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Effect of electric field on the lattice viscosity of doped displacive ferroelectrics
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A general expression for the lattice viscosity in doped displacive ferroelectrics, in the pres-

ence of an external electric field, is obtained using the double-time thermal Green s-function

technique. The mass and force-constant changes between the impurity and host-lattice

atoms are taken into account in the Silverman Hamiltonian augmented with higher-order

anharmonic and electric moment terms. The defect-dependent, electric-field-dependent, and

anharmonic contributions to the lattice viscosity are discussed separately. It is shown that
the lattice viscosity tensor, which is the sum of two terms arising from acoustical and opti-
cal phonons, can be further separated into diagonal and nondiagonal parts. The nondiago-

nal contribution vanishes in the absence of defects. The frequency and temperature depen-

dences of the viscosity tensor are also discussed.

I. INTRODUCTION

In the past there has been considerable interest in
investigating the physical properties' of displacive
ferroelectrics doped with impurities. These proper-
ties reveal interesting applications in ceramic indus-

try, optoelectric devices, and in Masera and
waveguides where these crystals doped with specific
impurities are of great importance because of their
response to applied electric and magnetic fields. In
displacive ferroelectrics the soft transverse-optic
mode of vibration is responsible for most of the
temperature-dependent properties of these solids,
and it is the anharmonic interaction which stabilizes
this mode in the paraelectric phase. So the anhar-
monic interactions cannot be neglected in discussing
the physical properties of these crystals. The
phenomenological theory of lattice viscosity due to
De Vault and McLennan ' is extended for displa-
cive ferroelectrics by Goyal and Sharma, consider-
ing up to quartic anharmonic terms in the Silverman
Hamiltonian. However, the lattice viscosity for
displacive ferroelectrics doped with isotopic impuri-
ties has not been considered so far in the literature.

In the present study we have obtained a general
expression for the lattice viscosity of doped displa-
cive ferroelectrics in the paraelectric phase by aug-
menting the Silverman Hamiltonian with the terms
responsible for mass change and force-constant
changes between the impurity and host-lattice
atoms. The effect of higher-order electric moment
terms, due to the deformation of electronic shells in

an external electric field, is also taken into account.
We have also retained anharmonic terms up to
fourth order in the Hamiltonian owing to the vital
role played by the anharmonicity, as mentioned ear-
lier. It is, therefore, also the aim of this paper to
study the interaction of defect and anharmonic
parameters in discussing the internal friction in fer-
roelectric solids.

The Hamiltonian for the problem is described in
detail in Sec. II, and Sec. III deals with the evalua-
tion of required Green's functions. The expression
for lattice viscosity is obtained in Sec. IV, and Sec.
V is left for discussion.

H=Hh+H, —E M, (2.1)

where Ht, is the modified harmonic part involving
the effect of mass change and harmonic-force-
constant change between the impurity and host-
lattice atoms due to substitutional defects, which is
given by

II. HAMILTONIAN

The modified Silverman Hamiltonian4 of displa-
cive ferroelmtrics in the paraelectric phase which in-
cludes defects, dominant third- and fourth-order
anharmonicity, and higher-order electric moment
terms in an external electric field E can be con-
veniently written as
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Hh g~k(ak ak+ i )+g ~k(ak ak+ z
)—

k k

with

X= g C(k, O)Bk,
k, A,

Y= Q D(k, O)Ak,
k, A,

(A 'OA '0+ BoB0 ) fi—BOX+ fiA 0Y+fiZ, (2.2)

(2.3)

(2.4)

Z= g [D(ki, kz)Ak, Ak, —C(ki~kz)Bk Bk, ]+ g [D(kikz)AkAk, —C(kikz)Bk Bk ] .
k), k2, A, k), k2

(2.5)

Here A, =a,o, for acoustic and optic modes, respectively, Ak ——ah+a k, Bk =ah —a k, ak and ak being the
usual creation and destruction operators. The defect parameters C(ki, kz) and D(k&, kz), depending upon the
mass change and force-constant changes between impurity and host-lattice atoms, respectively, are given bys

N n

C(ki, kz) =(—,p ')(Mo/2N)(haik cok )' e(ki) e(kz) g fexp[i(ki+ kz).R(1)]—g exp[i(ki+ kz) R(i)]

(2.6)

