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We report differential paramagnetic susceptibility (P) measurements as a function of an

applied magnetic field (H) for the antiferromagnets CoClq 6HzO, Ni C12 4HzO,

MnC12. 4H20, and MnBr2. 4H20. Above the ordering temperature, the g vs H curves exhibit

a characteristic maximum which is attributed to short-range order. This effect is more pro-

nounced in the cobalt compound (spin —) and less pronounced in the manganese compounds

(spin —). Using simple models suitable to describe the above-mentioned systems, we discuss

the dependence of this maximum with spin magnitude, anisotropy, and lattice dimensionali-

ty. The theoretical treatment is based on a variational method in which correlation effects

between pairs of spins are considered.

I. INTRODUCTION

The theoretical treatments based on mean-field

approximations (MFA) predict that above the order-

ing temperature Ttv of an antiferromagnet, the mag-
netic susceptibility I as a function of a magnetic
field H applied along the easy-magnetization axis
should decrease with increasing H. However, the
experimental data for a variety of antiferromag-
nets' 3 show that, in the paramagnetic phase, the
behavior of the susceptibility is not in accordance
with this MFA prediction. In fact, it is observed

that at (fixed) temperatures just above Ttt, the X vs

H curves exhibit a broad maximum which gradually
decreases in field value and turns less pronounced
with increasing temperature. The occurrence of this
maximum can be explained by considering correla-
tion effects which are neglected in MFA.

In this paper we shall investigate the behavior of
the susceptibility in the paramagnetic phase of the
antiferromagnets CoC12 6H2Q, NiClz. 4HzQ,
MnCiz 4H20, and MnBrz. 4H20. These materials
have different spin magnitudes, and the mechanisms
that account for their magnetic anisotropy are dis-
tinct. Also, CoC12.6H20 behaves as a two-
dimensional system, whereas the other three com-
pounds exhibit three-dimensional behavior. Previ-
ous measurements' 's of the field dependence of

g have been mainly used to derive the phase dia-

grams of the compounds. In an attempt to under-

stand the dependence of the susceptibility on the

spin magnitude, anisotropy, and dimensionality, we

compare the susceptibility data with theoretical pre-
dictions derived from simple tnodels suitable to
describe the above-mentioned systems. This has

been done by applying a procedure developed by
Ferreira et al. , which is based on a variational prin-

ciple for the free energy. It involves the choice of a
suitable parametrized trial Hamiltonian which sys-

tematically takes into account correlation effects in

increasing degree of complexity. In this paper we

consider correlation effects at the lowest order, i.e.,
between pairs of spins. As shown by Ferreira
et al. , in the case of the three-dimensional antifer-

romagnet Heisenberg model this led to a maximum

in the X vs H curves. These comparisons, however,
are only qualitative in character and should be
viewed as indicative.

The remainder of this paper is divided as follows:
In Sec. II we discuss the theoretical background and
present an outline of the variational method used to
treat the correlation effects. In Sec. III we give de-

tails of the magnetic properties of the systems and
of the experimental setup. The experimental results
are presented in Sec. IV. Finally, a discussion of
these results in connection with the theoretical pre-
dictions is made in Sec. V.
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II. THEORY

A. Hamiltonians

We consider spin-localized Hamiltonians in which

the spin system in the ordered phase is composed of
two equivalent sublattices coupled antiferromagneti-
cally. Experimental evidence' indicates that
CoC12 6H20 is a fairly good example of a two-
dimensional antiferromagnet with spin S=—,, in

which the dominant interactions are of the planar

type (two-dimensional XY model). Accordingly, we

will consider the Hamiltonian

H i ———Ji g (S,"SJ".+SOS~~) y i+—S;",

where the first term represents the quasi-isotropic
superexchange coupling between the magnetic ions

[(i,j) indicates a sum over nearest-neighbor pairs]
and the second term is the Zeeman energy

(yi=g iya»
The main source of the anisotropy in NiC12 4H20

is of the single-ion type. 6 In this material the effect
of the axial crystal field on the Ni + ion is to split
the threefold-degenerate ground state into a doublet
and a singlet, separated by an energy D. The spin
Hamiltonian appropriate to describe this spin-1 sys-
tem is

imation'Q are recovered. This can be done by choos-
ing the number of interacting pairs through a com-
parison with the first few terms of the exact high-
temperature expansion of the free energy.

