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The structural phase transition in the 315 compounds are investigated theoretically with

the standpoint that the band Jahn-Teller effect of the twofold-degenerate I » subbands

crossing the Fermi level is responsible for the instability. On the basis of k p perturbation

theory, the I » subbands are revealed to be well described by two parabolic bands which

couple not only to the bulk distortions, but also to the displacements of the I » optic modes.

It is found that when the electron-lattice coupling exceeds the threshold of strength, the

tetragonal phase with almost the same stabilities of c/a y 1 and c/a & 1 appears, accom-

panying one of the I » optic modes below a weak first-order phase transition temperature

TM. The temperature dependences of the elastic moduli are calculated; it is found that

c]]—c» vanishes below T~ while c33 c]3 recovers from its softening partially or complete-

ly with decreasing temperature below T~. The long-wavelength acoustic phonons are also

investigated in order to clarify the relation between the phonon anomalies and the structural

transition. The [110]T~ mode (q~~[110], e~~[110]) is considerably softened in the range

0&q &ZkF. This softening begins at high temperatures, remaining even at absolute zero.

The theory explains successfully the various aspects of the phase transitions in V3Si and

Nb3Sn. The comparison between them proves that the second order Jab-n Teller eff-ect

occurs in both compounds.

I. INTRODUCTION

Some of the 215 compounds are of interest be-

cause of their high-temperature superconductivity
and their structural phase transition. A strong
correlation between the two phase transitions is im-

plied by the experimental fact that compounds with

a high superconducting transition temperature T,
have large anomalies in the structural and electrical
properties. Although much effort has been devoted

to the subject, the microscopic origins of the super-
conducting and structural anomalies have not been

fully clarified. Most of the earlier works were re-

viewed by some authors. ' The purpose of this pa-

per is to investigate theoretically the structural
phase transition by developing the theory recently

proposed by the author.
V3Si and Nb3Sn undergo the martensitic cubic-

to-tetragonal transition at TM-21 and 43 K, respec-
tively. Some experiments show that the phase tran-
sitions are nearly of second order in contrast to the
usual martensitic transitions. In the low-
temperature phase, c/a &1 in V3Si (Ref. 5) and
c /a & 1 in Nb3Sn. According to the neutron-
diffraction experiments, ' the internal relative dis-
placements with the I iz symmetry are superposed
on the uniform tetragonal distortion. The two kinds

of displacement have almost the same temperature
dependence. When Nb3Sn is doped with Al or Sb,
the tetragonal distortion switches from c/a&1 to
c/a & 1 at some concentrations, while the magnitude
of the distortion does not change significantly.
This shows comparable stabilities of the two phases
with c/a & 1 and c/a & l. One of the precursor ef-
fects of the structural transition is the softening of
c» —ci2 in the cubic phase. With decreasing tem-
perature, c» —cia decreases and almost vanishes at
the almost second-order transition temperature TM.
However, cii —cia does not recover from its soften-
ing in the low-temperature phase. ' '" This behavior
of the softening is quite different from those ob-
served for many other structural phase transitions.
Shirane, Axe, and also Birgeneau carried the experi-
ments of neutron inelastic scattering on NbiSn and
V3Si, and observed the softening of the long-
wavelength acoustic phonons. ' ' The softening of
the [110]Tt mode is most remarkable and is spread
out in a wide range of the reciprocal space. More-
over, this softening is strongly dependent on tem-
perature. The [110]L mode, on the other hand,
shows a small softening and a weak temperature
dependence. The I i2 optic-phonon modes in V3Si
were investigated by Raman scattering experi-
ments. ' Their frequencies have only a weak tem-
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perature dependence above T~, though the I i2
modes definitely contribute to the structural phase
transition. It should be noted that in spite of the
different signs of the tetragonal distortions in V3Si
and Nb3Sn, some of the above peculiar properties
are common to both compounds.

Among the theories of the origin of the structural
transition in A15 compounds, the two proposed by
Labbe and Friedel' and by Gor'kov' were
developed by many authors to obtain better agree-
ments between the theory and experiments. A
feature common to the theories is the stabilization
of the tetragonal phase by lifting degeneracies of
electronic bands near the Fermi energy ez, i.e., the
stabilization through the band Jahn-Teller effect.
Labbe and Friedel assumed three independent one-
dimensional bands consisting of d orbitals on the
transition-metal cations lined up along the three
directions parallel to the cubic axes. The degeneracy
of the bottoms of the assumed bands is lifted by a
change of the bandwidths due to the tetragonal dis-
tortion; if ez is nearly adjacent to the band bottoms
in the cubic phase, the electronic energy is lowered

by redistributing electrons to the split bands.
Gor'kov' and Gor'kov and Dorokhov, ' on the oth-
er hand, asserted that band degeneracies at the X
points owing to the nonsymmorphic crystal struc-
ture of A15 are important to the structural instabili-
ty. Also in this model one dimensionality was as-
suined so that the Fermi surface has well-developed
flat portions containing the X points. However, the
band structures assumed by them are inconsistent
with the results of the augmented-plane-wave
(APW) band calculations. ' ' In fact, neither
theory can explain the almost second-order phase
transition and/or c

~ ~

—c,i-0 in the low-

temperature phase, although some of the other as-

pects of the phase transition are explained success-
fully.

Klein, Boyer, Papaconstantopoi1los, and
Mattheiss performed the self-consistent APW
band calculations for 315 compounds. Their result
shows that some 315 compounds including V3Si and
Nb3Sn possess two very flat bands evolving from the
I i2 doublet states near ez. The similar band struc-
tures were also obtained by using the self-consistent
pseudopotential method ' and the linear-muffin-tin
orbital method. Recently, the author showed on
the basis of k p perturbation theory that the I,z

subbands are split by the tetragonal distortion and
are responsible for the structural transition. In the
present paper we develop the theory as follows:

(i) Two parabolic bands instead of the bands with
a constant density of states are used for the I ~2 sub-
bands. k p perturbation theory proves that the par-
abolic bands give the true I ~2 subbands in a small

region containing the I point. In the case of a weak
electron-lattice coupling, this alteration is essential
in determining the equilibrium state.

(ii) I iq optic modes are taken into consideration.
These modes can couple not only to the bulk distor-
tions but also to the I i2 electronic subbands, and
therefore contribute to the structural transition.

(iii) The dynamics of this electron-lattice system
are also investigated in order to clarify the relation
between the phonon anomalies and the structural
transition.

