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Mean-field solution of a spherical madel for Heisenberg spins with complicated coupling
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Mean-field solution of a spherical model for complicated magnetic systems is presented.
The magnetic systems include those which favor dipolar, quadrupolar, and biaxial ordering.

We employ a Lagrange multiplier method to calculate the partition functions of the systems

and hence the expressions for the ordering parameters. The phase transitions of the model

systems are studied and the results are compared with those obtained by earlier approxima-

tion methods.

I. INTRODUCTION

It is well known that a lattice of Heisenberg spins
coupled with the usual bilinear interaction and vari-
ous higher-degree interactions disposes a consider-
ably complicated mathematical problem which is
not easily solvable. However, many fruitful at-
tempts were made in the last decade to employ dif-
ferent approximation methods for the study of the
thermodynamic properties of the systems. ' ' For
example, we mention two main approaches, one due
to the molecular-field approximation2' (MFA) and
other due to the Green-function approximation
(GFA). MFA overestimates the important aspect of
spin correlations and in GFA one has to allow the
arbitrariness of the decoupling schemes. In addition
to these intrinsic faults, these methods lead to com-
plicated expressions for the order parameters. Such
limitations were also noticed in other methods. In
the literature no attempt was made to deal with the
above problems from the viewpoint of the
spherical-model transcription. "

The purpose of the present paper is to study the
statistical mechanical properties of a spherical
model for Heisenberg spins coupled by various types
of interactions. ' ' ' The original spin system is

replaced by a spherical model in which the spins are
assumed to be distributed over the surface of a
hypersphere in 3N-dimensional space, N being the
total number of spins in the original system. The
spherical constraint prescribed by such an approxi-
mation is complicated and it is very difficult to ob-
tain an exact solution. A mean-field approximation
is, therefore, employed along with a Lagrange multi-
plier method for the simplification of the partition
function of the systems. The method was first em-

ployed by Vertogen and Van der Meyer' in connec-
tion with an analytical study of Meyer and

Lubensky's model' for nematic and smectic liquid
crystal phases. The method provides a very simple
way of arriving at the desired expressions for dif-
ferent ordering parameters. The expressions are
rather simple and easily computable.

The plan of the paper is as follows: Sec. II
presents a brief description of the spherical model
and the method of calculating the partition function.
In Sec. III a uniaxial Heisenberg ferromagnet with
dipolar and quadrupolar exchange is studied. The
expressions for the ordering parameters and the
specific heat are studied. Section IV deals with a
uniaxial ferromagnet with dipolar, quadrupolar, and
three-atom interactions. In Sec. V we study the
phase transitions in rare earths which can be
described by a Sivardiere Hamiltonian. The paper
ends with some concluding remarks in Sec. VI.

II. SPHERICAL MODEL

The spherical model for an Ising system was first
proposed and solved by Berlin and Kac." In this
model the original spin system is replaced by a con-
figuration in which the spins are assumed to be ar-
ranged on the surface of a hypersphere in 2N-
dimensional space, N being the total number of
spins in the original spin pattern. In this model, the
spins are coupled by the Ising interaction and the
equation of the hypersphere is

Si+S2+ ' ' +tv =N

where S; represents the z component of the ith spin.
Equation (1) is called the spherical constraint for the
Ising model.

If the spins are coupled by a Heisenberg interac-
tion we have to consider the three components S,
Sy, and S;, for each spin at the lattice site i The.
spin components are connected by the usual relation
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2 2 2S; +S»+S,,=a, (2)

3N

g s,'= (3)

The radius of the hypersphere is now &Na which
depends on the spin quantum number unlike the
sphere described by Eq. (1). Equation (3) is the
spherical constraint for the spherical spin configura-
tion of the Heisenberg system.

Let H be the Hamiltonian for the Heisenberg
spins coupled by various types of desirable interac-
tions. The partition function may thus be calculated
from the following expression:

N

Qx(H)= f d S;exp( SH)—
i=1

where a =S(S+1),S being the spin quantum num-
r.
Equation (2) describes a sphere of radius a'~ in

three-dimensional Cartesian space. Since there are
N spins in total, we can conceive a hypersphere in
3N-dimensional space described by

Since the forms of H considered in the present paper
are complicated it is very difficult to obtain the ex-
act solution of the problem even within the spherical
approximation.