Let us illustrate the main steps of the procedure
for an antiferromagnetic spin- —, Heisenberg model

with isotropic exchange interactions (J&0). We
divide the lattice into two sublattices, A and B, and
construct a trial density matrix pQ containing n

linked pairs and N —2n free spins. The trial Hamil-
tonian A Q is thus written

p —A pf +A pp (4)

A Qi,
——g ( Hi S,"—H iS, —Jsg Ss—),

pairs

(6)

where S," and S, are the spin components along the
direction of the applied magnetic field. The sums
extend over the A and 8 sublattices, and the pair in-
teractions are between spins on different sublattices
only. The four parameters Hi, Hi, H2, and Hz
(molecular fields) are determined from the condi-
tions

where A Qf involves the (N —2n) free spins and 4 Q~

the n linked pairs. They are given, respectively, by

Qf — gH iS," gH i
—S,

B

H2 ———J, g gS; S g[D(S,')—+y2S ] .
a=z, ypZ (i,j )

(S,") =—TrpQS,",
(S,')=Tr P,',

(7a)

(7b)
(2)

In the manganese compounds MnCli 4H20 and
MnBr2 4H20 the anisotropy is due to anisotropic
exchange and dipolar magnetic interactions7 (S

5
state with spin —,). However, to study the effect of
its high spin value, and to simplify the theoretical
analysis, we shall consider a classical Heisenberg
model (spin ~ oo) in the form

H3= —Ji g g s sj' —yips, ',
a=x,y, z (i,j )

where s; are continuous variables in the interval

[—l, l].'

regardless of whether the spin is isolated or belongs
to a pair, and the minimization of the free energy

p=FQ+ (4 —8 Q)Q, where FQ is the free energy as-
sociated with the trial Hamiltonian 4 Q These c.on-
ditions yield four equations. The number n of pairs
is chosen so that a good approximation for the free
energy is obtained. This is done by comparing the
first terms of the high-temperature series expansion,
for the true free energy F, with the free energy P. In
the high-temperature limit this procedure gives
n =Nq/2, where q is the number of nearest neigh-
bors. This choice of n leads, for H=0, to the rela-
tion

B. Variational method H i /q =H i /( 1 —q),

We applied the variational method developed by
Ferreira et al. to the above-mentioned Hamiltoni-
ans. The procedure permits the inclusion of short-
range-order effects through the choice of a suitable
parametrized trial Hamiltonian which contains some

elementary interactions. The free trial Hamiltonian
leads to the usual MFA. When the trial Hamiltoni-
an includes a certain number of pair interactions,
the results obtained in the constant-coupling approx-

and to an identical relation for the 8 sublattice.
This leads to a set of thermodynamical functions
which are identical to those obtained in the
constant-coupling approximation and the Bethe-
Peierls method. ' In particular, the field dependence
of the paramagnetic susceptibility, at constant tem-
perature T& T~, displays a broad maximum, in-
stead of decreasing monotonically with H as predict-
ed by the standard MFA. We extended the above
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procedure to the following models: (a) planar XY
(q =4) model with S=—,; (b) tridimensional Heisen-

berg model (q=6) with S=1; (c) tridimensional
Heisenberg model with classical spins (S= 00). We
also included the effect of a single-ion anisotropy
term in the S =1 Heisenberg model. Some details of
the calculations are presented in Appendixes A, B,
and C, and the results are discussed, in connection
with the experimental data, in Sec. V.

III. EXPERIMENTAL

A. Samples

Single crystals of the four compounds were grown
from saturated aqueous solutions. MnClz. 4HzO,
MnBrz 4HzO, and CoClz 6HzQ were grown at room
temperature and NiClz. 4HzO was grown in a
temperature-controlled bath at a temperature of
50.0+0.05'C. The identification of the crystallo-
graphic axes was done from the crystal habit
described by Groth. "

The antiferromagnet CoClz 6HzO (effective spin
S=—,) has a Neel temperature Tz of 2.29 K.' The
structure of this compound is base-centered mono-
clinic, with two formula units per unit cell. The
magnetic measurements' indicate that bc is an easy
plane of magnetization and that b is the easy-
magnetization axis. The two-dimensional character
of the magnetic behavior of CoClz. 6HzO has previ-
ously been inferred from the relatively large amount
of short-range order that is present above Tz, as is
evidenced by the specific-heat measurements ' and
from the temperature dependence of the antifer-
romagnetic susceptibility whose maximum occurs at
about 40%%uo above Tv.