Sham and Noolandi and Sham discussed the
optic modes and the lattice dynamics on the as-
sumption that threefold-degenerate one-dimensional
bands cause the structural instability. Bhatt and
McMillan also discussed them on the basis of the
Gor'kov model. Making arguments parallel to the
above-mentioned works for the case of the I i2 sub-
bands, we see in the following sections that the I i2-
subband model can explain various aspects of the
observed structural transitions.

In the next section the bulk distortions, optic dis-
placement modes, and electronic states with I,2

symmetry are introduced. The I ~2 subbands in the
presence of both kinds of ionic displacement are ob-
tained by using k.p perturbation theory. In Sec. III
we derive the free energy of the electron-lattice sys-
tem, discussing the condition for the structural in-
stability, equilibrium distortion, and the properties
of the phase transition. In Sec. IV the isothermal
elastic constants are calculated and compared to the
experimental data on V3Si and Nb3Sn. Section V is
devoted for the investigation of the dynamics of the
electron-lattice system. The self-consistent equa-
tions for the motions of electrons and ions are ob-
tained by using the linear-response theory, and are
solved to find the phonon softening. Finally (in Sec.
VI), concluding remarks are given.

II. I, SUBBANDS IN THE PRESENCE
OF IONIC DISPLACEMENTS

Figure 1 shows the unit cell of 338 with the 315
structure whose space group is Pm3n (Oi, ). The
unit cell contains two molecules. The six A sites,
which are occupied usually by transition-metal ca-
tions, are numbered as shown in Fig. 1. Since the
symmetric representation of I ~2, [I i2 X I ~2], is
decomposed into the representations I i and I &2, I,2

electronic states couple to the I i and I'i2 inodes of
ionic displacement. The I i mode corresponds to a
volume change and does not play an important role
in the structural change. The bulk distortion with
the I ~2 symmetry is given by
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FIG. 1. Unit cell of the A38 compounds with the A 15

structure. The space group is Pm3n (0),). The 8 sites

form a bcc lattice and the A sites form three orthogonal

chains along the cube faces. The unit cell contains two

molecules. The A sites are numbered as shown.

QS g V NmKeKI, S Kl (2)
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where e, etc., are the strain components. In addi-

tion to the bulk distortions, the A15 structure has
the internal relative displacements with the I'~2 sym-

metry, i.e., the 1 &2 optic modes, which are expressed

by a general form as

FIG. 2. Ionic displacements of the I &z optic modes Q2
and Q3. Only A ions are displaced along the A-ion chain
directions. It is noted that Q2 and Q3 are transformed as
u& and u3, respectively, by the crystal symmetry opera-
tions.

+ 1~
—4y+ 3y)/2W3

(3)

Q3 QNm„( ———u2„+ u )„+u~y —u,y)/2,

where mz is the A ion's mass. The ionic displace-
ments expressed by Qq and Q3 are shown in Fig. 2.
On the other hand, I ~2 electronic states in the ab-
sence of the ionic displacements are written as fol-
lows:

where s=2 or 3, N is the total number of unit cells,

u„; is the ith component of the displacement vector
of the )rth ion in a unit cell, e„;, is the )ri component
of the eigenvector of the normal mode s, and m„ is
the )rth ion's mass. A group-theoretical argument
proves that

Q2 Q——Nmz (2u 6, 2u —5, u2„—

q'.=4%a.+bali +by)ty. &=»3

(d) 3 2 „2+d2 3X2 p2 d3 3 2 p2 d4 3 2 p2)/

Qg3 (2d . . .+2d63——, , —d. . . ,—d~ ... „.—d3. . .—d~3. ..)/2v 3,

fg2 ——(2d~ „p „p+2d6, , —d. . .—d, , —d, , —d, , )/2W3,
) ) ) )

43 ( d$ 2 2 dP 2 2+d3 2 g2+dg 2 2)/2 I

Pp2 (2p6 z
—2p5 i —p2 & +p& &

—p4 y+p3 y )/2W3

ti'p3 (p2, x pl, x p4,y+p3 y)/

where the functions d„and p„are the valence d and p orbitals on the )rth ion, respectively, and the quantities b
represent magnitudes of hybridizations between these orbitals. It is noted that orbitals on the 8 ions cannot be
hybridized with 42 and V3. The results of the APW band calculations show that the quantities b have com-
parable orders of magnitude. The orbitals d, , „etc., have their large densities in planes perpendicular to
the directions of the A-ion chains, while d, , „etc., and p~, etc., have their large densities in the chain s

directions. The latter two kinds of orbital, therefore, couple strongly to the displacements given by Eqs. (1) and
(3), playing an important role in the structural transition.

The I &q subbands in a small region containing the I point in the presence of the ionic displacements with

the I &2 symmetry are known by k. p perturbation theory. ' The effective Hamiltonian H
k

for the band

states with wave vector k has been shown to be given by
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Ak2
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where a, and a„are, respectively, the annihilation
and creation operators of electrons in 4„, m* and

m,* are, respectively, the isotropic and anisotropic
effective masses, gp is the coupling constant between
the electron and the uniform distortions while g; is
the coupling constant between the electron and the
internal relative disPlacements, cp (:—c» —c13) is an0 0

elastic constant in the absence of the I 13 electron-
lattice coupling, V is the crystal volume, and o3; is
the frequency of the I 12 optic modes. The terms in
111 /2m, ' in Eq. (5) arise from the mixing of the I 12

states and the other bands. The band-structure cal-
culations show that the I 12 states are isolated far
from the other bands near the I point. Therefore
the terms in fi /2m, ' are small compared to the
terms in 1' /2m* and are neglected for simplicity in
the following. Since the difference between m~ and
the bare free-electron mass m arises also from the

U33 = U33 —cos(8/2),

U$3 — U3$ —sin(8/2),

with

Qc 0 Vg 0 Q 2 +&igi Q 2e=tan-'
Qco Vgorr3+N;glQ3

Then H
k

is diagonalized as follows:

(8)

band mixing, the I 12 subbands in the absence of the
ionic displacements become twofold-degenerate par-
abolic bands with the effective mass comparable to
the bare electron mass. We transform a„ into a k„
by

3

a
k

—— ~a~,
v'=2

where

H-=e- a- a- +e- a- a-
14 142 1&2 142 143 143 143 '

k2 fi k'
+

2m*

1/2
cpV

N

Ng
gp&2+ ~~ g1Q2 +

' 1/2
coV

F0~3+ g;Q3

2 '1/2

(10)

