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Stacking of charge-density waves in 1T transition-metal dichalcogenides

M. B.Walker and R. L. Withers'
Department of Physics and Scarborough College, University of Toronto, Toronto, Ontario, Canada M5S 1A 7

(Received 19 January 1983)

An extension of the McMillan (1975) and Nakanishi and Shiba (1977) models of charge-density-

wave formation which fully reflects the space-group symmetry of the 1T-TaS2 structure is presented.

The model allows an incommensurate c-axis wave vector immediately below the normal to incom-

mensurate transition temperature, and a c-axis wave-vector lock-in transition at a lower temperature.

The model also allows a number of different commensurate phases characterized by different

charge-density-wave stacking configurations. A triple-honeycomb domain structure is described.

I. INTRODUCTION

A number of studies have established the existence of
interesting charge-density-wave states in 1T-TaS2 and 1T-
TaSe2, which, like a large number of transition-metal di-
chalcogenides, have layered structures. ' This paper stud-
ies theoretically the stacking of the charge-density-waves
in the different layers of materials having the 1T struc-
ture.

1T-TaSe2 is known to have two charge-density-wave
phases, a high-temperature incommensurate phase and a
low-temperature commensurate phase. The low-

temperature commensurate phase has a basal-plane lattice
constant v 13 times the normal-state lattice constant '

and a c-axis period of 13 layers. ' The c-axis period in
the incommensurate phase is three layers.

1T-TaS2 has three charge-density-wave phases, a high-
temperature incommensurate phase, an intermediate-
temperature nearly commensurate phase, and a low-

temperature commensurate phase. The low-temperature
commensurate phase has a lattice constant v 13 times the
normal-state lattice constant and a c-axis period of 13
layers. The early work of Williams et al. found that
both the incommensurate and nearly commensurate
phases had a three-layer period in the c-axis direction, but
Steeds has suggested that the c-axis wave vector in the in-

commensurate phase might be slightly less than —,'c'.
Scruby et al. pointed out how the stacking of the layers
in the commensurate phase of 1T-TaS2 could give rise to a
13-layer c-axis period, and Moncton et al. extended these
ideas and determined the stacking vector in 1T-TaSe2.

On the theoretical side, Nakanishi et al. and Nakanishi
and Shiba' have studied in detail the commensurate phase
and the nearly commensurate phase of a single layer in

terms of a model Ginzburg-Landau-type free energy pro-
posed by McMillan. " We extend this work by studying
the stacking of the commensurate layers, and complement
it by using a different approach to deriving a possible
domain structure for the nearly commensurate phase.

We give a detailed symmetry analysis of the model free
energy used by Nakanishi and Shiba' and find that, be-
cause a model parameter determining the interlayer in-
teraction has been taken to be real, instead of being al-
lowed to be complex as allowed by symmetry, the model
has too high a symmetry (the basal plane of their model is
a plane of reflection symmetry cr~, whereas 1T-TaSz does
not have such a plane of symmetry). It turns out that the
phase angle of the complex interlayer interaction parame-

ter has important consequences in addition to removing
the plane-of-reflection symmetry normal to the c axis.
This phase angle determines the charge-density-wave c-

axis wave vector at the normal-to-incommensurate transi-
tion temperature, and also plays an important role in

determining th commensurate state charge-density-wave

stacking order. We were stimulated to undertake a de-

tailed symmetry analysis of the model partly by Wexler
and Wooley's' paper, which pointed out the significant
consequences of the lack of a mirror plane cr~ on the elec-
tronic structure, and by the usefulness of a similar analysis
of Jacobs and Walker' of a model of charge-density
waves in the 2H-TaSe2 structure.

II. THE INCOMMENSURATE PHASE

T

5pt(x) =Re g e ' lbtj(x)
J

(2.1)

where the Ql are shown in Fig. 2 and are the wave vectors
of the three charge-density waves in a layer at the tem-

perature at which the transition from the normal state to
the incommensurate state occurs; x is a two-dimensional
vector in the basal plane.

The transformation properties of the multicomponent
order parameter lbtti x) under the operations of the space-

This section develops a Ginzburg-Landau-type model of
charge-density-wave formation in the incommensurate
phases of 1T-TaSe2 and 1T-TaS~. The approach is similar
to the one initiated by McMillan, " but follows the work

of Jacobs and Walker' on the 2H structure in ensuring
that the full space-group symmetry of the 1T structure is
reflected in the model. The 1T structure is a layered
structure having relatively weak interactions between the
layers; this suggests that an approach in which the
charge-density-wave structure of a layer is determined

first, and the interlayer interaction is then treated in per-
turbation theory, is justified.