The antiferromagnets MnClz 4HzO and
MnBrz 4HzO (S= —, ) are isomorphous, ' with T~ at
1.62 and 2.13 K, respectively. These crystals have
monoclinic structure with four Mn + ions per unit
cell. " Their magnetic structure is reported to be
identical to the crystallographic one, with c being
approximately the easy-magnetization axis. ' Their
anisotropy is mainly due to exchange and dipolar in-
teractions.

The antiferromagnet NiClz 4HzO (T~=2.99 K)
is reported to be structurally and magnetically iso-
morphous to MnClz. 4HzO. It is described as a
S= 1 system in which the anisotropy is of the
single-ion type with D/

~

J
~

=1.2 K.'

B. Susceptibility measurements

The magnetic differential susceptibility Q') was
measured with an ac mutual inductance bridge simi-
lar to that described by Maxwell. ' The frequency of

IV. EXPERIMENTAL RESULTS

Figures 1—4 show typical X vs H curves for the
four compounds. The magnetic field was always ap-
plied along the easy-magnetization axis. During
each run the temperature was fixed. The tempera-
ture in which each curve was obtained is given

through the ratio T/T~. The common feature of
these curves is the broad maximum observed in the
paramagnetic phase for T & Tz. These maxima in-

1, 8

1.2

1.0

10 20
H (koe)

FIG. 1. Susceptibility of CoC12-6H&O as a function of
the applied magnetic field at different temperatures.

the modulation field was 1550 Hz and its amplitude
was 3 Oe. Checks made with frequencies of 155 Hz
showed that the features of the X vs H curves are in-

dependent of the measuring frequency. The magnet-
ic field was provided by a high-homogeneity NbTi
superconducting magnet.

The data for X were taken in the helium tempera-
ture range with a cryogenic arrangement identical to
that described by Oliveira, Jr. and Quadros. ' The
sample was immersed in the He bath. During the
run the temperature was kept fixed and the magnet-
ic field was swept. The temperature was measured
with a 10-Q, 0.125-W Allen-Bradley carbon-
resistance thermometer at the beginning and at the

end of each run. While the field was swept the sta-
bility of the temperature was monitored with the va-

por pressure of the He with a differential manome-

ter. The error of the temperature measurements did
not exceed 0.01 K.
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FIG. 2. Susceptibility of NiC12-4H20 as a function of the applied magnetic field at different temperatures.

crease in height and occur at higher field values as
the temperatures are lowered. Note that in the
curves for T & Tz (Tz is the critical temperature for
H=0) this maximum persists. Also, these curves
display, at lower field, a small knee. This anomaly

corresponds to the continuous paramagnetic-
antiferromagnetic transition. With a further de-

crease in temperature the location of the knee in-

creases quickly in field and the knee evolves into a
peak that outgrows the broad maximum of the

Mn Brg. 4HqO

Tq & 2. IBK

26 l5

fh
+
t:
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FIG. 3. Susceptibility of MnC12. 4H&O as a function of

the applied magnetic field at different temperatures.

2 4 6 8
H (kOe)

FIG. 4. Susceptibility of MnBrq-4H20 as a function of
the applied magnetic field at different temperatures.
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FIG. 5. Relative height of the susceptibility maximum

A = [X(m ) —X(0)]/X(0) observed in the paramagnetic

phase of the g vs H curves plotted as a function of T/T&.
The data for MnBrz 4Hzo is not displayed to avoid over-

crowding.