D(kikz)=( —,N ')(cok cok )
' g +[13/ p(11') /Mo]e(k i) e(kz)expIi[ki R(l)+ kz R(1')]I,

l, a I', P
(2.7)

where e(k) is the polarization vector, R(l) is the
equilibrium position vector of the Ith atom, b,P ~
denotes the force-constant change, 1 and 1' refer to
the impurity and its nearest neighbors, and
p=MM'/(M' —M). Mo is the weighted harmonic
mean of the masses of all atoms defined by the rela-
tion

Q= g p (k)Ak Ak, q= QBk(k)Ak Akk,
kA, kX

y(k„kz, k3)Ak Ak Ak,
k), k2, k3

(2.12)

(1/Mo) =(f/M')+(1 f)/M, — (2.8)

H. =iriAOP+iri(A;)zQ+iriAOR+fiA+,

—E.M =iriE( —aA o+qA 0+p+ r+s ),
with

(2.9)

(2.10)

P = g a(k)AkAk, p = g A (k)AkAk, (2.11)
k k

where f =n/N. Here N is the total number of
atoms in the crystal whose (N n) lat—tice sites are&

occupied by atoms of mass M, and n sites are occu-
pied by randomly distributed substitutional impuri-
ties each of mass M'. In Eq. (2.6) above, C(ki, kz)
vanishes when n is either zero or N and the prime on
the summation in Eq. (2.2) excludes k =0.

In Eq. (2.1), H, is the anharmonic part which in-

cludes the effect of third- and fourth-order anhar-
monicity and —E.M is the contribution to the lat-
tice potential energy due to the electric moment M
developed in the crystal when placed in an external
electric field E. These contributions are given by

X «ki kz k3)Ak, Ak, Ak,
k), k2, k3

(2.13)

S= g p(ki, kz, k3)Ak Ak, Ak, ,
k), k2, k3

s = g D(k kikz)A3Akk Ak
k), k2, k3

(2.14)

Here a(k), P (k), y(k, ,kz, k3), and p(ki, kz, k3) are
related to the Fourier transforms of the third- and
fourth-order derivatives of the lattice potential ener-

gy. a, A(k), B (k), and C(ki, k„k3) D(ki kz k3)
represent the linear, second-, and third-order electric
moment coefficients, respectively.

We now transform the Hamiltonian (2.1) with the
help of a transformation operator T = igEBO, ac-—
cording to the following scheme':

HT ——exp( iT)H exp(iT)—
=H+i [H, T]——,[[H,T],T]+, (2.15)
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2AgE—(P+R +S+qE+ Y')

4figEAO—Q+4fig E'Q (2.16)

where the value of coefficient g is chosen in such a
way that it eliminates the linear term ( fi—aEAO) in
A 0 from the Hamiltonian (2.1). This gives

g =(a/oio). This transformation is necessary,
whenever the effect of electric field on soine physi-
cal properties of displacive ferroelectrics is sought
through Hamiltonian (2.1). Without this transfor-
mation, the dominant electric-field-dependent term
( —iriaEA0) gives rise to a zero Green's function and
so the electric field effects, through the dominant
first-order electric moment coefficient, are not ob-
tained in the final results. With the aid of the above
transformation, the transformed Hamiltonian opera-
tor becomes

HT Hk——+H, +RA itqE+AE(p +r +s)

III. GREEN'S FUNCTIONS

Consider the following Green's functions for the
optical (A, =o) and acoustical (A, =a) phonons:

Gkk (t t—')=((Ak(t);Ak, (t')) )

i e(—t t')(—[Ak(t), Ak (t')]),

where e(t) is the Heaviside unit step function. By
differentiating Eq. (2.17) for A, =a with respect to t
and Fourier transforming, the equation of motion of
acoustical Green's function via the transformed
Hamiltonian (2.16) is given by

[~ (~ok) ]Gkk'(~) (~k~kk'/~)+4C( k ~k )/ir+(k/~)((Ik(t)IAk' (t )~ ~el) ~t

where

(3.2)

F (t)+ g [4C( k ki }/teak ]Fk' (t)+4~+a( —k', ki)Ak, (t),
k) k)

(3.3)

Fk(t) =Fk(t)+E [A (k) —2ga(k)]Ak+2[B'(k) —4gp'(k)]A 0Ak

+ 2 g [C(ki, ki —k) —2gy(ki, kp —k)]Ak Ak
k), k~

(3.4)

a(k', k i ) = D(k', k i )+[(teak, )'/oak, k]C(k', k i )+(4/oak) g C( —k', k&)D( ki,k'i)—
k~

(cok} =(cok) +8g[2gg(k) B'(k)] E'~k —.

