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Effect of interplane coupling in quasi-two-dimensional systems
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There are many divergent susceptibilities in two-dimensional systems that are not associated with phase
transitions. %e propose that when stacks of planes of these two-dimensional systems are coupled together,
these divergences indicate genuine phase transitions. Applications to melting, commensurate-
incommensurate transitions, and superconductivity are pointed out.

T, = To [1 + To( m„m~ ) ~ /2 rr nb j
' + 0 ( rt ) (2)

Divergent susceptibilities quite often indicate the onset of
an instability. However, this is not necessarily so. In fact,
there are many two-dimensional systems whose correlation
function shows divergence at certain temperatures and yet
no phase transitions. For example, the structure factor
S, = (p,p, ) for a two-dimensional "solid" is known to ex-

~G 12hibit a power-law divergence (q —G) G, "where G is a

reciprocal-lattice vector,

gG ——T~ G~'(3p, +X)/4rrp(2@+. ) ),

and p, , X are Lame constants. Yet no phase transition oc-
curs at a temperature To determined by qq =2 because the
divergence is not intensive, i.e. , S/N 0 as N ~, where
A'is the size of the system. In fact, the Kosterlitz-Thouless
(KT) transition occurs when q& (2. We call this a pseu-
doinstability. There are many quasi-two-dimensional sys-
tems that consist of planes of coupled two-dimensional sys-
tems. These occur, for example, in the graphite intercala-
tion compounds, in heterojunctions, etc. We propose here
that the two-dimensional (2D) pseudoinstabilities become
genuine three-dimensional instabilities when the two-
dimensional systems are stacked up to form a quasi-two-
dimensional system.

This has some rather amusing consequences. For exam-
ple, for coupled planes of atoms, the 3D "melting" transi-
tion will occur at q&;=2, whereas the Kosterlitz-Thouless

1

transition occurs at q& ———,
f'or a hexagonal lattice. The

melting transition that one sees in quasi-two-dimensional
systems probably is then not related to the dislocation un-
binding or grain boundary picture at all. '

There are other interesting applications of this idea to
other situations such as the commensurate-incommensurate
transition, superconductivity, and so on. For example,
whereas it is quite difficult to observe 2D melting in a
quasi-2D system, it is possible to observe 2D
commensurate-incommensurate transitions. We propose
that there is a new phase transition in which one goes from
a 3D incommensurate phase to a 2D incommensurate phase
for a high enough temperature in that case. A recent exper-
iment by Kortan et al. sees only 2D incommensurate
behavior in bromine intercalated graphite, whereas Fleming
et al. found 3D incommensurate behavior in 2H-TaSe2,
suggesting that both possibilities exist, consistent with our
picture. However, the transition from 3D to 2D behavior in

a single material has not been observed.
We also obtained the reduction of the superconducting

transition temperature ( T, ) from the mean-field (To) tem-
perature of planes, viz. ,

Note that the component of the wave vector perpendicular
to the planes is zero. The response (p r;) of an array of
atoms is, in turn, related to the effective field through the
two-dimensional response function X

~~ ( q ):

(p g) =X~~( —G)h, rr(
—G) (4)

Let us assume that (pr;) = (p &;) for the sake of simplicity.
We then get

(pG) = hext( G) (1 2 V( G)Xli( G) I = h ~(G)X(G)

where X(G) is the three-dimensional response function. It
is obvious that X( G) becomes infinite when

1 =2 V(G) x~~(G) (6)

So far, everything looks the same as in any ordinary mean-
field calculation. However, X~~(G) becomes very big at the
pseudoinstability temperature To Hence we expect Eq. (.6)
to be satisfied at a temperature above To. Furthermore, in
the limit that V(G) 0, the three-dimensional ordering
temperature approaches To. Previous investigation shows
that

X( G ) = ( y ko/2 ) '2 rr/( rt r;
—2 ) T

where kD is the Debye wave vector. y=1.78 is the ex-
ponential of Euler's constant. The usual argument about
the absence of a phase transition for the 2D system at To
comes from the fact that X~~(g, To) —X, where n ( 1 and
Ã is the total number of atoms in a plane. Even though o.

is less than 1, p~~(G, TO) is still very large so that, unless
V( G) is of the order of W, Eq. (4) will be satisfied for a

Here q is the interplane coupling, n the electron density,
and m„and m~ the effective masses in the plane. This may
be of relevance to recent experiments of superconductivity
in di-tetramethyltetraselenafulvalium salts (TMTSF)2X
(X=PF6, C104, etc.). For example, it may be possible to
relate the pressure dependence of m„and rn~ to that of T,.
We shall first focus on the melting transition.