paramagnetic susceptibility.
In order to compare the intensity of this max-

imum for the different materials we consider the ra-

tio A=[X(m) —X(0)]/X(0) as a measure of this
height. Here X(m) is the maximum value of the
paramagnetic susceptibility and X(Q) is its value at
H=Q. The results are displayed, as a function of
T/Tz, in Fig. 5. To avoid overcrowding we did not
report the results of MnBrz 4HzO, which are of the
same magnitude as those of MnClz 4HzO. For
T/Tz &1, a larger error is indicated in the figure.
This is due to the fact that below T~ the ordering
mechanism strongly reduces the value of the suscep-
tibility at zero field, and X(0) is approximately es-
timated from this data. The salient feature of this
figure is that the effect is much greater in the cobalt
compound (S= —, ) and persists at much higher tem-

peratures.
Finally in Fig. 6 we plot the field values HM, at

which the maxima occur, as a function of T/T~,
for the four different compounds. The data for
CoClz 6HzO is in agreement with those obtained by
Metselaar and De Klerk who have reported two
measurements in the temperature range of our in-

terest. Note that HM is higher for NiClz 4HzO in
the temperature interval 0.95 & T/Tz & 1.4, but for
T/T~&1. 4 the effect is only observed in the Co
compound.

V. DISCUSSION

Figures 5 and 6 summarize the main experimental
results obtained. The striking feature of Fig. 5 is
that the relative height of the paramagnetic suscepti-
bility maximum is much higher in the cobalt

II
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FIG. 6. Magnetic field H~ at which the maximum in
the paramagnetic phase of the g vs H curves occurs
displayed as a function of the ratio T/T~.

4 6
g&8 HM /1 J I

FIG. 7. Susceptibility as a function of gpsH~/
~

J
~

calculated at T/T~ ——1.02 using the variational method
described in Appendixes A—C. These curves are for the
isotropic Heisenberg model. The inset shows the details
around the maximum for S=1.
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(S=—, ) compound and that this maximum persists
at temperatures about twice T~. This strongly sug-
gests that the effect is enhanced in systems with
lower spin values. In fact, our theoretical calcula-
tions (see Sec. II and Appendixes A—C) show that
the paramagnetic susceptibility as a function of H
exhibit a broad maximum for the isotropic Heisen-

1

berg (q =6) S= —, and S= 1 systems. However, no
evidence of this maximum was found for isotropic
(q=6} systems with classical spins (S=ac) in the
low-field limit. These results are shown in Fig. 7 for
a temperature TIT~ ——1.02. It is clear that the rela-
tive height is much higher for S=—, than for S =1
(see inset in Fig. 7 for S= 1). These calculations
also indicate (see Figs. 8 and 9) that for S=—, the
maximum of X persists up to TIT& —1.5, whereas
for S =1 it continues only up to TIT& —1.1.

The magnetic properties (susceptibility, phase dia-
grams, and specific heat) of CoClz 6HqO have been
analyzed in terms of the two-dimensional (square-
lattice) XY model. ' Although the predictions based
on the XY model cannot account for the observa-
tions very close to the critical point (specific-heat
anomaly, etc.), correlated fluctuations responsible
for the onset of long-range order (crossover to
three-dimensional behavior) in the system are the
dominant contributions. However, the analysis
shows good agreement between theory and experi-
ment in the paramagnetic region (yielding a planar
exchange constant J/k = —4.10+0.05k}, where
short-range correlations within the XY layers are the
doininant contributions and a two-dimensional
behavior is expected. In order to simulate this two-
dimensional character we have considered (see Ap-

40-

EV
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30

—20

l0

0
I.O l.4 l.8

FIG. 8. Relative height of the susceptibility maximum
A =[X(m) —X(0)]/X(0) as a function of TIT~ for the
isotropic Heisenberg model (q =6) and for the S=—,XF
model (q =4). The inset shows the details of the results
for S=1 Heisenberg model.

5.0

l0 l.4 l.8 2.2
T/ TN

FIG. 9. Magnetic field H~ at which the maximum in
the theoretical P vs H curves occurs displayed as a func-
tion of T/T~. The results are for the Heisenberg model

(q =6) and for the S =—,XYmodel (q =4).

pendix A) a planar XY model with q =4. Regardless
of the fact that the XY model does not sustain long-
range order in two dimensions, ' ' we expect that
the predicted paramagnetic susceptibility, in large
part determined by the short-range correlations, pro-
vides a reasonable description of the field-dependent
paramagnetic susceptibility of CoClz 6HzO. In Fig.
8 we show A vs TITN calculated (see Appendix A)
for the XY model with S=—, and q =4. It is clear
that the effect is stronger in this case, reflecting the
two-dimensional character of the short-range-order
effects. On the other hand, Fig. 9 shows that

gpriHM/ ~

J
~

is lower for low T, but the effect per-
sists at much higher temperatures. This is experi-
mentally observed, as evidenced in Fig. 6, by