The obtained bands (10) with no ionic displacements
show some of the properties of the I 12 subbands cal-
culated by the APW method, such as their large
pasitive effective mass and the fairly isotropic na-

ture around the I point. The deviations between the
parabolic bands and the true bands increase with in-

creasing k. Without going into more detail of the
true band structure, we study the structural transi-

c

tion on the basis of the bands (10) by assuming that
the deviations do not change the qualitative proper-
ties of the structural transition when the Fermi
momentum is sufficiently small and kr3T3r is much
smaller than the bandwidths. It should be noted
that the electron-lattice coupling in Eq. (10) is very
different fram those in the other band
models 16, 17,24, 25

III. EQUILIBRIUM DISPLACEMENTS IN THE LOW-TEMPERATURE PHASE

The Fermi level eF crosses nat only the I 12 subbands, but also some other bands consisting of s orbitals of A

ions and p orbitals of 8 ions. The latter bands have only small densities of states at eF and are insensitive to
the diplacements given by Eqs. (1) and (3). Assuming that the effects of these bands are included in the lattice
free energy, we consider the only 1 12 subbands explicitly for the electronic free energy. The total free energy of
the electron-lattice system is then given by
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F= —, Vc[](u 2+ u i )+ —,co;(Q2+gg )+(+Vcpro;(u2Q2+ uigi)+ Vnp

—2k& T g {ln I 1+exp [—( e z
—p ) /k& T] j + ln t 1+exp [ (—e-„p—) /k& 7 ] I ),

k

where p is the chemical potential, n is the number of
electrons in the I ]2 subbands per unit volume, ki] is
the Boltzmann constant, and T is temperature. The
first and the second terms on the right-hand side of
Eq. (11) are, respectively, the energies of the bulk
distortions and the optic-mode displacements. The
third term is the energy of the coupling between the
two types of displacement ' ' with the dimension-
less coupling constant g. This term arises from the
fact that the A sites are not at centers of symme-
try. The other terms are the electronic contribu-
tion to the free energy. The equilibrium displace-
ments are obtained by minimizing the free energy

I

l

(11) with respect to ur, ui, Q2, Q&, and also p. We
can easily prove that the equilibrium displacements
have the relation

pV R —gRo
u„ (12)

go —gf

at any temperature. The linear relation was ob-
tained also for the other band models. ' lf
higher-order terms in u„and Q„, which were not
taken into consideration in Eq. (11) [see Eq. (17)],
cannot be neglected, the linearity does not hold true.
Substituting Eq. (12) into Eq. (11), we obtain the ef-
fective free energy as

F/V = —,C„u +pu —keT j&(e)(le[1+exp[ —(e+)VCe V/NGeu )x)fkuT]—)

+111I1+exp[ —(E—'t/Cp V/EGpu —
][i )/kr] T] ) )dE (13)

Here we used the definitions

u =(ur+ui)'f
e

{1—0')g,"
Cp ——c['] 1+

(go —0a )'
1/2(a —(go)

Go= lgol 1+
(1 0')g o—

~(p) (2ir2) —
1(2nr g/]]r2)3/2i

where

c[]——(1 —( )cp .

The quantity co is the effective elastic constant of uz
and uq for a crystal without the I ]z subbands, and
should be positive to stabilize the crystal. The re-
normalized constants Cp and Gp always become
larger than cp and

l gp l
because the bulk distortions

accompany the optic modes. Equation (13) gives the
equilibrium conditions as follows:

u = Ge f &(e)[fe(e)—fx(E)]du,
v

0

(14)

f2(~)
' =

I 1 +exp[( e++Co V/N Gou

—
] )/4~]l (16)

Equations (14)—(16) determine u =(u&+u&)'f but
not ur/ui ——tan8. The directions 8=0, 2m/3, and
4'/3 correspond, respectively, to elongations along
the z, x, and y axes, whereas the directions 8=m/3, .
rr, and 5'/3 correspond, respectively, to contrac-
tions along the y, z, and x axes; the other general
directions give orthorhombic distortions. In our
simplified theory, these kinds of bulk distortion with
a common u have the same stability. The reason for
this isotropy in the uz-u& plane is that the ground
subband e

& &
can be lowered by the same amount for

any 8 if —sin(8/2)%'2+cos(8/2)%& is chosen for the
graund subband [see Eqs. (6)—(10)]. Such isotropic
nature was not obtained for any other previous
madel of the structural transition in the A15 com-
pounds. For real substances, however, there exist
small anisotropy energies in the u2-ui plane, which
originate from some higher-order effects and the
band anisotrapies. For our isotropic band model,
the most impartant anisotropy energy Fi is given by

with

36+ 2E (15)
Fi/V =(A3 B3)u cos(38) . (17)

In Eq. {17)the term in A & is the anharmonic lattice
energy; the term in B& arises from the electron-
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a=2ao&(EF)Go, (18)

where ao is the lattice constant of the undistorted
crystal. Figure 3 shows the equilibrium u and p at
zero temperature together with the transition
temperature Tsi as functions of a. The phase tran-
sition occurs only for a&1. For 1&a& —,(4)' '
(=1.19), both the upper and lower bands are partial-
ly occupied by electrons in the equilibrium state, i.e.,
the second-order Jahn- Teller effect works. For
—,(4)'~i&a, the upper band is completely empty,

JO-

lattice coupling which is quadratic in the displace-
ments, as shown in Appendix A. The tetragonal
distortion c/a & 1 or c/a &1 is realized for a nega-
tive or positive constant (Ai —B3), respectively. The
magnitudes of the tetragonal distortions in V3Si and
NbsSn are caused mainly by the linear coupling be-
tween the distortions and the I i2-subband electrons,
but the signs c/a —1 &0 in VsSi and c/a —1 &0 in
NbsSn are determined by the anisotropy energy. We
suppose that for NbsSn, the dopants Al and Sn
change the sign of c/a —1 by changing the sign of
A 3 B3. This gives an explanation of the observed
fact that the magnitude of the distortion does not
change significantly in spite of the change of the
sign of c/a —1 by the dopants. s'

