z ". Now we have
to sum over all intermediate states. This yields the factor
—,Z" '. ( —, occurs because the two complementary series

appear twice in the sum. ) Therefore, the coherent addi-
tional backscattering intensity is Z '. It is independent of
the number of intermediate scattering states n and equal to
the scattering intensity from k into k i. This intensity is,
of course, completely calculated in evaluating the diagram
with the appropriate rules. However, one can easily esti-
mate this intensity in a rather direct and less formal
manner.

For the calculation of Z we consider the scattering from
the state k into the state k i. This state is an intermediate
state for the scattering sequence which does not have to

conserve the energy (sometimes called the virtual scatter-
ing process). Since the lifetime in an eigenstate of momen-
tum is ro the intermediate state can lie within M/(rp) of
the Fermi energy (because of the uncertainty principle).
This corresponds to a smearing of the Fermi sphere by
rr/1 (I indicates the mean free path of the conduction elec-

trons}. Therefore, the available area in k space is
2rrkFrr/I =2m kz/I and Z is obtained by multiplication

with the density of states in k space, i.e., (2~)
The coherent backscattering is not restricted to the ex-

act state —k; one has a small spot around the state —k
which contributes. The determination of the area of this
spot can be obtained by a heuristic consideration. In Ap-
pendix A another derivation of I«h is given which consid-
ers the loss of phase coherence and corresponds directly to
the evaluation of the fan diagram. During the time
t =nr p the electron has propagated by diffusion in space
only over a distance of X=(Dna)' Here. D is the dif-
fusion constant which has {in two dimensions} the form
D =Uzro/2 Cohe.rent interference is only possible in this
area. This weakens the requirement that the final state is
—k. Neighboring states with —k+ q remain coherent in
this restricted area as long as Xq &1, i.e., q &1/Dna
This corresponds to about rr(Dna) '/(2rr) states. The
spot of coherent final states has a finite area but shrinks
with increasing time. Therefore, the portion of coherent
backscattering is given by

I„h [rr/(Dt)—]—(2rr kF/I)

=rp/rrkplt =A/2rrEFt . (4)

In the presence of an external electrical field the conduc-
tion electrons contribute to the current. However, the
echo, i.e., the coherent backscattering reduces the current
and therefore the conductance. A pulse of the electric
field generates a short current (for the time Tp in the direc-
tion of the electric field and then a reversed current which
decays as 1/t. The dc conductance is obtained by in-
tegrating the momentum over time. For the normal con-
tribution this yields kro and for the echo
[ro/(irkFI)]in(r;/re}. Therefore, the electron in the state k
contributes to momentum

kro[ 1 —1/(KkFI)lil(r /&0)] (5)

=ne ro/m —(e /2n fi)ln(r;/re),

with n =2rrkF/(2rr) . This correction to the conductance
was introduced by Anderson et al. and Gor'kov et al.

The important consequence of the above consideration
is that the conduction electrons perform a typical interfer-

The contribution of the electron k to the current is re-
duced by the factor in the brackets and the conductance is
decreased by the same factor as follows:

L =(ne ro/m)[1 —(I/rrkzl)ln(r;/ro)]
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ence experiment. The (incoming) wave k is split into two

complementary waves k'& and k i'. The two waves pro-
pagate individually, experience changes in phase, spin-

orientation, etc., and are finally unified in the state —k
where they interfere. The intensity of the interference is
simply measured by the resistance. In the situation which
has been discussed above the interference is constructive in
the time interval from vp to 7;. It is only slightly more

complicated than a usual interference experiment because
one has a large number of pairs of complementary waves.

Now we consider the motion of the conduction electron
in real space. Assume that a conduction electron is inject-
ed into the system at the origin at the time t =0. Since
the conduction electron has a very short mean free path its
wave experiences a multiple scattering by the defects.
This corresponds to a diffusion from impurity to impu

'

ty. The classical diffusion equation in two dimensi
yields, for the probability of finding the electron at
time t at the position r,

20-

1.5-

0.5-

p (r, t) =( I/4nDt)exp[ r /(4—Dt)] .