1

comparing the data for CoClz 6HqO (S= —,) and

NiClq 4HqO (S=1). To conclude the discussion of
the CoCI& 6HqO compound we compare (see Figs.
10 and 11) the theoretical predictions for A and HM
with the experimental data [using J/k= —4. 10 K
and g =5.2 (Ref. 5)]. With this value of J the calcu-
lated Tz [see Eq. (A7)] is 2.28 K in a probable for-
tuitous agreement with the experimental Tz ——2.29
K. Very good agreement is also obtained for A vs
TIT& (see Fig. 11), whereas a qualitative one is ob-
tained for HM vs TIT~ (see Fig. 11). Note that A

does not depend on the J and g values. These results
are indicative that the two-dimensional XY model
gives a reasonable description of the short-range
correlations occurring in the paramagnetic phase of
CoClq 6HiO, as has previously been inferred from
the temperature-dependent susceptibility data.

In the previous discussions we considered isotro-
pic Heisenberg and planar models. The effect of the
anisotropy was not included. However, the experi-
mental data for the NiClq 4HzO suggest that the
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mental data for the NiC12 4H20 suggest that the
short-range-order effects are much stronger than

those calculated with the isotropic model and also

that they extend up to higher values of T/TN (see

Fig. 5}. We conjectured that these facts could result

from the single-ion uniaxial anisotropy of this com-

pound. Accordingly, we performed calculations
with a q =6 and S = 1 Heisenberg model in which a

50-

—20

T lo

I

I.O
I

l.2 T/ T

I

l.4

FIG. 11. Magnetic field H~ at which the maximum

occurs as a function of T/TN for CoC12 6H20. The solid

lines are the theoretical predictions for S=—,XY model

with J/k = —4. 10 K and g=5.2.

T/Tq

FIG. 1(). Relative height of the susceptibility maximum

g = [X(m) —X(p)]/X(0} as a function of T/&~ &or

CoC12.6H20. The solid lines are the theoretical predic-

tions for S=—,, XY model with J/k= —4. 10 K and

g =5.2.

FIG. 12. Relative height of the susceptibility maximum

as a function of T/T~ for the S= 1 isotropic and aniso-

tropic Heisenberg models (q =6).

single-ion te~ D was includ~. The pruicted A

and g)MgH~/
~

J
~

vs T/T& curves for two values of
the ratio D/I J

~

are displayed in Figs. 12 and 13,
respectively. For comparison, the isotropic case was

also displayed. It is clear that the effect is stronger
for higher D values. However, even for
D/

~

J
~

= 1.2, ' the theoretical predictions for 3 and

HM~ based on the anisotropic Heisenberg model,
cannot quantitatively account for the observed ex-

perimental behavior. In particular, the predicted g,
«r T/Ty ——1, is 1 order of magnitude less than the
observed value. Also the observed effect persists up
to much higher temperatures. We speculate that
»C12 4HzO may have some two-dimensional char-
acter. One point in favor of this interpretation is
that the maximum of X, at zero field as a function
« the temperature, occurs at a temperature TM,
with T~/TN —1.25. For tridimensional systems

typical values for this ratio obtained from high-
temperatures series expansions range from 1.(}5 to
1.1 TM/T~. z'

Finally, we should note (see Fig. 6) that in the
manganese compounds the effect is of the same or-
de«f magnitude and much less pronounced in com-
parison with the other two compounds. As there is
a huge increase in the anisotropy (probable of ex-
change origin ) in going from the chloride to the
b~o~ide, we may conclude, from our data, that this
fact has not strongly affected the effect. The small
magnitude of it may be understood by the large spin
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~of = Q— H",S," g—H, S

40

30

20

and

4 pp
———g [J(S,"S,+Sy"Sy )+H2S„"+HpS„] .

pairs

(A2)