In the following we assume a tetragonal distortion
u 3 ~

=u and u 2
——0 for the equilibrium state. The

coupled equations (14) and (15) for u and IM are
solved numerically. The equilibrium distortion u is
proved to be characterized by only a, which is de-
fined by

i.e., the first-order Jahn-Teller effect works. These
situations are shown in Fig. 4. It is noted that the
former case does not occur for the band structure
with a constant density of states, which was as-
sumed in Ref. 4. The two cases are expected to have
strongly different properties of superconductivity,
elasticity, etc. As will be shown in the following
sections, a for NbiSn is determined to be 1.08 by us-
ing the experimental data of the elastic constant and
the acoustic-phonon frequency. Also for ViSi, a
can be expected to have a value near 1.08. The
second-order Jahn-Teller effect, therefore, occurs in
both compounds. This result is in accordance with
the prediction made by Weger and Goldberg. '

The free energy (13) is an even function of u and
gives the second-order phase transition irrespective
of the value of a. The energy Fi given by Eq. (17)
always makes the transition to be of the first or-
der. 3o'i' The first-order Phase transitions in VsSi
and Nb3Sn were confirmed by the thermal-
expansion and x-ray-diffraction measurements.
However, many experimental data, such as those of
x-ray diffraction, ' magnetic susceptibility, ' ' and
elastic constant, ' '" show that the transitions of
these compounds are almost of the second order.
From this experimental fact, the energy F3 is found
to be small enough to be neglected in the tempera-
ture dependences of u. In Fig 5, th.e calculated u by
use of Eqs. (14) and (15) is shown and is compared
to the observed data on V3$i and Nb3Sn. As seen in
Fig. 5, the calculated distortion decreases faster than
the observed distortions with increasing tempera-
ture. This discrepancy arises from the experimental
fact that the development of the tetragonal distor-
tion is arrested in the superconducting phase.
Shirane and Axe observed the same temperature
dependences of the tetragonal distortion and the

kL kg

0.6-

04-

0.2-
V(@8 E'F EF

0 J.O ).2 l.4 I.6 (b)

FIG. 3. Bulk distortion u and chemical potential p at
zero temperature together with phase-transition tempera-
ture T~ as functions of a. The phase transition occurs
only when 1 &a. The second-order Jahn-Teller effect
works below the value of a indicated by the arrow in the
figure, and the first-order Jahn-Teller effect works above
the value of a. In the latter case, u and p are linear in a.

FIG. 4. I ~2 subbands affected by the band Jahn-Teller
effect. (a) corresponds to the case of the second-order
Jahn-Teller effect which works for 1&a&—(4)' '. (b)

corresponds to the case of the first-order Jahn-Teller ef-
fect which works for —(4}'~ &a.
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1 &2
—optic-mode displacement. This also shows

the smallness of F3. t.o

IV. ISOTHERMAL ELASTIC CONSTANTS

The elastic constants of the system consisting of
the bulk distortions, the optic-mode displacements,
and the band electrons are calculated by the same
way as in Refs. 4 and 37. When the further distor-
tions from the equilibrium state, 5u2 and 5u3, are
induced by applying an external stress, they change
the electron distribution, which induces further the
optic-mode displacements. After the rearrangement
of these internal variables, the free energy depends
on only 5u2 and 5u3. The free energy of the tetrag-
onal phase has the approximate form as

F=Fp+ —, V(e)) —e)2)(5u2)~

+ V(e33 e f3 )(5u3 )' (19)

where Fp is the free energy of the equilibrium state
and the quantities e are the isothermal elastic con-

stants affected by the electron-lattice coupling. Ex-

panding F given by Eq. (11) in powers of not only

5uz and 5u3 but also 5Qz and 5Q3, which are the

further displacements of the equilibrium Qz and Q3,
up to the second order, and minimizing this free en-

ergy with respect to 5Q2 and 5Q3, we arrive at the

same form as Eq. (19). A comparison between this

and Eq. (19) gives the elastic constants in the

0.8- a =1
I

I

0.6-
O

~ 0.4-

0.2-
o

~ N

I I I I I

0.2 0.4 0.6 0.8 I.O

tetragonal phase as

Cii —C12 0 ~ (20)

with

1 —aX(T, u)
1 —8X(T,u)

(21)

FIG. 5. Temperature dependence of the bulk distortion
u. Solid lines are the calculations and the dashed lines are
simple extrapolations of the experimental data on V3Si
(Ref. 5) and Nb3Sn (Ref. 6). Both lines are depicted by
normalizing distortions by those at zero temperature. The
superconducting phase appears at T/T~-O. S in V3Si and
0.4 in Nb3Sn. The effect of the superconductivity on u is

not taken into account in the calculations.

[X(T,u)] '= , kgT V(FF)—
—1

E ~6 —&E + E 3E 1 —3E (22)

X(TM,O) =1/a . (23)

The elastic constants in the cubic phase are obtained

by taking account of u, =u3 ——Q2
——Q3

——0 as

1 aX(T,O)—
1 8X(T0)—

Expressions of the elastic constants similar to those
given by Eqs. (21) and (24) were obtained for a local-
ized electron system exhibiting the cooperative
Jahn-Teller effect and for the band-electron sys-

where 8 represents a contribution of the I ~2 optic
modes to a and is expressed by

8=2ap&(eF)g; .

In obtaining Eqs. (20)—(22), we already used the
equilibrium conditions (14) and (15) and also

e33 e]3 —0 at the transition temperature TM,' TM
satisfies

I

tems. ' Equation (20) shows that e
~ &

—e &2 van-
ishes below TM even when 5uz accompanies 5Q2.
This anomalous behavior of e

~ &

—e ~2 originates
from the isotropic nature of the electron-lattice cou-
pling in Eq. (10) and of the free energy (13) in the
&2-u3 plane, being characteristic of the I,2-subband
model. In order to understand this result, we depict
our free energies below and above T~ in Fig. 6.
seen from Fig. 6(a), the deviation 5u3 from an
equilibrium tetragonal distortion increases the free
energy, but 5u2 does not increase the free energy in
the harmonic approximation. This is the reason for
e33 e»@0 and e

~ ~
—e ~2

——0 below TM . Above T~,
on the other hand, both 5u 2 and 5u 3 increase the
free energy and e&f e/2 ( —e33 e/3) has a nonzero
value except at T = Tt/I. When the anisotropy ener-

gy (17) cannot be neglected, e» —e&z below TM no
longer vanishes. However, e» —e~2 remains small
for the small anisotropy energy. The electron-lattice
couplings in the previous models do not have an iso-
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L—
Up