The chance to return to the origin is given by I/(4rrD
In Fig. 3 a possible path is drawn for the diffusion of
electron which returns to the origin (in the sequence
0~1~2~ . . ~0). For classical diffusion one has an
identical probability for the electron to propagate on the
same path in the opposite direction (0~1'~2'

~0}. The two probabilities add up and contribute
to the total probability of 1/4m. Dt. Since the electron has
wavelike character one has in reality to consider two par-
tial waves of the electron which propagate in opposite
directions on the indicated path. Returned to the origin,
however, their amplitudes add (instead of their intensities).
It is the same physical mechanism which has been dis-
cussed in the precedin section. This picture has been
used by Altshuler et al. in studying the electric field ef-
fect on weak localization. The amplitudes A' and A" are
equal because their partial waves propagated on the same

path in opposite directions, and as long as the system is
time invariant, the two partial waves arrive at the origin in
phase and with the same amplitude. Therefore, the inten-
sity or probability is twice as large as in the classical dif-
fusion problem, i.e., I/2rrDt. For the diffusion to any
other point except the origin the different partial waves
are generally incoherent and only their intensities add.
(There is only a small reduction to compensate the in-
creased intensity at the origin. ) In Fig. 4 the classical and
the quantum-diffusion probabilities are qualitatively plot-
ted. The (dashed) peak in quantum diffusion at the origin
describes a tendency to remain at or return to the origin.
Since it was thought of as a precursor of localization this
quantum diffusion has been called weak localization. (A
localized electron would remain close to the origin. } This
name is, however, questionable because in the presence of
large spin-orbit coupling —as we discuss below —the quan-
tum diffusion yields a reduced probability (dotted peak) to
return to the origin, an effect one might call weak antilo-
calization.

ri- -2 -1 0 1 2
ons Irl

the ~at
FIG. 4. Probability distribution of a diffusing electron which

starts at r =0 at the time t =0. In quantum diffusion {dashed
peak) the probability to return to the origin is twice as large as in

classical diffusion (solid curve). Large spin-orbit coupling
reduces the probability by a factor of 2 {dotted peak) and yields a

an
weak antilocalization.

III. TIME-OF-FLIGHT EXPERIMENT
BY A MAGNETIC FIELD

FIG. 3. Diffusion path of the conduction electron in the
disordered system. The electron propagates in both directions
{solid and dashed lines). In the case of quantum diffusion the
probability to return to the origin is twice as large as in classical
diffusion since the amplitudes add coherently.

One of the interesting possibilities for an interference
experiment is to shift the relative phase of the two in-
terfering waves. For charged particles this can be easily
done by an external magnetic field. In a magnetic field,
however, the phase coherence of the two partial waves is
weakened or destroyed. When the two partial waves sur-
round an area F containing the magnetic flux P, then the
relative change of the two phases is (2e/A')((i. The factor
of 2 arises because the two partial waves surround the area
twice. (This is sometimes interpreted as if a particle with
twice the electron charge surrounds the area in analogy to
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HE 0 H=Ho'0

t=to

the double charge 2e in superconductivity. )

Since the diffusion is statistical one has for a given dif-
fusion time t a whole range of enclosed areas for the dif-
ferent diffusion paths. Altshuler et al. suggested per-
forming such an "interference experiment" with a cylin-
drical film in a magnetic field parallel to the cylinder axis.
Then the magnetic phase shift between the complementary
waves is always a multiple of 2eg/"' (P indicates the flux
in the area of the cylinder). Sharvin and Sharvin showed
in an elegant experiment that then the resistance oscillates
with a flux period of P=h/(2e). However, for a thin film
in a perpendicular magnetic field the pairs of partial
waves enclose areas between —2Dt and 2Dt. When the
largest phase shift exceeds 1, the interference is construc-
tive and destructive as well and the average cancels. This
happens roughly after the time tH ——"/4eDH. This means
essentially that the conductance correction in the field H,
i.e., ~~. (H), yields the coherent backscattering intensity
integrated from rp to tH,

H«.(H) J IcohCk Lapin(i—H/rp) (&)
1p

It is important to mention that only the amplitudes of the
"scattered" waves interfere. There is no interference be-
tween the original wave function and its scattered com-
ponent considered in this theory, and at these finite tem-
peratures the coherence length, i.e., the length over which
a wave packet can be defined at finite temperature and

which is of the order of AUF/k&T, is much smaller than
the inelastic mean free path uzv;. (Otherwise, one is no
longer in the region of weak localization. )

The quantitative calculation yields a quite simple result.
The application of a magnetic field causes a destructive
interference in the final state —k. But in the vicinity of
—k for the states —k+q the interference is constructive
if q lies on Landau-type circles with (fiq)/4m
=fico, (n+ —,'), where co, is the cyclotron frequency. The
allowed states as a function of q are shown in Fig. 5. (The
electron states on the "Landau circles" are not free-
electron states in a magnetic field because they are cen-
tered around —k. Only formally they correspond to hy-
pothetical particles with twice the electron mass. ) Since,
on the other hand, the width of the coherently backscat-
tered spot shrinks with time as 1/~Dt (due to the dif-
fusion in real space) the coherent backscattering dies out
when the spot lies completely inside of the first Landau
circle with the radius v'2eH/k This occurs for fields of
the order of H =A/4eDt.