The four parameters (molecular fields) are deter-
mined from the conditions over the sublattice mag-
netizations and from the minimization of P with

respect to the sublattice magnetizations. The rela-
tions obtained are

IO
(1—q)H", +qHi =y, (A3)

(S„)=—
P aH", P aH",

(A4)

0
I. l

FIG. 13 Magnetic field H~ at which the maximum

occurs as a function of T!TN for the S =1 isotropic and

anisotropic Heisenberg models (q =6).

and similar relations for the sublattice B [A~B in
Eqs. (A3) and (A4)]. Here P= 1/kT, Z

~ (Z
&

) is the
trial partition function of an isolated spin in sublat-
tice A (B), and Zi is the trial partition function of a
linked pair of spins, given by

value in both compounds, as theoretically expected
(see Fig. 7).

In conclusion, we have shown that although the
model calculations presented here were based on
oversimplified Hainiltonians, the calculated magnet-
ic susceptibilities explicitly revealed the dependence
of the short-range-order effects on spin magnitude,
lattice dimensionality, and anisotropy. The main in-

dicative trends are in qualitative agreement with the
experimental observations made in the four antifer-
romagnetic compounds.
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APPENDIX A

Let us consider the spin- —, two-dimensional anti-

ferromagnetic XY model as defined by Eq. (1). The
trial Hamiltonian 4 p=A pf +4 p& [see Eq. (4)] is
now given by

PHA
Zi =icos/1 (A5)

Z& ——2 exp H, H,p ~ a

J
+exp — exp — (H2 +H2 )

2(J/
T

+2exp exp (H" —H )'

(A6)

(2+ + ) =4(q —1)(
2

(A7)

with E=
~

J
~

/kT~. For q =4 (square lattice) we
obtain

I
J

I
/2kT& ——0.90.

The susceptibility as a function of the applied
field is calculated by differentiating the sublattice
magnetization with respect to H. In the paramag-

In zero field we have H, = H& H i and— ——A 8

H2 —— H2 H2 (antif—errom——agnetic phase). From
(A3) and (A4), with vanishing Hi and H2, we obtain
an expression for the Neel temperature (T~ )
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netic region (T& Tz), we take pH, =pHi 2——xi
and PHz ——PHz ——xz. We thus obtain the following
expression:

bi ——2 aai+ (xz) —2(xz) e ' sinha
2

P
l

J
l
bisech xi

xlJl =
2[2(1—q)b, +qa a ie~I I sech xi]

X sinh(2a )(x z ) a i cosa . (Al 1)

(A8)
xi, xz, and y are related through [from Eqs. (A3)
and (A4)]

where

plJIa=—
2 2

'2

+(2xz) (A9) and

1
[2xi(1—q)+qxz] (A12)

a, =1+e~ I'I "+2e-~I""cosha, (A10)

2xze &I I~ sinha
tanhx i

——

a1
(A13)

APPENDIX B

For a spin-1 tridimensional isotropic Heisenberg antiferromagnet, the procedure is the same developed in
Sec. II B. In this case the expression for the Neel temperature is

2qK(1+5e +3e ) =(q —1)(8—5e 3 —3e ),
which is identical to that obtained using the constant-coupling approximation. For q =6 we have K=0.32.

The field-dependent paramagnetic susceptibility is given by

where

2P
l
J

l
bz[cosh(2xi)+2]

bz (1—q)[1+2 cosh(2x i )] +2qa z [cosh(2x i ) +2]
(82)

and

az 2e ~——I 'cosh(2xz)+4coshxzcosh(P
l
J

l
)+e ~I '+2cosh(P

l
J

l
)

bz ——2(az[2e cosh(2xz)+coshxzcosh(P
l

J
l )]—4[e sinh(2xz)+sinhxzcosh(P

l
J

l
)] ] .