(o) T(TM (b) T&TM

FIG. 6. Free energies below and above TM. The circles

0 show the possible equilibrium points. At T & TM, the
tetragonal distortions with c/a & 1 [8=tan '(u2/u3)
=0, +2m/3] or c/a & 1 (e=n., +m/3) are realized by the

anisotropy energy F3. If F3 is sufficiently small, 5uz does

not give rise to a significant increase of the energy, in con-

trast to 5u3, in the low-temperature phase.

tropic nature as in the I (2-subband model. There-
fore both cii —e(2 and c33 c(3 in those models re-
cover from the softenings with decreasing T from

24, 25
M
The temperature dependences of the elastic con-

stants depend on a and 8. The calculated elastic
constants are shown in Fig. 7 for some values of a
and 8/a. When a and 8/a have small values,

eii —c(2 in the cubic phase is remarkably softened

even at high temperatures and has an inflection
point near TM. In the tetragonal phase, the soften-
ing of C33 c(3 decreases with decreasing T. At
T=O, c33 c]3 becomes co for a& —,(4)', while it
is still softened for 1 &a & —,(4)'/ . This is because
in the latter case an electronic contribution to the
elastic constants partially cancels co. Both c» —c(2
in the cubic phase and c33 c]3 rise more steeply for
larger values of 8/a with increasing

~

T —TM ~.
Figure 7 also gives a comparison between the calcu-
lated curves and the experimental data on V3Si (Ref.
10) and Nb3Sn. " We obtained a=1.08 and 8=0.22
for Nb, Sn by fitting the calculated curves of
ci i

—c(2 and the phonon dispersions (see Sec. V) to
the experimental data. The same temperature
dependences of the observed elastic constants
c i i

—c (2 in Nb3Sn and V3Si show that V3Si has
similar values of a and 8 to those of Nb3Sn. Agree-
ment between the theory and the experiments is sa-
tisfactory. s From a small value of 8/a we find
that the I (2 optic modes do not play a main role in
the structural phase transition in these compounds.
As shown in Fig. 7, the observed elastic constants
c i i

—c(2 of both compounds are very small below
TM in agreeinent with the calculation. This gives
another confirmation of the smallness of the energy
(17). Unfortunately, we have no experimental data
of c33 c(3 at present, which can distinguish the
cases 1 &a & —,(4)'/ and —,(4)'/ & a most directly.

tii 0.8

z
(- 0.4
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~ 0.2
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LU

(C(I —C(2),
0 (.0 2.0 4.0

T/TM
FIG. 7. Temperature dependence of the elastic constants. The solid lines are the calculations for some values of a and

e. The line 4 corresponds to the case of the first-order Jahn-Teller effect. The calculated c» —c~& vanishes below T&.
The experimental data of ci( —c&2 on V3Si (Ref. 10) and Nb3Sn (Ref. 11) are also shown.
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V. PHONON SOFTENING

We consider phonons with wave vector q of small

magnitude, since the electrons in a small region con-

taining the I point participate to the structural tran-

sition. The phonons at small q in the absence of the
electron-lattice coupling are known by applying the

idea of k p perturbation theory to lattice dynam-

ics. All phonon normal modes at q =0 mix with

each other at a general q (&0). In the following,

however, we neglect the phonon modes other than

the three acoustic and I'lz optic modes, since they

do not couple to the I &z electrons. At q=o, the

eigenvectors of the I &z oPtic modes, ez and e3, are

given by Eqs. (2) and (3), whereas those of the acous-

tic modes s=4, 5, and 6, e4, ee, and ee, correspond

to the translations of the crystal as a whole along

the x, y, and z axes. Their eigenvectors at q+0,
e, (q), are expressed as

(25)e, (q)= g U~ (q)e, .
S

The phonon frequency co=, together with U~ (q)
satisfies

(26)QD„(q)U~, (q)=az-, , U,', (q),
S

where D„(q ) is an element of the dynamical matrix
D( q ). We expand D( q ) in powers of q and use a
symmetry consideration to obtain D(q). The ob-
tained result is given by Eq. (27) where md is the
density of mass, c», c,z, and c44 are the elastic con-
stants in the absence of the I &z subbands and the
1 ~z optic modes, and c; and c are some expansion
coefficients,

I

cu;+C;q +—(3q, —q2)
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(27)

H = g e-„„a-„-„a-„„+g flu-, b, b

I

q S V, V

qS

2X

1/2

In obtaining Eq. (27), we already took into account
that the potential energies for some ionic displace-
ments with q=0 are expressed as in Eq. (11). In
terms of the phonons obtained by solving Eqs.
(25)—(27), we write the Hamiltonian of the
electron-phonon system as follows:

I

with

—q, VV

k

P„=(b-„+b -„),

where b and b -, are the phonon annihilation and

creation operators, respectively. The electron-
phonon coupling constants g- ~ in Eq. (28) are re-

lated to each other through the crystal symmetry. '
As will be shown in Appendix B, they have the fol-
lowing form:

g-S,~ =
co

S

Co
az;g; U~z(q)+i

2md

+ co;g; U, 3(q)+t
l.

' 1/2

g [q„U, (q) —q U, &(q)) (5„z$„,3+$ 3$ z)

' 1/2

go[2q. U'e(q') —q. ~,'4(q) —q, &,'3(q)1 (&,z&. z
—&.3&.3)

Co+ i
3Hid

«[q. U'4(q)+q &,'s(q)+q U.e(q)) (&.2~ z+~ 3~ '3) (29)
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and

2
D, (q, Q)=

(fiQ+ i5) —(iruu-, )

f (~V+ q}
G~(q, Q)=2+ —E~,+1}tQ+i 5k+ q, v kv'

(30)

(p- ~)n and (P-, )n should satisfy the self-

consistent equations as follows:

(4-„)n—g
V, V

qS

2N

1/2

g qs, vv'

xD,'(q, Q)(p, )„=0, (32)

where g0 is a constant and 5~ is the Kronecker 5
function. The term in g0 in Eq. (29) arises from the
coupling between the electrons and the I

~
mode of

distortion which was not taken into account in Eq.
(5).