This means that the magnetic field allows a time-of-
flight experiment. If a magnetic field H is applied, the
contribution of coherent backscattering is integrated in the
time interval between Tp and t" fil4eDH. =If one reduces
the field from the value H' to the value H" and measures
the change of resistance this yields the contribution of the
coherent backscattering in the time interval tH and tH-.
In a very strong field the coherent interference is
suppressed. A reduction of the field integrates the
coherent backscattering and increases the resistance. If tH

exceeds the inelastic lifetime of the conducting electrons,
i.e., H &H'="/4eDr;, then the coherence is lost anyway
and magnetoresistance disappears. Since the magnetic
field introduces a time tH into the electron system all
characteristic times r„of the electrons can be expressed in
terms of magnetic fields H„:

where r„H„=fil4eD. In a thin film this is given by
fiepN/4which is of the order of 10 ' —10 'sTs(p is the
resistivity of the film and N is the density of electron
states for both spin directions). The exact formula for the
magnetoconductance is (in the absence of spin-orbit cou-

pling and magnetic scattering)

H;
L(H) L(0)= — —ln

2n fi

H;

2 H

t=16to
FIG. 5. Backscattering spot (close to the state —k) without a

magnetic field (left-hand side) and in a finite magnetic field H.
The spot has a finite area n./Dt which shrinks with time. In a
magnetic field the coherence condition is modified and only k
states which lie on "Landau"-type circles allow coherent back-
scattering. For large times the two interference conditions ex-
clude each other because the spot is inside of the Landau circle
and the coherent backscattering dies at a time tH ——Ri4eDH.
The resistance integrates the coherent backscattering intensity in
the time interval from 1"p to tH.

The motion of the conduction electron in real space
gives a simple criterion for the conditions under which a
thin film is two dimensional. This has been discussed in
detail by Altshuler and Aronov, ' Berggren, and Ova-
dyahu et al. The important requirement for the quan-
tum interference is that the electron wave function is
coherent. Therefore, a system is two dimensional with
respect to weak localization when this coherence volume
has a two-dimensional shape. Without a magnetic field
the electron diffuses during its inelastic lifetime over a dis-
tance of (Dr;)'~. If the thickness of the film is much less
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than this "Thouless length" then the region of coherence
is two dimensional. For films thinner than 100 A thick-
ness and at temperatures under 20 K this requirement is in
general very well fulfilled. However, in strong magnetic
fields the distance of coherent diffusion (DtH)' is much
less and therefore one easily moves into the three-
dimensional range. Therefore, one expects in high mag-
netic fields deviations from the two-dimensional formula

[one has to include the sheets in k space for k, =vm. !d (d
indicates the film thickness)].

IV. SPIN-ORBIT COUPLING

R (o]
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FIG. 6. Magnetoresistance of a pure Mg film at different
temperatures (upper part). A superposition of,~ atomic layer

of Au (statistically) changes the behavior completely. The Au
introduces a rather pronounced spin-orbit coupling which rotates
the spins of the complementary scattered waves. This changes
the interference from constructive to destructive.

One of the most interesting questions in weak localiza-
tion is the influence of spin-orbit coupling. Hikami et al.
and Maekawa and Fukuyama predicted that in the pres-
ence of strong spin-orbit coupling a logarithmic decrease
of the resistance occurs with decreasing temperature. As a
consequence the magnetoresistance should change sign as
well. This prediction is contrary to the picture of localiza-
tion and was one of the most exciting questions raised at
the Sixteenth International Conference on Low Tempera-
ture Physics. The author confirmed the prediction by
Hikami et al. For this purpose a thin Mg film has been
covered by a,~ monolayer of Au. Figure 6 demonstrates
the unique influence of such a small coverage of Au on
the weak localization. The magnetoresistance of the pure
Mg film is plotted in the upper part of the figure while the
lower part of the figure shows the strong change due to a
coverage of,~ monolayer of Au. In Ref. 25 the influence

of the spin-orbit coupling has been quantitatively evaluat-
ed. As a consequence weak localization provides a new
and very sensitive method to measure the spin-orbit cou-
pling directly, i.e., with a substructure and not only by a
broadening of a resonance. The natural question is, why
does weak localization change to weak antilocalization in
the presence of spin-orbit coupling?