(83)

(84)

xi, xz, and y are related through Eq. (A12) and
[from (A4)]

Of — g[HiS, +D(S, ) ] g[HiS, +D(S—, ) ]

(87)

where

4y+ (64—48y )
'~

8(1+y)
(85) and n pair terms

M» —g [J——S S +H",S,"+H,S,
pairs

+D[(S, ) +(S, )']] . (88}

»z 2e sinh(2xz )+2sinhxzcosh(
y

1/2

02

(86)

The sublattice magnetization is given by

(S, )=- a, 1 a
P aH", P aH," (89}

In the case of the spin-1 anisotropic Heisenberg
antiferromagnet we consider the Hamiltonian (2).
The trial Hamiltonian includes N 2n free-—spin
terms

where

Zi ——1+2e~ cosh(PHi )

and
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Z2 —2e t'l ~ 1+»Dcosh[p(Hz +H2 )]+4e~ cosh —(Hz +Hq ) cosh(p&)

r

1 2 exp
—p((, +(, i 4 pI J

I P 4 Pl J
I+pD +2 exp —(t i + t2) exp +PD

&(cosh (ti+tz) (810)

where

&

[(HA HB)2+41 J 12]1/2

ti (r+M——)'/,
(811)

(812)

t =(r —M)'/,

r= —„[101JI
+241J

I
D+SD —9(

I
J I+2D)(Hi —H2) ],

M =—„[—91J
I

—41 J
I

D —41 J
I

D (Hi —Hi ) (2—31J
I

+481 /
I

D+641 J
I

D +321J
I
D'+16D')

+(H, H", )'( —41 J
I

'—+8
I
J

I
D+SD') (H, —H, )'] —.

(813)

(814)

(815)

We choose again n =Sq/2 by comparison with the first terms of the high-temperature expansion. For simpli-
city, we take K =0.32, as in the isotropic case. From the minimization of P with respect to the sublattice mag-
netizations and Eq. (89), we obtain the following equation for the field-dependent paramagnetic susceptibility

2pI J
I
e /' '[cosh(2xi)+2e /l ']ai

XI J I =, D/
qb&e /' l [cosh(2xi )+2e /l l]+(1—q)ai[1+2e l l cosh(2xi)]

(816)

b&[2e Pl J I+2D—/l J
I cosh(2x2)+eD/I J

I cosh(p
I
J

I
)coshxi] —4c~,

b =2e ~l l+' /' 'cosh(2x2)+4e /l 'cosh(x2)cosh(pI J
I
)+e~l '+'

2

(817)

+2et'l J l/2+&/l'lcosh +2(p
I
J

I
)' (818)

c=e ~l '+ /' lsinh(2x2)+e /l lcosh(PI J
I
)sinh(xq), (819)

d + [4 2D/l 1
l ( 1 d)+d]1/2

cosh(2xi ) =
2e (1—d)D/)J

~

where

(820)

as in the previous cases, xi, x2, and p are related
through Eq. (A12) and [from (A4)]

4 of
—— QH(s, —QH, s, —A 8 8

8
(Cl)

l

ite spin, according to the Hamiltonian (3). In a
similar way, as developed in the previous cases, we
consider a trial Hamiltonian, P'0 P'Of +——A qz,
where

P'0& ———g(Js .s +H,"s,"+H2s, ) .
PRI fS

In this case the partition functions are

(C2)

APPENDIX G

Finally we developed the variational procedure to
study the behavior of the field-dependent paramag-
netic susceptibility of an antiferromagnet with infin- alld

0 0 PHA

(C3)
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21r 7r A ~B ~H~2sA P+ Bs B

Z2 — z &sin& & &sin ~e ' ''e ''e (C4)

(1 q)H—
i +qH2 ——y, (C5)

where the direction of each spin is denoted by
(0;,t(;). We calculate P and choose n=Nq/2 by
comparison between the first terms of the high-
temperature expansion of P and the exact high-
temperature expansion. From the minimization of P
with respect to the sublattice magnetizations we ob-
tain

I

where L(K) is the Langevin function. This is the
Neel temperature of a "Bethe lattice" of coordina-
tion number q.

The field-dependent paramagnetic susceptibility
for small fields is given by

P[ —, + , L (a4—)+, PH—zL(a4)]
31+(1 q)L —(a4)+ —,(1 q)PH—,L(a4)

and a similar relation for the sublattice B.
To calculate the Neel temperature and the suscep-

tibility as a function of the field we expand Z2 in a
series of modified spherical Bessel functions of the
second kind and take the small-field limit. For Ttv

we obtain the following equation:

where

a4 ———p/J/

and

(C7)

(CS)

L(K)=
q —1

(C6)

1

1+(1+q)L(a4)
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