Following Vertogen and Van der Meyer' we em-

ploy a mean-field approximation for the simplifica-
tion of the Hamiltonian. Such an approximation in-
volves the following decoupling of the operator
product:

AB =A (B ) +B(A ) —(A ) (B), (5)

where the fluctuations A —(A ) and B —(B) are ig-
nored. With the use of Eq. (5) the products like
S;„Sj„and other higher-order terms appearing in 8
are decoupled. In this way the original Hamiltonian
H is replaced by a mean-field Hamiltonian H

With the use of the above mean-field Hamiltoni-
an H. and the spherical constraint described by Eq
(3) one can simplify Eq. (4) by the Lagrange multi-
plier method. One gets

N 3N
QN(H )= f d'S;exp SH —S2 g S—He-

i=1 i=1

The above expression is utilized to get the free ener-

gy f of the system governed by any particular Ham-
iltonian. The parameter A, is determined or elim-
inated (as is desired) from the equations obtained
from the equilibrium conditions

az
= ' ae

where 8 stands for the ordering parameters of the
system.

III. UNIAXIAL FERROMAGNET WITH DIPOLAR
AND BIQUADRATIC INTERACTIONS

We consider the Hamiltonian'

H =DQS;, Jg (S; S ) —K g (—S; S )

(ij ) (ij )

where D is the single-ion anisotropy, and J and K
are the nearest-neighbor bilinear and biquadratic ex-
change constants. The summation runs over
nearest-neighbor pairs i and j.

With the use of Eq. (5) we get the following ex-
pression for the mean-field Hamiltonian H~:

H~ = g g tN(JMg+KQg)
i=1 g

—[2JM S; +(2KQ —D5, )S; ]j,

where

g=x,y, z, M, =(S, ), Q, =(S,') .

Equation (4) therefore takes the following form:

r

Q~(H )=exp A,PNa N13+(JMg+KQ—s)
e

N

X II f d S;exp —g[S(A.+D5, —2KQ )S —2SJM S; ]
i=1 l,g

(10)
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The free energy of the configuration is thus

I' = ——1nQ~(H )

N—hz +N Q (JMg +KQg )

1 1

p(g —', Ka) 2p(A, +D —2KQ, )

JM,
(A, +D —2KQ, }' (15)

1——ln
N

Jl dS dS~ydS;, P„PrP, A, +D —2KQ,

K
P(A, +D —2KQ, )

(16)

2KJ M,
=O

{A,+D —2KQ, )'

Pg exp——[AgSs —(Bg+D5g, )Sg ],
Ag ——2PJMg,

We rewrite Eqs. (16) and (17) in the following forms:

Bg ——P(k —2KQg ) .

With the use of the integral

x exp — x —Ax = m
' exp

1—
A, +D —2KQ,

2E Q, —a— 1

P(A, —, Ka )—

(18)

(19)

we get the following expression for free energy per
spm:

In writing Eq. (19) we have utilized Eq. (15).
Order parameters and phase transitions The s. olu-

tion of Eqs. (18) and (19) is

M, =O

f= —Aa+ g(JM; +KQ; )

1

2P ~ P(A, —2KQ;)
L

J M

A, —2KQ;
'

We shall study the following special cases.

(13)

1

P(A, ——,Ka)
(21)

which may be regarded as the paramagnetic solu-
tion.

Now it may be noted that depending on the value
of A, one may classify following different phases: (i)
M'&0, Q, &0, (ii) M, =O, Q, &0, and (iii) M, =O,
Q, =0. This classification of phases has to be modi-
fied in view of the fact that from Eq. (17) one gets

A. Case I: M, =Mr =O„Q„=Qr =a /3

The expression for free energy per spin becomes

1 ir

P P(A, +D —2EQ, )

JM
A, +D —2KQ,

The equilibrium conditions

df af df
()

Bg
'

BM, BQg

f= —M +JM, +KQ, ——ln
P P(A, —,Ka)—

(22)

which demands that M, and Q, cannot be zero
simultaneously at any finite temperature.