(3.5)

(3.6)

The treatment for the evaluation of the Green s functions adopted here is similar to that considered else-
where. 7 9 Here Fk(t) is given by Eq. (16) of Ref. 7 (hereafter referred to as I), and Fk (t) can be obtained from
it by replacing k with k i. If we now write the equation of motion of the Green's function ((Lk(t);Ak (t') ) ),
appearing in Eq. (3.2) with respect to time argument t and substituting the resulting expression in Eq. (3.2) the
Green's function Gkk (co) can be written in the form of Dyson's equation

Gkk (~)=Gk(~)5kk +Gk(~)P'(k, k', to)Gk(to)+4gk C( k',k")—
where

=Gk(co)5kk +Gk(co)II'(k, co)Gkk (co)+4gk(a))C( —k', k"), (3.7)

Gk(~) =~k l~[~ —(~k)'] I
' gk(~) I~[~ (~k)']I

and the polarization operator 11'(k,co) are given by

II'(k, oi) = 'P( ,k'k, o)c[1 +Gk(~)P '(k, k', to)+4C( —k', k")/tok]

with

(3.8)

(3.9)
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T

P'(k, k', co)= —, ([Lk(t),B« (t'}])+(co/cok)([L«(t),A« (t')])

+ (4/cok) g C( —k', ki)([L«(t),B« (t')])
kl

+ —, ((Lk(t);Lk (t')) ) (3.10)

If the frequencies co are far from the zeros of the denominator in Eq. (3.9), one may expand the right-hand side
in powers of P(k, k', co), and retaining only the dominant '" first term, i.e., II'(k, co)=P'(k, k', co), the Green's
function can be written as

cok [5«k'+ 4C( —k', k") /cok ]
Gkk (co)=

m [co —(cok ) —2co«P'(k, co)]
(3.1 1)

where cok, the renormalized frequency of the mode k, which depends both on defect and electric field, is given

(~k} (~k) +(cok/2'tt) ([Lk(t) Bk' (t }])+(co/cok)([Lk(t) Ak' (t )])

+ (4/co«) g C( —k',
k ))([L«(t),B« (t')) )

k)

(3.12a)

with

=(cok) + W'(k, k')+(4/cok) g C( —k', k', ) W'(k, k, ),
k)

(3.12b)

W'(k, k')=4 co«+4+ C( —k', k~) p'(k)(AoAo)+ g}(ki,k', —k)(ADA«, )
k) kl

+4~'k [D( k', k")+—[(co; )'/co'k]C( —k', k")}+16+C( —k', k', )D( —k', k', )
k2

(3.13)

and

P'(k, co)=(2m) '((Lk(t);Lk (t')) )~ . (3.14)

The response function (3.14) can be evaluated in the lowest-order approximation of perturbation theory via
the following zeroth-order renormalized Hamiltonian

H„„=(A'l4) g }[(cok) /co«)A« A«+co«B« Bk}+(A/4) g [[(cok) /cok]A« A«+co«B« Bk}
k k

+(iriQ/4)(AOAO+BOBO ), (3.15}

where cok and Q are the defect and electric-field-dependent renormalized frequencies for the optic (k&0) and
low-lying transverse optic mode (k =0), respectively; the latter can be obtained by starting with Green s func-
tion ((Ao(t);Ao(t') ) ) and writing its equation of motion in the above manner. We thus obtain

Q = —(;)'+4 iiD(0, 0)+4;g/3 (k)(A, A„)+6(Q),
k, A,

(3.16)

where b, (Q) is the shift in frequency Q. In Eq. (3.16) it is assumed that all modes, other than the soft mode,
remain hard (mean-field approximation). Replacing co by co+i e(a~+0) in Eq. (3.14) and recalling hk(co) and
I «(co) as the real and imaginary parts of the response function P (k, co+i «), we can write Eq. (3.11) as

Gkk (co+i e) =co« gk ~ '[co' (vk )'+ 2t co« I—k (co)] (3.17)

where



28 EFFECT OF ELECTRIC FIELD ON THE LA'I+ICE VISCOSITY. . . 2779

(vk )' = (cpk )'+ 2cpk &k(cp),

gkk' 5kk'+ 4« —k ' k")/cpk

(3.18)