V. INTERFERENCE OF ROTATED SPINS

It is a consequence of quantum theory and proved by a
rather sophisticated neutron experiment that spin- —,

'
parti-

cles have to be rotated by 4m to be transferred into the
identical state. A rotation by 2m reverses the sign of the
spin state. Weak antilocalization gives another experimen-
tal proof of this fact. In the presence of spin-orbit cou-
pling the spin of a scattered electron is slightly rotated
during each scattering event. During the whole scattering
series () the spin orientation diffuses into a final state s'
which can be obtained by a rotation T of the original spin
state s (s'= Ts) It is. straightforward to show that the fin-
ite spin state of the complementary scattering series (") is
s"=T 's. Without the spin rotation the interference of
the two partial waves is constructive (in the absence of an
external field). In the presence of spin-orbit coupling the
interference becomes destructive if the relative rotation of
s' and s" is 2m. It can be shown that for strong spin-orbit
coupling the destructive part exceeds the constructive
one. This means that the backscattering is reduced
below the statistical one. This corresponds to an echo in
the forward direction and an increase of the conductance.
The inagnetoresistance curve in Fig. 6 for 1% of a mono-
layer of Au on top of Mg at 4.4 K can be interpreted as
follows. In a high magnetic field where tH &v„ the spin
states of the complementary states are almost unchanged
and one obtains the usual negative magnetoresistance. For
tH &r (and tH &r;) the interference is destructive and
shows the opposite sign. For tH -~ it changes sign. The
resistance maximum in a finite field corresponds to a rela-
tive rotation of s' and s" by the angle n(in an ave. rage).

VI. MAGNETIC SCATTERING

Another interesting application of weak localization is
the determination of magnetic scattering by magnetic ions.
The magnetic ion introduces an interaction with a conduc-
tion electron JSs, where S and s are the ion and electron
spins. The magnetic ions scatter the two complementary
waves differently and destroy their coherence after the
magnetic scattering time ~, . Therefore, weak localization
is blocked at low temperature (where r; & ~, ) and the mag-
netoresistance curves remain broad (because only for
tH &7g or H & AI4eDr, the magnetic field can overcome
the destructive influence of the magnetic scattering). Such
measurements yield the temperature dependence of v;.
For,~ atomic layer of Fe on Mg the magnetic scattering
time was determined and found to be temperature indepen-
dent

I believe that one of the attractive future applications of
weak localization will be the investigation of interacting
magnetic systems like Kondo impurities, spin fluctuations,
valence mixing, etc., where a temperature dependence of
the magnetic scattering time yields an insight into the
physics of the phenomena. Generally weak localization
allows the measui'ement of characteristic electronic times
which are otherwise difficult, expensive (such as neutron
scattering), or impossible.
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APPENDIX A: THE AREA OF THE
BACKSCATTERING SPOT

%'e calculate the coherent backscattering intensity into

the state —k+ q which is reached after n scattering pro-
cesses with the transfer of momentum g; where

g g; = —2k F+ q. The sum of the momenta of the initial

and final state is +q. The same applies for each pair of
scattering states in Fig. 1(b) which lies opposite to the
center, i.e.,

q=ki+k„" i ——k2+k„" 2
——

The corresponding intermediate states differ not only in
momentum but also in energy (which must not be con-
served). The energy difference is irtqvF and since the phase
rotates with Etlfi one obtains during the time 7 p a phase
difference between the two complementary waves which is

qvp70. The important fact is that the different intermedi-
ate states have independent directions of momentum.
Therefore, the phase differences are independent in sign
and value. This means that only the square of the phase
shifts adds. Therefore, after the n scattering processes one
obtains phase differences between the complementary
waves whose width is

(hy) =n(qvi;) =n( —,
'

)(vt;q) =nDrp. (Al)

In two dimensions the average over (vFq) is (v~q) /2 [and
in three dimensions (vFq) l3 but the diffusion constant ab-
sorbs the factor of the dimension]. The neighboring states
of —k contribute less to the coherent backscattering be-
cause they lose the phase coherence with increasing n and
q. Their contribution is proportional to exp( —Dq t) since
t =neap. The area of the spot for the coherent backscatter-
ing is obtained by integration over q. In two dimensions
this yields trIDt.
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