It may also be noted that one cannot use

Q, —a— 1
(23)

P(A, ——,Ka)

as the quadrupolar order parameter since this is al-
ways zero in the present case in view of Eq. (19).
We choose the quadrupolar order parameter
q =Q, —(a/3) which, as we shall see later, is con-
sistent with Eq. (21) at T„ the paramagnetic transi-
tion temperature.

With the use of Eqs. (17}—(19) we get after sim-
plifications

yield the following equations:
t =( —,a —9) 1 ——+2aq

2
(24)
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1.0

O.s

0
0 I

0. 5 1.0

0
0 &oW t i) p

a tM= q+ ———
g 2

' 1/2

(25)

where a=K/J.
The above two equations completely describe the

thermal evolution of the quadrupolar ordering

).0

FIG. 1. Variation of quadrupolar ordering parameter q
2 3

with temperature for D/J=O and a=0.25, 0.4, 0.5,
3 4,

and 1. Dotted vertical line represents the points of
minimum free energy. Solutions beyond this temperature

are unstable. Hence for a & 0.5 the discontinuities are ap-

preciable and lead to first-order QP transition. Magnitude

of the jurnp at a=1 is approximately equal to 0.83 which

is, however, less than that obtained from rigorous Green-

function theory (Ref. 7).

FIG. 3. Typical q-t curves showing the nonexistence of
an ordered phase at any nonzero temperature.

parameters for a spin-1 Heisenberg system with di-

polar and quadrupolar interactions. These equations
are much simpler than those obtained by earlier au-
thors using different approximation methods. These
are even much simpler than those obtained by
MFA. At the same time we shall see below that
the above equations are able to reproduce the essen-
tial physical features of the problem.

2
For D/J=O we get t, =

3
a for q=O at which

M, also vanishes. Hence q may be treated as the
quadrupolar ordering parameter and consequently
we can classify the following phases: (i) ferromag-
netic phase (F), M, =0, q&0, (ii) quadrupolar phase
(Q), M, =O, q&0, and (iii) paramagnetic phase (P),
M, =O, q=O.

Also at t, = —,a both the parameters M, and q
vanish. This implies that the quadrupolar phase
does not appear as an intermediate phase. This re-
sult agrees with that obtained by Nauciel-Bloch
et al.

However, if D/J&0 we get FQ and QP transition
temperatures, respectively, as

2

tq ——
3 a, (26)

0.& D
t = —a 1 ——

C 3
(27)

0
0 l0.6

FIG. 2. Variation of q against t for D/J = —and
1 3a= 2, 4, and 1. Both discontinuous and continuous

transitions occur at t, = —, depending on the values of a.

For an intermediate quadrupolar phase one must
have t, & tq and this is possible if D/J & 0.

One can investigate the detail nature of variation
of M, and q with t from Eqs. (24) and (25). The re-
sults are shown in Figs. l —5 for various values of
D/J and a. Depending on the values of D/J and a
the system undergoes both first- and second-order
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FIG. 4. Variation of M with temperature for D/J=O,
a=0.25, 0.5, 3 4

and 1. Dotted line represents the
2 3

points of minimum free energy. Both continuous and

discontinuous transitions occur at t, = —, depending on the

value of a. Solutions beyond t, are unstable.
2.k T O. H

'

transitions at t, . It may be noted that in all these
figures we have considered positive values of D/J.
We find that as D/J increases t, decreases and that
for D/J=1, t, vanishes. It implies that for this
value of D/J the system does not exhibit any or-
dered phase.

Specific heat We sha. ll study the temperature

FIG. 6. Variation of specific heat with temperature for
D/J=l, S=l for the case M, =M»=0, Q„=Q»=0,
M, &0, and Q, &0.

variation of the specific heat for the case
M, =M» =Q„=Q„=O, D=O. The free energy can
be written as

= ——, 1nm + —, ln2+ —, in/+ lny
8

(2&)

P =J/2k' T, y =X/2J .

The results for the specific heat are to be calculat-
ed from the expression

, (f/kiiT) . (29)

0.5

FIG. 5. Case for D/J=1 showing the absence of any
dipolar phase at nonzero temperature.