(3.19)

After evaluating the values of various two- and three-particle Green s functions appearing in pq. (3.14) via
the Hamiltonian (3.15), one finds the values of shift Zk(co) and width I k(cp) of the response function as

and

b, '(co) = [b,'(cp)+p'„E ]+g [4C( k',—k')/cpk] [&k,(cp)+g,E']
ki

+16Rega( —k', k))a (k",k;)cpk, [cp (cp—k, ) ]
k)

I'„(c0)= [I"(cp)+pkE ]+g [4C( —k', k~ )/cpk]'[I k, (cp)+pk, E ]
kl

+8m+ a( k—,k &
)a (k', k

~ )(coklcpk, )[5(cp cpk—
, ) 5(—cp+k, )],

ki

(3.20)

(3.21)

where

'I()k = 2[A (k) 2ga(k)] cpk5kk [cp'(cpk ) ]

+4[B'(k) 4gl3 (k)—] (cpk/cpk) g (Nk+1Np)(Q+lcok)[cp (Q+—lcpk) ]
E=+1

+4 g [C(k),kp, k) 2g—y(k)—, kp, k)](cp—k cpk /cok cpk )
k), k~

X g (Nk +lNk )(cpk, +lcok, )[co (cok, +—lcpk, ) ]
1=+1

Pk = 2~[A «) —2g«k)]'(~k/~k)[5(~ —~k) —5(~+~k)1

+4rr[B'(k) 4gi3'(k)] (c—ok/cpk ) g (Nk+lNp)[5(cp Q lcpk ) ——5(cp—+0+ lcpk ))
I=+1

+4m g [C(k),kq, —k) —2gy(k), kq, —k)] (cpk, cpk, /cok, cpk, )

k), k~

Q (Nk +lNk )[5(co cpk, —lcok, )—5(co+—cpk +lcpk )],
I=+1

Nk (Ak Ak ) =——coth( , pRcok)—, Np=(A QADI) =coth( —,pAQ) .

(3.22)

(3.23)

(3.24)

In the above equations b k(c0) and I k(co) are given" by the same expressions (32) and (33) of I, except for the
replacement of Q and cpk by Q and cok~, which arises in our case due to the effect of complete renormalization
of phonon frequencies by the defect and electric moment parameters. Starting again with Eq. (3.1) for A, =o
and proceeding as above, we obtain the following equations for the shift and width of optical phonons:

~k(co) [~k(cp)+PkE ]+g [4C( k ~k 1 )/cpk) [~k((c0)+0k)E ]
k)

+16Reg a( —k', k
&
)a (k",k ~)cok, [co —(cok ) ] (3.25)

k)

with

k( )= [I k( )+SkE')+ g [4« k' kl )/ k) [~k,—( )+0k,E')
k)

+ Srr g a( —k', k ) )a (k",k ) )(cok/cpk, )[5(cp cok, ) 5(co+cd—k—
, )],

k)

(3.26)
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4k 2[~ (k) 2g+(k)l rok5kk'[~ (~k ) ]

+4[B'(k)—4gg(k)) (cok/cok)5kk g (Nk+11Vp)(0+leuk)[ro —(0+look) ] +41V'p0(ct) 40 )

1=+1

+ g [C( —k, kz, k3) —2gy( —k, kz, k3)]
k2, k3

X(~k,~k, /~k, ~k, ) g (Nk, +1Nk, )5'(~k, +1~k, )[~' (~k—, +1~k )']-'
I=+&

+9 g [D( k«kq—«k, ) —2gp( —k«k~«k3)]
k2, k3

X(rokpk, /rok, rok, ) g (Nk, +1Nk, )5'(rok, +look, )[~' (9 k
—+look, )]

I=+&
(3.27)

2g&(k)] (~k /~k )[5(~—~k ) 5(~—+cok )]

+ [ ( ) gl ( )] 5kk (~k /'Q)k ) g (1V'k + 1Np)[5(co —0—leuk ) —5(ro+ 0+ look)

+ 2Np[5(ro —20)—5(co+20) ]