Our result is obtained by treating the interplane interac-
tion in a mean-field manner. Calculations using this have
been carried out for coupled chains previously. Let us
briefly recapitulate the basic idea here. Suppose there is an
interplane interaction of the form V, p,p, , where p~ is the
qth Fourier transform of the density. The effective field h, qf

acting on a plane is then the sum of the external and the
internal field, viz. ,

h, rr(G) = h, „,(G) +2 V(p r;)
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TABLE I. Transition temperatures of coupled chains and planes of n-component spins. z is the number of
nearest neighbors; J&(J~~) is the intralayer (interlayer) coupling.

Chains Planes

Ising n =I

n~3

T, = 2J~~/In( J ))/Jq)
' 1/2z l J.

nJ
II

T, %0 for J& =0

~c ~KT

T, —J
)~ ([(n 2)/47T] ln(J ~(/J~) +const}

temperature larger than To.
We next explore the consequences of Eq. (6). The

Kosterlitz-Thouless temperature T~~ is given by'

Tsr=ao p(p+)i)/4rr(2~+5). For the electron system, X

is much larger than p, so that

Txr =ao p/4e' (8)

From Eqs. (7), (6), and (I), we get

To ——8rrG 'p, (2p. +X)/(3p, +h. )

In general, p, is a function of temperature so that the p, in

Eq. (9) need not be identical to that in Eq. (8).
We note that the core energy of dislocations are larger for

coupled planes. Hence they are more difficult to form. The
renormalization contribution due to dislocations to the shear
modulus is much reduced. For an estimate of the relative
magnitude of To and Tq~ we shall assume that the elastic
constants are the same. Then, for a hexagonal lattice,

To/T sr = 24/(1+ (r ) (3 —o ),
where a. is the Poisson ratio X/(X+2@,). For Coulomb
systms a = I, so that To/'Tttr=6. A general estimate of cr

is 0.6. Then To/Txr=6. 25. It is possible to get an estimate
of the transition temperature of coupled planes of electrons
by use of the estimate p, = 4rre'(7m ) 'i'/137ea0. Then
T, = To+ y 'e'3/2~rrl, where i is the separation between
the layers. This dependence on n and I may be detectable
experimentally.

It is possible to test the mean-field method by applying it

to systems where the transition temperature has been calcu-
lated by other means. In Table I we collected some results
obtained with this approximation on the functional depen-
dence of the transition temperatures of coupled layers and
chains of n-component spins with interplane (intraplane)
coupling J~ (J ~~). Some of these results are old, some are
new. For a planar collection of Ising chains, our result
agrees with the exact solution of the 2D Ising model in the
limit J~~ && J~. Also, for the case of coupled planes of
spins with q & 3, our result agrees with the renormalization
group calculation of Kosterlitz and Santos' and Ito. ' Note
also that it is always impossible to observe the KT transition
for two component spins if the planes are coupled.

Let us now turn our attention to commensurate-
incommensurate phase transitions. X has been discussed by
Chui and Weeks and by Saito. ' Treating the interplane
coupling in mean field we have constructed the phase dia-
gram in Fig. 1.
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FIG. 1. Phase diagram of commensurate-incommensurate transi-

tions in quasi-two-dimensional systems. The x axis represents driv-

ing force towards incommensurability.

incommensurate phase; the y axis, the temperature. The
curve ABC is taken from the previous work. The line BD is

the new proposal here. Below BD one has a 3D incom-
mensurate phase, whereas above it one has a 2D incom-
mensurate phase. As one crosses BC, the commensurate-
incommensurate transition is 3D-like. This has been dis-
cussed by several authors" for pure systems. In real sys-
tems this will probably be masked by other effects such as
impurity pinning" or effects due to the electronic driving
forces. The 2D commensurate-incommensurate behavior
marked by the crossed curve AB depends on the commen-
surability of the system as is previously discussed. ' It
would be interesting to test this phase diagram experimen-
tally.

Finally, let us turn our attention to low-dimensional su-
perconductivity. The order parameter in that case can be
written as P = Ae' . It is the fluctuation of the phase 8 that
destroys superconductivity in low-dimensional systems. If
we ignore the fluctuation of the amplitude A then the fluc-
tuation of the phase can be described by the XY model.
Now Txr-A'h'm/2a'm', where m' is the effective mass of
the electrons.

According to the Landau-Ginsburg therory of supercon-
ductivity we get A'= n (1 —T/To), where n is the electron
planar density. From this, the reduction in T, can be ob-
tained as

T, = To/(I+ Tom'/2nrrh )

Note that 2nh'/m' is of the order of EF Hence the reduc-.
tion in T, is quite small. This may be why previous studies
of quasi-2D superconductivity, which basically ignores the
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2D fluctuations, is successful. It is possible to generalize
the above result to planes with anisotropic masses m„and
m~. One gets Eq. (2). This formula may be applicable to
(TMTSF)2PF6 which may actually be two-dimensional. " If
so, the pressure dependence of m„and m~ might provide a

clue for the pressure dependence of the superconductivity in
this compound.
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