The variation of CH with P is shown in Fig. 6. The
qualitative nature of variation of specific heat with
temperature resembles the result of the MFA ap-
plied to the Heisenberg model of the original spin
configuration.

B. Case II: M„=M» =M, =0, Q, =0, Q &Q»

This is a simple case of biaxial ordering. The free
energy in this case is given by
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In combination of Eq. (31) above two equations re-
sult in the following simple expression for the biax-
ial ordering parameter, P =Q„—Q»,

1/2

P= a—2 (38)

The variation of P with temperature is shown in Fig.
7. A second-order phase transition occurs at a tem-
perature Ttt given by

1.0

Ttt ——(K/kti )a' .

For a spin-1 lattice, Tti ——4K/kti.

(39)

C. Case III: Q +Q»+Q, &0, M, =M»=M, =O

This is the case of both biaxial and quadrupolar
ordering. The equilibrium conditions yield

g [2P(A, +D5;, —2KQ;)) '=a,

0,
0 2, .0 1/P K I.o

Q;=[2P(A, +D5;, —2KQ;)] ', i =x,y, z

From Eq. (41) we get

(41)

FIG. 7. Thermal variation of the biaxial ordering
parameter P for S=1. Second-order transition occurs at
Tg ——4(K/kg ).

Q-'Q =2K (42)

With the use of this in Eq. (41) we get, for a spin-1
case,

1

2P ~ P(X—2KQ;)
t =8(q+ —, ) —, —q+

D
(43)

l =X,g, Z (30)

g [2P(A, —2KQ;)] '=a (31)

Q;=[2P(A, —2KQ;)] ', i =x,y .

Equations (32) give

1 =K [P(A, —2KQ„)(A,—2KQ» ) ]

Q„+Q» A, /2K, ——

Q Q»
——I/4PK,

(32)

(33)

(34)

(35)

The equilibrium conditions give us the following
equations:

and the expression for P becomes

P = [( —, q) t]'~— — (44)

2
where q =Q, ——, is the quadrupolar order parame-
ter for a spin-1 system. We can distinguish three
different phases: the mixed phase (P&0, q&0), the
biaxial phase (P&0, q=O), and the paramagnetic
phase (P=O, q=0). When a second-order transition
from biaxial to paramagnetic phase occurs, the tem-
perature for such a transition is simply given by

16
t, = —,. For the second-order transition from the
mixed phase to the biaxial phase the temperature is
given by the following expression:

which lead to the following expressions for Q and
3D

t =—1+
4Z

(45)

1 A, 1

4K 2 4K' PK

1 A, 1

4K 2 4K' PK

' 1/2

(36)

(37)

Thus for two such successive second-order phase
transitions one should have D/K&0 because for
such possibility t, inust always be greater than tq

The temperature variation of q and P with tem-
perature is shown in Fig. 8 for various values of
D/K. The figure shows soine peculiar characteris-
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1W
h]~

quadrupolar phase or the biaxial phase as the inter-
mediate one, depending on specific situations.

IV. UNIAXIAL FERROMAGNET
WITH DIPOLAR, BIQUADRATIC,

AND THREE-ATOM INTERACTIONS

We consider a system of spins governed by the
following Hamiltonian:

H =H;1+H,p, , (46)

where H,J is given by Eq. (8) and H;Jk is the three-
atom interaction given by

HJk ——R g (S;.SJ)(SJ Sk) .
i,j,k

(47)

FIG. 8. Thermal variation of q and P for spin-1 system
for various values of D/E.

ties of variation. We may now sum up the role
played by the uniaxial anisotropy. We find that in
its absence the system undergoes only one second-
order phase transition, but its presence triggers two
second-order phase transitions, with either the

I

This term was first introduced by Uryu and Fried-
berg' to explain the properties of a complex acetate
of chromium. This was subsequently studied by
Kobayashi et al. ,

' Munro and Girardeau, ~o

Akasmit and Westwansky, ' ' and Iwashita and
Uryu '

The expression for the free energy per spin for the
above Hamiltonian in the spherical model is ob-
tained in the following form using the procedure
adopted in the preceding pages:

f= —la+ g (JM; +KQ; +RM; Q;) — g lnI n l[p(A, +D5;, —2KQ; —RM; )] I

M; (J+RQ, )'

A+D5;, 2KQ; —RM—;
(48)

We restrict ourselves to the special case
M, =M„=O, Q„=Q„=O. The equilibrium condi-
tions are

M, v2
1JM'= —RM, Q, —a-

A+u ' '
p

(54)

(49) Q, —a— + —,(R /K)M, 1—
A, +u

=0,

(5O)

where

(55)

and the stability conditions are

u =D —2K' —RMg, U =J+RQ, .