+m g [C(—k, kq, k3) —2gy( —k, kq, k3)1 (rok rok /cok rok )

k2, k3

I

X g (Nk, +1Nk, )5 [5(ro cok lcm—k ) —5(ro+Q—'k +1@'k )]
1=+&

+2~ g [D( —k«kp«k3) —2gp( k, kp«k3)]'—(rok rok /rok rok )

k2, k3

«

X g (Nk, +INk )5 [5(co—iok look ) 5(—co+rok —+look )]
I =+1

(3.28)

where

5 =5,5,+5,5
k2, —k2 k3, —k3 k2~ —k3 k3y k2

(3.29)

and bk(ro) and I k(co) are given by Eqs. (4.2) and (4.3) of I, except for the replacement of rok and 0 by rok and
0, respectively. The value of the optical-phonon Green's function is

Gk '( + ) krak ' '[ ' —( k) +2 klk( )] (3.30)

where

gkk'=5kk'+4C( k «k )/~ok i

(vk) (k) +2~ok~k() i

(cok) =(rok) + W'(k, k')+(4/rok) gC( —k', k ) ) W'(k, k) ),
k)

with

(iok) =(rok) +8cokgE [2gp'(k) —B'(k)],

(3.31)

(3.32)

(3.33)

(3.34)
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W'(k, k')= @ok P'(k)(AOAO)+ +3@(ki,k', —k)(AOAk, )
k)

+16+C(—k', kt) P'(k)(AOAO)+3+@(ki, k', —k)(AOAk, )
kl k)

+4cok tD( k;—k")+[(rok) lrok]C( —k', k")}

+16+C( k', k—2)D( —k', k2) .
k2

(3.35)

IU. LATTICE VISCOSITY

The lattice viscosity tensor due to DeVault and McLennan, as extended by Goyal and Sharma, for displacive
ferroelectrics can be written as

Iij lm ~ Iij lm (4.1)

with

=(Pt( /y) lim f dta "graxra„yj'P()/e y' )(a„(t)ax—(0))(ae(t)ae (0)),
e~o kk'

(4.2)

(4.3)

where y$ is the generalized Griineisen parameter of the phonon for wave vector k, V is the volume of crystal,
and P =k&T. By substituting the value of correlation functions appearing in Eq. (4.2) with the help of fol-
lowing relations,

(ae (t)ae (Q)) —,
' f [(+=(er/rae)j Jee (ra)exp(irat)dar,

Jkk (i(i) = limi (e 1) '[Gk—k (rti+ie) Gkk (re —i e)], — (4.4)
a~0

and carrying out the integration, one finds that the lattice viscosity for the mode A, is given by

lijlm ( Qijlm ) I+( Qijlm )2 t

where

(4.5)

( lijlm ) I g (k )Yk () k
k (e k 1)2

(4.6)

9j~lm )2 — g ~kk'lit () k )™A)— '

, k, k'
(e —1)

~k+ &k

2cok
(4.7)

and

[I k( )] '=16
' « —k" k')~ k I

[I k( )] (4.8)

The lattice viscosity given by (ri;jl )i has a similar form to that given by Eq. (4.9) of I, which has also been dis-
cussed elsewhere. '" Our result (4.6) is modified due to the effect of complete renormalization of phonon fre-
quencies by defect and electric moment parameters besides the anharmonic parameters. The viscosity given by
(ri;~l )2 involves a parameter C( —k",k' ), which contributes only when k&k' [cf. Eq (2.6)]. H.ence this con-
tribution given by g2 can be termed as the nondiagonal contribution. In the absence of isotopic impurities this
nondiagonal contribution vanishes.
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Let us now discuss the following cases:
(i) Chemically pure crystal. In the absence of isotopic impurities, the electric-field-dependent perturbed

normal-mode frequency v«(which we now write as v«) is given by

(vg) = (to«) +4to«P (k)(ApAp)+4to«gg (ki, k', —k)(A@A«, )+2tp«b«(to)
k)

+2'«[P«+Sg P (k} 4g—B (k))E (4.9)

&«(to) =&«(to)+ g«E (4.10)

where I «(to) is the temperature-dependent anhar-

monic contribution and f«E gives the electric-
field-dependent contribution to the phonon widths,

besides the field dependence of renormalized fre-

quencies. For chemically pure ferroelectrics, the lat-

Here g (ki, k', —k) is equal to y(ki, k', —k) for

A, =a, and p(k, ,k', —k) for A, =o. The electric field

dependence of the phonon width can be expressed as

tice viscosity contributed by a particular mode A, is

given by the first term rli of Eq. (4.5). It can be

seen using Eqs. (4.6)—(4.10) that this contribution to
lattice viscosity increases with the applied electric

field E because of the dominant effect of v«occur-
ring in fourth power in the numerator of Eq. (4.6).