Sham, Bhatt and McMillan, 5 and Bhatt and
Lee studied the lattice dynamics for the model
with the three one-dimensional bands (Labbe and
Friedel model) and the Gor'kov model by using their
respective methods. Here we investigate the
resonant frequencies of the I »-subband electron-
phonon system on the basis of the linear-response
theory. ' The thermal average of the electron densi-

ty varying with space r and time t,

(p- ~)nexp(iq r .iQ—t +5t), 5=0+

induce those of the phonons

( tI}-,)nexp( i q r —i Qt +5t )

and vice versa through the electron-phonon cou-
pling. When the retarded Green's function of free
phonon D, ( q, Q) and that of free electron
G~(q, Q) are defined, as usual, by

S

qs

2N

1/2

xG' (q, Q)(y-, )„=0. (33)

The resonant phonon frequencies Q are determined
from the condition that Eqs. (32) and (33) have a
nontrivial solution of (P- )n and (p- ~)n, i.e.,

~
A(q, Q) —Q I

~

=0, (34)

where I is the 5 X 5 unit matrix and A( q ) is the 5 X 5

matrix defined by

Agg(q, Q)=co-, to-, , 5~+N 'gg*, ~g-, , ~
V& V

XG" (q, Q)

(35)

As seen from Eqs. (34) and (35), the phonons in the
absence of the electron-lattice coupling interact on
each other via electrons. The three of the solutions
of Eq. (34) give new acoustic modes whose frequen-
cies are zero at q=0. In the A15 compounds, the
tetragonal distortion u3 and the optic-mode dis-
placement Q3 appear below T~. The soft modes of
these compounds are, therefore, one of such acoustic
modes. We discuss mainly the acoustic modes in or-
der to clarify a relation between the phonon soften-
ing and the phase transition. For these modes,

G~(q, Q) in Eq. (35) are approximated by
ReG~(q, o), where Re means the real part of quan-
tities. Since g-, ~ given by Eq. (29) is strongly an-

isotropic with respect to the direction of q, the
softening also depends on the direction of q.
We substitute Eq. (29} with co-, and U~ (q) which

are known from Eqs. (26) and (27) into Eq. (35), and
solve Eq. (34) approximately. The obtained acoustic
phonon frequencies are as follows: When

q =(q/3/2, q/V 2,0),

c0 1+N GORe[G23( q, o}+G32( q, o}]
2nd 1+N 'g; Re[G23(q, o)+G32(q, o)]

(36)

2

Q- („0)L
—— ((c~i+ci2+2c44 ——,g c„)+—,coI1+N 'g; Re[Gz2(q, o)+G33(q, o}])

X [ (g0 —v 2g0 —gg; )'N 'ReG &z( q, o)+ (g0+ ~2g0 —gg; )'N 'ReG» ( q, o)

+Sg,'g N 'ReG»(q, o}ReG33(q,o)]), (37)
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2 0 20- [„0]T
——(c44/md )q

and when q =(0,0,q),

0- [~&]„—
— ( (c» ——,P cp)+ —,cpI1+N 'g; Re[Gzz(q, 0)+G»(q, 0)] I

X[(gp+gp/~2 —gg;) N 'ReG22(q, O)+(gp g—p/W2 g—g;) N 'ReG33(q, 0)

+2gp'g N 'ReG»(q, 0)ReG»(q, O)]), (39)

2 2 0 2

q, [001]T q, [001]T 44 (40)

In Eqs. (36)—(40), we have specified the modes s =4, 5, and 6 in terms of the direction of q and the polariza-
tion; the polarization vector of [110]T& is parallel to [110]. By using Eqs. (31) and (36), 0- [, ,0]T is rewritten

more explicitly as

co 1 aX(T—q)

2m, 1 eX(T,—q)
{41)

with

x(Tq) ,g=f
2qkF „, o [+exp[(fi k /2m +{—1)"QCpV/NGpu p)/kj3T—)

(R /2m~)(2kq+q2) —2( —1) ]/C0V/NGou
Xln

(A' /2m*)( —2kq+q ) —2( —1)"QC0V/NGpu
(42)

where A'kF is the Fermi momentum in the undistort-
ed crystal. Expanding X(T,q) in powers of q, and

using Eqs. (23) and (41), we can show that the sound
velocity lim& p(Q [&&0]T /q) vanishes at T=TM,
and the [110]T& mode is the soft mode. However,
lim~ p(Q [&&0]T /q) vanishes also at T&TM be-

cause of the presence of the equilibrium conditions
(14) and (15). This is again characteristic of the
I ~z-subband model.

Figure 8 shows the acoustic-phonon frequencies
at T =0 and oo which are obtained for a set of the
values of the parameters in Eqs. (36)—(40). The
modes [110]T2, [001]T„and [001]T2 are unchanged

by the phase transition, since these modes do not
couple to the I &2-subband electrons. The mode
[110]T, is remarkably softened, especially in a re-

gion of 0&q &2k+, while the softenings of [110]L
and [001]L are smaller than that of [110]T,. This
difference originates mainly from the fact that local
distortions produced by [110]L and [001]L with
small q contain small tetragonal- and ortho-
rhombic-type distortions compared to those pro-
duced by [110]T~. Some of these properties of the
acoustic phonons were also obtained for the Gor'kov
model by Bhatt and McMillan. ' Our softenings of

I

the acoustic phonons agree qualitatively with the ob-
servations on V3Si above Tsr. ' From Eq. (41) we
see that 0

[& ~0]T is characterized by a and e. Fig-

2.5-

2.0—

0 +'
2

X
q/kF

FIG. 8. Calculated dispersion curves of the acoustic
phonons along some directions of wave vector q. The
bold and thin lines correspond to T =0 and oo, respective-
ly. The lines were depicted as an example for a set of the
values as a=].08, 8=0.22, (=go =0, c»/co=[. 8,
c ~2/co ——0.8, and c44/co ——0.3.
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FIG. 9. e dependence of the dispersion curve of the

[110]Ti mode (q~ ~[110], e~ ~[110]) at zero temperature.
The sound velocity at the limit q ~0 is always zero except
for 8/a = 1.