Equations (54) and (55) are satisfied by

2 )0, M, =O, Q, =a— (56)

d'f d'f "r)f
gM2 gQ,

' BM,BQ,

Equations (50) and (51) lead to

(53)

(A, +u) '= JU '=2pQ, ,

which is obtained from Eqs. (49) and (54).

(57)

This may be regarded as the paramagnetic solution
and under this situation,
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The quadrupolar solution as stated in Eq. (56)
reduces to the paramagnetic solution when
A, =A,,=3/(2a P, ) such that the quadrupolar order
parameter q =Q —(a /3) =0, P, being equal to
1/kz T, with T, as the temperature at which M, =0,
q=0.

The quadrupolar ordering is stable when

[2J+2RQ, R—p '(1+i,} ' —2U (A, +u) '] &0,

(58)

11=——y Q, —a—
pA,

Q, —a — + —,(y/a)M, 1—2

M,'J'
PA, 2',

=0

(65)

(66)

[2K —2K P '(A+u) ] &0,

which implies

t & t, =(2Q, /a)(1+yg, )',
t &t, =4Q,'.

(59)

(60)

The above equations yield, after simplifications,

2ay (2—a 3t—y )y —2ay +—y+ay =0,3 2 2 3t
2

(68)

A. Case I: 2v/(A. +u}=1,U /(A, u}=J

We find that M, &0, Q, =a —(I/pA, ) satisfy Eqs.
(54) and (55). With the use of Eq. (49) we get, under
this situation,

M, =—(tg —t),
2

where t& is the second-order quadrupolar transition
temperature given by

tg ——
a (64)

provided a&Q, y&0. At this temperature Q, =1/y.

B. Case II: J~&E, J&&R

We can study the thermal variation of Q, with the
aid of Eq. (57); we get

Q, —Q, (a +b}+ , Q, (t+—4ab) (at/4)—=0,
(62)

where b =D/2K, t =ktt T/K. It may be noted that
this equation is independent of three-atom interac-
tion. The ferromagnetic phase is, however, strongly
influenced by the three-atom interaction. Unfor-
tunately, it is very complicated to solve for M, from
the coupled equations. However, we may study the
following interesting special cases.

Q. =(1/y) [(1 yt—)V 1+—ya] (69)

2a(y —1)

y'(2y —1)

where t =(pJ) ', y=R/J, a&0, y&0, andy =J/A, .
Equation (70) shows that M, vanishes at t& given

ay
3(y' ——, )

(71)

C. Case III

We have studied case I under the special cir-
cumstances for which M, &0, Q, =a —I/pk satisfy
the equilibrium conditions. In general, this should
not be the case. It may be noted from Eq. (55) that
if M, &Q one does not have Q, =a —1/PA, . Thus
different phases appearing in the system should be
redefined as follows: ferromagnetic phase —M, &0,
Q,&a —1/PA, , quadrupolar phase —M, =0,
Q,&a —I/pl„and paramagnetic phase —M, =0,
Q, =a/3. We have seen in case II that M, vanishes
at y= 1. So we can write Eq. (55) as

It shows that y must be greater than —,. A tricriti-
cal point appears at

2a
3( —1)

We can approximate U J, A, + u A, for D =0.
Thus Eqs. (49), (54), and (55) give

Q, =a ty +(y/2a)M, ,—

where t = 1/pJ. Using Eq. (54) we get

(72)

( 4/4~~)M4+M [(y~/~)+(y /z)(a —y) —(yi/ay}+y (a ty}]+[[1+y(—a ty)] (I/y)+—2&(a ——tY)] =0

(73)

With the use of Eq. (49) we again get (up to the M, term)
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(y /a)(1+y)M, + [1+y(a —ty)] M, +t [(2/y) —4a(a ty)] —(a —ty)[(2/y) —4a(a —ty)]2=0 .

