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A novel analysis of EPR measurements on polyacetylene is demonstrated by the analysis of the conven-
tional line shape in time domain. Quantitative results of the hyperfine-coupling constant, the on-chain dif-

fusion rate, and the off-chain hopping rate were extracted by nonlinear curve fitting to the time-domain

signals, and they are consistent with the soliton model of polyacetylene.

I. INTRODUCTION II. THEORY AND EXPERIMENTS

The dynamics of paramagnetic defects in undoped trans-

polyacetylene has been studied extensively by magnetic res-
onance spectroscopies. ' ' Experiments indicate that the im-

purities are neutral in charge and are highly mobile along
the chain. These observations have been suggested as evi-
dence for the existence of topological neutral solitons (the
kinks in bond-alternation domain wall). 8

In the conventional line-shape studies in frequency
domain, "' only qualitative analysis on the dimensionality
of the diffusive process was usually made. However, quan-
titative results of the hyperfine coupling constant, the on-
chain diffusion rate, and the off-chain hopping rate were
obtained by other means such as the electron-spin echo
(ESE)6 and nuclear-spin-relaxation measurements. ' Be-
cause of the spectrometer deadtime, most ESE measure-
ments were performed only on deuterated samples which
have a long-phase memory time. Although the hyperfine
constant can be measured on cis-polyacetylene, 4 the value
for trans-type samples could be made only at very low tem-
peratures so that the solitons are almost localized. In this
Brief Report, we present a novel analysis of EPR measure-
ments on both trans- and cis-polyacetylene. By nonlinear
curve fitting to the time-domain signals, we were able to ex-
tract these parameters. Although the same information is

present in both time-domain and frequency-domain signals,
time-domain analysis is more direct and efficient,
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~here D is the on-chain diffusion constant and y is the off-
chain hopping rate. The effective diffusion rate o. is scaled
by a factor 1/N', and the effective second moment of the
hyperfine field Ace' is also scaled by 1/Jvr2N. By use of the
correlation function stated in Eq. (1) and Kubo's formula
for the time-domain signal" "S(t), it can be shown that

The time-domain signals were a Fourier transformation of
absorption spectra which were first obtained by integrating
the conventional derivative spectra. Standard EPR mea-
surements were made on stretched films of undoped trans-

and cis-polyacetylene (CH)„, with about 80'/o C-H chains
preferentially oriented parallel to magnetic field. The field-
domain derivative spectra were recorded for a 100-G sweep
field range, with the use of 0.4-G field modulation and 0.2-
mW microwave power.

If one assumes a one-dimensional diffusive motion of the
soliton, a Gaussian distribution of spin delocalization
[(v'2+N) 'exp( —n'/2N') at the nth monomer unit] with
half-width Xt, and a Lorentzian hopping process between
chains, "0 it can be shown that the correlation function
g(r) is given by

g ( r) = ( Ao))'e 1 (1)
v'1 + n7.

and

1/2

lnS(t) = Jvr/uy e~ ~(1+ut) —1/2 erf y(1+ nt)
A

—erf(v'y u/) + (e ~'v'1 + et —1) (4)
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where erf(x) is the error function.
Although the above expression is rather complicated,

some of its limits are simple and particularly interesting:
(I) For u, 7 ((1/r, S(r) ~exp( —, A—cu'r') is characterized

by a Gaussian form. (2) For u » 7 » 1/t,

S(t)~ exp[ —(des)2v'rr/uyt]

has a simple exponential decay form. (3) For y » u, 1/t,

S(r) ~ exp( —hcu't/y)

is again characterized by an exponential decay form. (4)
For u » I/r » y,

S(t) ~ exp[ —(hem)'(4/3') r' ']

has a t ' dependence in the exponent which is a characteris-
tic associated with one-dimensional diffusive processes.

The exponential behavior in the long-time limit has been
observed experimentally for a wide range of temperatures
from 8 K to room temperature. As an example illustrated
in Fig. 1(a), the time-domain signal at 75 K shows an ex-

ponential decay tail for t «20 nsec. The data in the tail
portion were least-squares fitted by C exp( —A ra) with
three variable parameters A, B, and C. The fitting con-
verges to the best fit with B=1.00+0.05, which corre-
sponds to an exponential decay. The exponential decay tail
indicates the existence of the off-chain hopping processes. '

From the time when the data begins to show exponential
decay behavior, the off-chain hopping rate is estimated to
be roughly about 5 x 10' s '. The value agrees to previous
nuclear-relaxation measurements on T] and T]~.'