J.O 2.0 3.0
q/kF

FIG. 10. Temperature dependence of the dispersion
curve of the [110]Timode (q~ ~[110],e~ ~[110]). The solid
lines are the calculations at the temperatures given in the
figure for a=1.08 and 8=0.22. The experimental data
on Nb3Sn (Ref. 13) are also shown.

ure 9 shows the 8 dependence of Q- (»o)~ at zero

temperature for a fixed value of a. The softening of
Q- (»o)z decreases with increasing 8/a and disap-

pears at 8=a, although the sound velocity of
Q- (iio)z at the limit q~0 is always zero except

for 8=a. We obtain Q- (»o)~ above T~ by sub-

stituting u =0 and )u determined by Eq. (15) into
Eqs. (41) and (42) ~ The temperature dependence of
Q- (iio)& thus obtained is shown in Fig. 10, and is

compared to the experimental data on NbiSn. ' As
seen from Fig. 10, the calculated sound velocity at
T & T~ is no longer zero. At temperatures near Tsr,
dQ-(»o)z /q changes significantly at q kF. By

comparing the calculated dispersion curves to the
observed ones, kF is determined to be about
0.28(ir/ao). The remaining parameters a and 8 are
determined so that the temperature dependences of

and cii —cia above T~ are fitted to the

experimental data. The obtained result is a=1.08
and 8=0.22. The agreement between the theory
and the experiments is satisfactory. However, the
calculated curves deviate from the experimental data
at q &2k+. This is because the I ii subbands used
here do not reproduce the true subbands at large k
and because the q dependence of the coupling be-
tween the acoustic phonons and the I iz-subband
electrons cannot be neglected at large q. The ob-

served softening of Q- (» )z at T=T is a little

larger than the calculated one. This seems to be due
to the neglect of phonon damping in our calculation.
According to neutron scattering experiments on
NbiSn, the broadening of the [110]Ti phonon line
increases rapidly below 60 K. Even at 5 K, which is
sufficiently lower than TM, the [110]Ti mode has a
large damping. These facts suggest that damping
processes also play a role in the electron-phonon
coupled modes.

Equation (34) gives also the optic-phonon fre-
quencies Q-2 and Q-i. The matrix elements ofq2 q 3

A(q, Q) between the optic and acoustic modes be-
come zero with decreasing q to zero. The acoustic
modes modify the dispersion of Q and Q i byq2 q 3

only a little amount at small q being neglected.
Then Q z and Q-i satisfy the approximate equa-q2 q 3

tioos as

Q ~i——ni,'I I+N 'g; Re[ GQ3(q, Q-i)

+G»(q, Q, )]j, (43)

Q~i=ai; I 1+N 'g; Re[ Gzz(q, Q s)

+Gsi(q, Q )] j . (44}

hen go=(=0, i.e., the acoustic modes do not at
all participate to the structural transition, and more-
over, when g; is sufficiently large, Eqs. (43) and (44)
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give the solution Q. z, Q-3~q which can be theq2' q3
soft-mode frequencies. When go and/or (&0 as in
V3Si and Nb3Sn, Go is greater than g;. The [110]T&
mode, therefore, becomes unstable at the highest
temperature giving TM, as seen from Eqs. (36), (43),
and (44). In this case Qoq and Q03 are not affected
by the structural transition since G (O, Qo„) van-
ishes for Qo„&0. ' This is the reason why the ob-
served Raman shift of the I && optic phonons in V3Si
exhibits only a weak temperature dependence in the
cubic phase. '

VI. CONCLUDING REMARKS

The various aspects of the structural phase transi-
tion in the 215 compounds have been explained suc-
cessfully by ascribing the phase transition to the
I &&-subband electrons near the Fermi level. It has
been shown that the observed peculiar properties
such as the weak first-order structural phase transi-
tion, the stabilities of c/a & 1 and c/a & 1 being al-
most the same, and c» —c&z-0 in the tetragonal
phase originate from the properties of the coupling
between the I ~q-subband electrons and the lattice.
We approximated the I,z subbands by the two para-
bolic bands. This approximation is justified only in
a small region containing the I point. The bands
other than the I &z subbands were not treated expli-
citly. Those bands are insensitive to the structural
change, but behave as an electron reservoir for the
I &z subbands. Moreover, we neglected the Coulomb
interactions between electrons, which reduce the
band electron-lattice coupling through the screening
process. These approximations must be improved
for more quantitative studies on the structural phase
transition.

Here we compare our theory to the earlier works
on the structural transition in the 215 compounds.
Labbe and Friedel' and other authors ' ' as-
sumed threefold-degenerate bands for the bands
causing the structural instability. The ground elec-
tronic state in the tetragonal phase is a singlet or
doublet depending on the sign of c/a —1. This
means that the electronic free energy is not an even
function of c/a —1 even in the absence of the
higher-order couplings between the electron and the
lattice, and gives the first-order phase transition.
This situation holds also for the R(4) model pro-
posed by Lee, Birman, and Williamson. In the case
of the I ~z-subband model, one of the two bands goes
down while the other goes up, irrespective of the
sign of c/a —1. Therefore the electronic free energy
(except for the energy of the higher-order coupling)
is symmetric with respect to the sign of c/a —1.
The transition is almost of the second order if the
third-order term in c/a —1, F3, is sufficiently small.

When F3 becomes large, the discontinuous change
of c/a —1 at T~ becomes large. Then the models
of the twofold- and threefold-degenerate bands give
similar properties of the structural phase transition.
However, many experiments prove that F3 is
anomalously small in the 315 compounds. Another
characteristic of the I &q-subband model is the iso-
tropic nature in the uz-u3 plane. In the threefold-
degenerate-band models, one of the two tetragonal
distortions c & a and c & a is stabilized, depending on
the electron number. ' This means that the electron-
ic free energy is strongly anisotropic in the uz-u3
plane. Also, in the Gor'kov model, there exists the
anisotropy which originates from the anisotropic
coupling between the electrons and the lattice.
These strong anisotropies are unfavorable to the ex-
perimental facts such as c~~ —c&z-0 below T~ and
the stabilities of c &a and c &a being almost the
same. The earlier models often assumed low dimen-
sionality in the electron bands. Labbe and Friedel
supposed that the sharp peaks in the one-
dimensional bands of the cation chains are impor-
tant to the structural instability. Gor'kov et al. also
assumed a small interchain transfer of electrons so
that the Fermi surface has well-developed fiat por-
tions containing the X points. In contrast to these
models, the I ~q subbands considered here are rather
isotropic around the I point. Although there exists
no sharp peak in the density of states of our bands,
the structural transition can occur when the Fermi
level lies above the band bottoms and the electron-
lattice coupling is large enough to split the degen-
erate bands by a considerable amount. The assumed
one dimensionality gives rise to another question. In
crystals with the purely one-dimensional bands,
long-period ionic displacements with q =2kF can
occur through the Peierls instability if kF is not
placed at the zone boundaries. Even if nonzero
transfers of electrons between the cation chains par-
tially smear the flat portions of the Fermi surface,
large Kohn anomalies can be expected at q =2kF on
the I -X lines. Experimentally, such anomalies
have not been observed. The I &q-subband model, on
the other hand, does not exhibit any notable soften-
ing of phonons at q =2k~ on the I -X lines, being in
agreement with the observations. ' '