(ii) Doped harmonic crystal. Anharmonicity is

often neglected as a good approximation at low tem-

peratures. So with an isotopically disordered har-

monic crystal, we find following expressions for the

perturbed phonon frequency and the width of pho-

nons,

(v«)2= (to««)2+4to«D( k",k'«—)+(4to«)iC( —k, k' )+16g C( k, k2 )D—( k, k~ —)
k2

and

+32to«Re+a( —k, k", )a (k', k i )to«, [to (tp«, ) ]-
kl

(4.11)

f'«(to)=8m ga( —k, ki )a (k', ki )(co«/to«)[5(tp to«) ——5(to+to«}] .
k,

(4.12)

Analysis shows' ' that the relaxation rate (r )k
(=I «) given by Eq. (4.12) gives the usual Rayleigh
scattering law [(co)) dependence] when only the
mass-change parameter C(ki, k2) is retained, but the
modification of force-constant changes through the
parameter D(ki, ki) gives the scattering rate pro-
portional to (cp««)2 besides a frequency-independent
term and would give rise to a non-Rayleigh scatter-
ing, which is also responsible, ' for the experimental
asymmetry in the peak of thermal conductivity
curves. It can be shown that for small values of
(M' —M) and b,P~ti, the mass change and force-
constant change make reinforcing or cancelling con-
tributions to latttice viscosity (ri;Jt )i, through the
term 1 «(to}, depending on whether they are of simi-
lar or opposite signs. Now at lower concentration of
impurities one may neglect' the effect of force-
constant changes and can consider the dominant

mass change. Equation (4.12) is then simplified' as

I «(to)=( /12'&C )(Mph) (pi«lto«)f(1 f), —

(4.13)

Ag
C being the sound velocity, which shows that I « in-

creases and hence the lattice viscosity (t},&t )i de-

creases due to the scattering and phonons by defect
atoms in the crystal. It is interesting to note that
the effect of electric field (due to the deformation of
electron shells) through the electric moment parame-
ters cannot be revealed in the framework of harmon-
ic theory, even if the defect parameters are account-
ed. For the electric field effects, anharmonic in-

teractions are necessary.
(iii) Doped anharmonic crystal in the absence of

electric field. In this case the perturbed normal-

mode frequency and phonon width are given by
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(vk) = (rok) + W"(k, k')+(4/cok) g C( —k, ki )W (k,k, )

k)

+2cok hk(co)+ g [4C( —k, ki )/cok]bk, (co)
kl

+ 16Re+ a( —k, k i )at(k, k, ) (4.14}

and

~k( } ~k( }+y [4C( k k }/ k]~k (

kl

+ 8m g a( —k",k i )a (k', k i )(oik /~k, )[&(~—oik, ) —&(+~«, ) ] .
k)

(4.15)

In Eq. (4.15) the first term I k(co) is the phonon
width for a pure crystal arising due to anharmonic
interactions only, the second term is the interaction
term of anharmonicity with defect parameters, and
the third term arises due to defect parameters alone
which we have already discussed in (ii}. It can be
shown that at high temperature
I «(co)-(m k) T+(~k) T, where (cuk) T depen-
dence is due to three-phonon scattering while
(rok) T variation arises due to four-phonon interac-
tions. The relaxation rate given by the second term
in Eq. (4.12}varies as -(rof) T. The lattice viscosi-
ty is the sum of both diagonal i)i and nondiagonal

g2 terms in Eq. (4.5).
So far we have discussed the lattice viscosity for

three different situations, but for doped displacive
ferroelectrics placed in an external field, the lattice
viscosity, in general, can be expressed as the sum of
the two parts corresponding to the optical and
acoustical contributions given by Eq. (4.1). Each of
these contributions (vP and i)') can be further ex-
pressed as the sum of diagonal (gi ) and nondiagonal

(gz) contributions given by Eqs. (4.6) and (4.7},
respectively. The nondiagonal contribution, how-

ever, vanishes in the absence of isotopic impurities
and is approximately

~

4C( —k,k' )/cok
~

times
the diagonal contribution.