(74)

Taking the limit M, ~O in Eqs. (73) and (74) we get
the transition temperature

2LP /P
4L—P

(82)

2 2atg=a+ —+
y

which shows that as y increases t~ decreases.

V. BLUME-CAPEL HAMILTONIAN

(75) Eliminating A, we get, after simplifications,

P P(a— 3t) —t a——=0, (83)

We shall consider a typical Blume-Capel (BC)
Hamiltonian' to study the phase transitions from
the standpoint of the present spherical model. It
may be remarked that such a Hamiltonian was also
studied by Sivardiere' using the MFA. The Hamil-
tonian is

Hac = bQ Sz —gL—Jpipq (76)

where P; =S;„—S;».
The spherical inodel gives the following expres-

sion for free energy per spin

f= —Aa+LP
3 3

—(1/2 )ln
(A, 4L P )(A.—2&—LP)

(77)

where P=(S;„—S,») describes the orthorhombic
distortion, and

where t =1/2pL. If we take the limit P~O in the
above equation we get the following expression for a
second-order transition temperature t~

4a
9

(84)

For computation of Eq. (83) we write it in the form
of a quadratic in t whose solution consistent with
E . (84) is

t = —,(a —3P )+ —,a(a +3P )'

Equation (85) has been computed and the results are
shown in Fig. 9.

We see from the figure that a second-order transi-
tion from a biaxial phase to the paramagnetic phase
occurs at a temperature t~ given by Eq. (84). The
question of a first order phase transition does not
arise.

L. =L, (0)= gL,, (78)

with A, , a, and P having the same meaning as before.
The equilibrium conditions are

df A, /P 1/2P
4L 2p2 g 2+Lp

(79)

df 4LP!P
A2 4L P—bL/P2&&P—

(80)

1.0

The above equations are not satisfied for P=O un-
less b, =O. Hence there is no transition for 6&0.
On the other hand, we find that the MFA drives a
phase transition even for 5&0.

For b, =0, Eqs. (79) and (80) become
0

0

a —1 A /P
2' g2 4L2p2 ' (81) FIG. 9. Biaxial ordering in Blume-Capel model for

S=1 and b, =O.
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VI. SIVARDIERE HAMILTONIAN
FOR RARE EARTHS

To develop the molecular-field theory of succes-
sive second-order phase transitions in several rare-

earth vanadates, arsenates, and phosphates, Sivardi-
ere' studied the effects of different kinds of interac-
tions on the Blume-Capel model. We consider here
the effects of inclusion of the dipolar interaction so
that the Hamiltonian becomes

H =Hue —g (JxSixSjx +J&S&Sj)p +JzSizSjg )

(86)

where J„Jz, and J, are the dipolar exchange con-
stants corresponding to the interactions along the x,
y, and z axes, respectively.

The free energy per spin in the spherical model
becomes

3 3

f= —A,a+LP + g J;M; —(1/2p)ln 3 2 z
(A, —4L P )(A, —&)

JM
2e; LP— b5;, —

(87)

where e; =+1 for i =x, e; = —1 for i =y, and e; =0
fori =z.

Considering the appropriate equilibrium condi-
tions we can study the following cases.

A. Case I: Jz Jy

The equilibrium conditions yield

A. =J,+b, ,

tM
——a

2L 1+(6/J)

Similarly for a pure biaxial phase we get

aP +P t+(a/2) a+ ——aa
L

where t = I/2PJ. The transition temperature is

(93)

(J,+&)/P
(J b, ) 4L P 2PJg-+M,', (89)

1 1—aa a+ — at —t(1+—a—) a+—
2 2 L

4LP/P b,

(J,+S)' 4L, 'P' 4—13J,L
(90)

It is seen that the equations for Bf/OP=0,
t}fidM, =O are satisfied by M, =O, P=O if b, =O.
This may be regarded as the paramagnetic solution.
It may further be noted that Eq. (90} is independent
of M, . So, there may be a single phase transition:
either from a pure biaxial (M, =O, P&0) to the
paramagnetic phase (M, =0, P=O), from a pure di-
polar phase (M, &0, P=O) to the paramagnetic
phase, or from a mixed phase (M, &0, P&0) to the
paramagnetic phase. Combining Eqs. (89) and (90)
we get

(94)

B. Case II: J„=O,J, =O

In this situation the equilibrium conditions yield
the following relations:

A, =J+2LP, (95)

where now a=J/L, t =1/2L. The transition tem-
perature is given by the same expression of Eq. (93}.
It may be remarked that Eqs. (92}—(94) may also
describe a mixed phase and a second-order transition
may occur at tM.