In this paper we have extended the theory of the
cooperative Jahn-Teller effect in localized electron
systems ' to the case of the band-electron system.
It has been proven that the band Jahn-Teller effect
has some characteristic properties such as the
second-order Jahn-Teller effect and the softening of
the acoustic [110]T, phonon in a range of
0 & q & 2kF. The band Jahn-Teller effect for
twofold-degenerate bands was discussed by some au-
thors in order to explain the cubic-to-tetragonal
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transitions in LaAg„ In, , (Refs. 47 and 48),
La3 „S4 (Ref. 49), and also the 215 compounds.
In these theories, the bands are assumed to have

sharp peaks whose positions or widths are changed

by the structural change. Recently, Weber and
Mattheiss confirmed by calculating the energy
bands for tetragonal Nb3Sn that the I i2 subbands
are split significantly by the tetragonal distortion as
predicted by k p perturbation theory . In the
present theory together with Ref. 4, however, it has
been emphasized that just the symmetry of the I i2

subspace governs the various aspects of the structur-
al phase transition in the 315 compounds.

We have not discussed the relation between the
structural phase transition and the superconductivi-
ty. If the electrons in the I', 2 subbands pertain also
to the superconductivity, both phase transitions can
strongly interfere with each other. The study on
this problem is left for the future.

APPENDIX A

We obtain here the electronic contribution to F3,
F3. The following calculation is a simple extension
of the theory made in the localized electron sys-
tem to the case of the band-electron system.
The electron-lattice coupling has also the second-
order terms in the displacements, H'z, which are ex-

pected to be smaller than the first-order terms in Eq.
(5). Taking account of the relation (12) which is ap-
proximately true for a small higher-order term, we
write H'k in terms of only u2 and u3 as

H'- =—
k

' 1/2

GOB3[ 2u2u3(a2a3+a3a2)t
NC0

+ (u2 —u3)2 2

j(3

' 1/2
C0V

2m» N

2 3
X 1+ u cos(30)

1/2

(A2)
where a small term has been neglected. We substi-
tute Eq. (A2) into the free energy F given by Eq. (11)
and expand F in powers of B3. F3 is obtained to be

Fg
' ' 1/2

3
G0B3u cos(30)

0

X e 3e —2e e.

Equations (14) and (A3) lead us to

F8
= —B3u3cos(38) . (A4)

X (a 2a2 —a 3a 3)],t

(A 1)

with the coupling constant B3. The total Hamiltoni-
an (H-„+H'k ) has the eigenvalues as

APPENDIX B

The couplings between the I i2-subband electrons and phonons at small q are obtained by use of a symmetry
consideration. The electron potential at r produced by ionic displacements is written as

5 V( r ) = g v„;( r —R~ )5u„;(j,r ),
J)K) l

where v„;(r —RJ ) is the potential at r produced by the unit displacement of the xth ion in the jth cell at RJ
along the i axis, and 5u„;(j,r ) is the net displacement effective to an electron at r. Since electrons are also dis-

placed by the acoustic modes, 5u„;(j,r) is given by

3

5u„;(j,r)= g g U~ (q)e„;,
N m„,q, s

+ e "g g U~~ (q)(q e;, +q; e;, qe;, 5;; —)(r RJ —r„—); Q-,e
m s'=4 i'

(B2)

where e4, e5, and e6 are the unit vectors along the x, y, and z axes, respectively, U (q) is defined by Eq. (25),
r„denotes the position of the )rth ion in a unit cell, and m is the mean value of m„. The I i2-subband states, on

the other hand, are expressed as
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0s- (r)=kv V
(83)

where (t)&(r)=(t)~(r —R ). Equations (81}—(83) give

3 6

(+- - ~&V~~-„,&=& g Q- U~U«- X U'(q)A~+-. '+ X X
q, s &'&" $'=2 s'=4 i,i'

(84}

Ay&y r

mK
Ssg

In Eq. (84) we have defined A~~-, and A&~-;; by
' 1/2

es( s llt)~ ~ g (t)~ ggyU~
g + g, w g, v' g, Kl

(85)

Av v-

with

mSsg

1/2

(U~, +U~ ., )P~ (86)

s-, „=ao f s„(r)e ' 'dr,
v-„,.= vKi r e 'g' r,
v-„,, , = vKi r r —r„;e ' ' r,

where g and g
' are the reciprocal-lattice vectors, and U-„,. and U- „,,. have been used, respectively, for

U(-, -) „, and U(-+-) „,,' with small q. We can prove that the quantities A~;,, are transformed by the sym-

metry operations in space group Pm 3n as the bases of the representation I )2X I (2X I (2, while the quantities

A~~-;; are transformed as those of I (2X I »X [I »XI »]. The nonvanishing quantities A& ~, or A«
are found by using the fact that among the linear combinations between the quantities A& ~, or A~ ~;; only
the bases of the identity representations are nonvanishing constants. After some manipulations, Eq. (84) is re-

duced to

(e-„,, „i(3V i e-„„,)

('g ' [(U 2 Uv'3 + U 3Uv'2 ) U 2 ( q ) + ( U'„2 Uv'2 U 3 Uv'3 ) U, 3 ( q ) ]
N

q, s
' 1/2

Cp
+i gOI (U 2Uv 3+ U„3Uv 2)[W„U 4(q ) qy U 5(q)]~V—2+(U„'2Uv'2 —U'„3Uv'3 )

X [2qsUs6(q) —ex Us'4(q) —
ey ~s'5(q)]~3 6l

Cp
+l

md

' 1/2

go I(U:2Uv'2+ U 3Uv'3)[q U,'4(q}+qy U,'5(q)+g U 6(q)]/~&I )

(87)

In obtaining Eq. (87), we already took into account that Eq. (87}with q =0 should give the term of the cou-
pling between the electrons and the displacements in Eq. (5). Replacing U ~ in Eq. (87) by 5 in the cubic
and tetragonal phases, and comparing Eq. (87) to Eq. (28), we arrive at Eq. (29).
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