The short-time behavior (r ~35 nsec) of the same data
as shown in Fig. 1(b) is evidently nonexponential. The data
were found to be best fitted by 1.44exp( —1.5x IO"r").
The characteristic t ' dependence is strong evidence of a
one-dimensional diffusive process.

Generally, the time-domain signal at higher temperatures
is almost exponential. Although the exponential rate
(7r/uy)'~'(Acu)' can be determined accurately, the curve
fitting of data at high temperature using the complete ex-
pression in Eq. (4) does not converge to a unique fit. How-

ever, the low-temperature data which are significantly
nonexponential can be fitted uniquely. It is found that Ace

does not change significantly (less than 10%), and y varies

by a small factor. Recent NMR results have also indicated a
small temperature dependence of y. ' By holding both Ace

and y fixed at 9.4x10' and 6.2X10 s ', respectively, the
diffusion rate n at the three temperatures 8, 35, and 48 K
are found to be 1.8 x 10', 5.9 x 10, and 9.4 x 10 s

respectively, as shown in Fig. 2.
The effective hyperfine field for cis-(CH)„ is obtained by

fitting the time-domain signal of the sample at 8 K by

exp[ —, (I),co—)'r'] It . is found that Eau=9. 8 x10' s

which is very close to the value for rrans-(CH)„samples.
One possible interpretation is that solitons have a similar
spin distribution for both types of structure although the
solitons in cis-(CH)„are not very mobile.

If one takes aH/2rr =31 G, '4 the hyperfine constant for
an unpaired spin localized to a single C-H unit, the half-
width of soliton in the Gaussian model is estimated to be
2.3. In the Su-Schrieffer-Heeger (SSH) model the hyper-
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FIG. 1. (a) Time-domain signal at 75 K and its best fit for the
tail portion. The data show an exponential decay tail for t ) 20 ns
which indicates an off-chain hopping rate of about 5&10 s '. (b)
Short-time behavior of the time-domain signal at 75 K and its best
f"it. The characteristic t dependence in the exponent is due to the
one-dimensional diffusion process.
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FIG. 2. Time-domain signals at three low temperatures and their
best fits. y is the off-chain hopping rate and n is the on-chain dif-
fusion rate. The observed hyperfine field dice is smaller than that of
localized spin and serves as evidence for spin delocalization.
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fine constant at the nth monomer unit is given by

( I/A') aH sech'( n/W) cos'(n m/2)

with N about 7. If one omits the odd-number sites which
have zero-spin density, the envelope of the spin-density dis-
tribution by the SSH model is very close to a Gaussian form
exp( —n'/2%'), with /v'about 5. Interpretation of the effec-
tive hyperfine field in Eq. (2) is model dependent. It can be
shown that, by assuming the spin distribution function in
the SSH model, (t) co)' = 21(I + I ) aH2/9N Th.e resulting
delocalization factor N =5.5, which is close to the predic-
tion of the SSH model. With use of the same values of 4~
and y at low temperature, the effective diffusion rate for
the trans (CH)-„sample at room temperature is estimated to
be about 1.5 x 10' s '. This implies an anisotropy ratio of
diffusion rate at room temperature about 240. If the scaling
factor W' (% =2.3 for the Gaussian model) is taken into ac-
count, the actual anisotropy ratio of the diffusion constant is
then about 1300.

were analyzed in the time domain. It is found that the
time-domain signal generally exhibits an exponential tail
which could be the consequence of interchain hopping. The
one-dimensional diffusive process is consistent with the ob-
served exp( —at't') dependence in short-time behavior.
The effective hyperfine fields Ace for both types of trans-
and cis (C-H)„were found to be very close. It may indicate
a similar spin distribution for both types of structures. If
one assumes a Gaussian distribution of spin density for the
soliton, it is found that the spin is delocalized over five
sites. However, if one used the spin-density function of the
SSH model, spin delocalization over 11 sites is found. The
value is closer to the prediction by the model. Measure-
ments of the temperature dependence of the diffusion con-
stant now in progress should serve as a test for predictions
of the %ada-Schrieffer" or Maki' theories.
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