A, /P I /2P J„M„
4L P ~—& —(A, —2LP)

2LP/13 b, /4PL J M

A,
2 —4L ~P2 &—& (A, —2LP)(91)

For a pure dipolar phase we get

P= .+M,'+ '—
2PJ 2L J+6 2LP— (96)

(97}

M, = a t 1+—
2L 1+(b,/J)

1/2

(92)
With the use of the notations J„' =J„/2L,
b, '=b, /2L, we get, from Eqs. (95)—(97), by subtrac-
tion,
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4P 2—aiP +a2P+a3 —0,
where

a i ——2a —(3J„' —6'),
a2 ——2J' (J„' —b, ')+ r (3—2b, ') —2a (3J' —5'),

a3 =t(2J„' —6' —J„'b,') —2aJ„'(J„' —b, '),
with t = I/2PL. P vanishes at tp given by

2aJ' [1—(b, /J„)]
1 5' (—b /J„—)

(99)

The above equation represents the temperature for
the transition from a pure biaxial phase to the
paramagnetic phase. For the mixed phase we get,
by adding Eqs. (96) and (97),

T 1/2
1

M = —+—a—
2 2 J'

(1+5')t
4(P+ J„' —5')

(100)

A transition may now occur from a mixed phase to
the paramagnetic phase. The transition temperature
is given by

2aJ„' [1 (b,/J„)]—
3+b,

' 2(b,/J„)—
For Tp & TM one should have

(101)

J„2I.)1+ (102)

Under this situation we should say that an
orthorhombic distortion is followed at a lower tem-

perature by a magnetic ordering in M„, giving rise
to two successive second-order phase transitions.
Let us apply these results to interpret the phase tran-
sitions in TbPO4. From the experimental point of
view two successive second-order phase transitions
appear, one being the magnetic transition at 2.2 K
and the other a crystallographic transition at 3.5 K.
In the first place, if we then put 5=0 for J„=1.8 K

(as chosen by Sivardiere), then Eqs. (99) and (101) do
not yield the correct transition temperatures. These
are reproducible for J, =1.8 K, L = —1.7308 K,
and b, =0.6522 K. As compared to Sivardiere's re-
sult L is now negative and 6&0.

VII. CONCLUSION

In the previous sections attempts were made to
discuss the essential physical features of phase tran-
sitions appearing in some complex magnetic systems
utilizing a method which has exploited the con-
straint prescribed by the spherical model substituted
for the original spin pattern. The method also in-

volves the application of the mean-field approxima-
tion for simplification of the complex Hamiltonians.
In addition to the relative simplicity of the
mathematical formulation of the problem one finds
that the most important results of well-known calcu-
lations of earlier authors are very simply reproduci-
ble. A lot of other complex magnetic systems with
complicated Hamiltonians may be comfortably
treated by the present method.

However, it is well known that the exact treat-
ment of the spherical model for a certain spin con-
figuration favors a lower Curie temperature than the
actual one. It is at least true for an Ising system, but
is believed to be true for complex magnetic systems
also. It is interesting to note that the mean-field ap-
proximation for the spherical model of a spin-1
Heisenberg system yields a Curie temperature
k~ T, /J = —,, which is exactly the MFA value.

However, the result is found to be different when a
higher-order interaction is included. The results will

be quantitatively better if the fluctuations are con-
sidered. The mean-field approximation applied to a
spherical model yields a higher critical temperature
than the exact treatment of the spherical model but
it yields the same critical temperature as that of the
MFA in the bilinear limit (Heisenberg bilinear Ham-
iltonian). The differences are pronounced when the
higher-order interactions are included.
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