Now at a given temperature the electric field
dependence of the phonon width can be expressed as
I k(co)-Ki+K2E, where K~ and K2 are the field-
independent coefficient in Eqs. (3.21) and (3.25} be-

sides the field dependence of renormalized frequen-
cies. Similarly, the variation of perturbed normal-
mode frequency vk(co) with electric field can be ex-
pressed in the form (vk) (co)=(&~k) (Ki+K4E },
where the field-independent coefficients K3 and K4
can be read froin Eqs. (3.18), (3.20}, (3.25), and
(3.32). With these variations one finds the lattice

viscosity i)i as given by Eq. (4.6) increases with ap-
plied electric field, which may be compared with the
increase in thermal conductivity of displacive fer-
roelectrics with electric field as observed else-
where. ' '

V. DISCUSSION

In this paper we have obtained a general expres-
sion for the lattice viscosity of doped displacive fer-
roelectrics, placed in an external electric field, as a
function of defect, anharmonic, and electric moinent
parameters in the paraelectric phase. The considera-
tion of anharmonic terms gives the temperature
dependence of lattice viscosity as aT+PT as dis-
cussed earlier. ' The anomalous temperature depen-
dence of lattice viscosity near the Curie temper-
ature is due to the soft optical-mode frequency 0
which tends to zero, making No anomalously large
and hence the lattice viscosity (through the term vk).
The soft-mode frequency 0 is responsible for most
of the temperature-dependent properties of the
displacive ferroelectrics. This frequency, which is
imaginary in the harmonic approximation [cf. Eq.
(3.16)), is stabilized in the paraelectric phase due to
the anharmonic interactions, which in this way play
an important role as does the stability of the system.
In discussing the phonon viscous effects in doped
ferroelectrics it is, therefore, necessary to retain the
anharmonic term along with the defect parameters
in the Hamiltonian. This leads us to a cross term
[second term in Eq. (4.15)] of defect with anharmon-
ic parameters in the phonon relaxation rate which
varies as co T. The consideration of mass change
and force-constant change between impurity and
host-lattice atoms leads to a Rayleigh (co scattering)
and non-Rayleigh scattering behavior, respectively,
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in the expression for inverse relaxation time. This
variation can be expressed as -aco +bco +C,
which has been discussed in case (ii) above and is
also represented by the last term in Eq. (4.15). The
dependence of the scattering rate arising due to
anharmonic interactions is of the form

N2T+M2T2
In order to consider the effect of electric field on

the lattice viscosity, one has to consider the electric
moment terms (due to the deformation of electron
shells) along with the anharmonic and defect terms
in the Hamiltonian. For a doped crystal this leads
to a cross term of defect with anharmonic and elec-
tric field parameters in the expression for acoustical-
and optical-phonon widths given by the second term
on the right-hand side of expressions (3.21) and
(3.26), respectively. It is seen that the lattice viscosi-
ty increases with the applied electric field. This ef-
fect is similar to the increase in lattice thermal con-
ductivity of ferroelectric perovskites' ' with the
applied electric field.

The expression (4.6) for lattice viscosity is similar
in form to that for thermal conductivity, ' particu-
larly in the sense in which the inverse relaxation
time (phonon width) occurring in both the expres-

sions is concerned. One may even replace the relax-
ation time occurring in the lattice-viscosity expres-
sion with the effective relaxation time found from
lattice thermal conductivity experiments. Converse-
ly, it should be remarked here that the interaction
term of defect with anharmonic parameters (which
varies as to T) appearing in the relaxation rate for
the lattice viscosity of doped ferroelectrics also ap-
pears' in the thermal conductivity expressions.
This cross term is, in general, not obtained in
thermal conductivity expressions because whenever
isotopic impurities are accounted in the Hamiltoni-
an, the anharmonicity is not considered. ' ' '' With
doped displacive ferroelectrics, we cannot ignore the
anharmonicity which stabilizes the system, and so
the cross term appears. It is interesting to analyze
the lattice thermal conductivity of displacive fer-
roelectrics employing a Callaway model with a re-
laxation time including the cross term (-Aco T). It
is hoped that this term shall be responsible for a dip
in the thermal conductivity of displacive ferroelec-
trics beyond the low-temperature maximum. ' The
sound attenuation constant a(co)( = I «(to)/C),
where I k(co) is given by Eq. (3.21), can also be
analyzed using our results.
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