The 1T structure is shown in Fig. 1. In the absence of
charge-density waves, it has the space group P3m 1 (D3d),
the generators of which can be taken to be the translations

by the vectors a, , a2, and c (defined in Fig. 1), the rota-
tion reflection operation S6+, and the reflection cr„, which

is a reflection in the plane containing c and a&.

In the incommensurate phase the basal-plane projection
of the charge density associated with the charge-density
waves in the /th layer is written
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will be written in the form

F=FN+ IWd x

where FN is the free energy of ihe normal state and
2 2
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l,j axlij Bxlj

(2.6)

group generators are as follows:
(a) Under a basal-plane translation by t b ——m ai+n a2,

—lQ ~
' tby()(x)~e ' iI()(x t b) .—

(b) Under a c-axis translation by Io c,

iIIij(x)~pi io J(x) .

(c) Under S6+,

giz(x)~iI' i,l'+i(C6 x)-.
(d) Under 0.„,

Ai(x) Ai(&. x)

Az( x )~ %i«U x )

(2.2)

(2.3)

(2.4)

(2.5)

Qii(x)~f(i(0'„x) .

The free energy describing the incommensurate phase

a
~ Ta ose ~se

FIG. 1. Basal-plane projection of the structure of a layer of
1T-TaSq. The solid circles represent a hexagonal array of Ta
ions, all lying in the same basal plane. The crosses and open cir-
cles represent hexagonal arrays of Se ions which define planes
equidistant above and below the Ta plane, respectively. To form
a crystal, layers are stacked so that they all have the same
basal-plane projection. The vectors a &, a &, and c define a primi-

tive unit cell in the normal state (c is perpendicular to the basal

plane). The vectors a, &
and a, ~ define a primitive basal-plane

unit cell for a layer in the commensurate charge-density-wave
state.

+ DRe(PIIPI24I3)+C I Alflj+i I

'

+B
I piII +Re(GA&ki~i J) (2.7)

Here x~~j and xJj are the components of x parallel and

perpendicular to Ql, respectively. Equation (2.7)
represents an expansion of P in powers of the Pil, the in-

tralayer layer contribution to (2.7) (i.e., all terms except
those in G) contains all terms up to and including those of
fourth order in the Pij which are allowed by symmetry.
The term in 6 is the nearest-neighbor quadratic interlayer
interaction, and higher-order interlayer interactions are
neglected for the moment. Symmetry requires that the
coefficients Ap A i A2, D, 8, and C be real, but G may be
complex. Except for a different form for the gradient
terms in Eq. (2.7), which is irrelevant for our purposes, the
intralayer contribution to the free energy is equivalent to
that studied by Nakanishi et al. , and Nakanishi and Shi-
ba. ' However, we differ from them in allowing the coef-
ficient G to be a complex number. A real G yields a
model in which each sheet of Ta atoms is a plane-of-
reflection symmetry; such a model thus has more symme-

try than is allowed by the 1T structure.
Now assume that the transition from the normal state

to the incommensurate state is second order, and that the
order parameter describes a single harmonic charge-
density wave for each j, i.e.,

(2.8)

The wave vectors at the transition temperature are deter-
mined by the second-order contributions to the free ener-
gy, which are proportional to

13 13Qc)
I fo I X k~o+~ ie[[+~iiIi+ I

G
I cos(kl —PG) j

1
(2.9)

CI

130 i30c)
FIG. 2. Vectors in the reciprocal lattice of 1T-TaSq. Some

useful relationships are al ai ——a& aq ———al. aq ———aq a3 ——2m

and a~. a l
——a l a 3 ——0, where a l and a~ are defined in Fig. 1. k) +k2+k3 ——2', (2.10)

This expression is minimized by taking q~~
——qj ——0 and

kj =go rr. Thus the pha—se of the complex coefficient G
determines the c-axis component of the charge-density-
wave wave vector in the incommensurate phase. Note also
that when the c-axis wave vector kj is incommensurate,
the cubic term in Eq. (2.7) vanishes when summed over I if
Eq. (2.8) is used for gij', thus it is the incommensurateness
of the c-axis wave vector which allows the normal-to-
incommensurate transition to be second order.

It is of interest that the term in D in Eq. (2.7) can
"lock-in" the c-axis component of the wave vector while
allowing the basal-plane component of the wave vector to
be incommensurate. In order for the term in D to be
nonzero for an order parameter of the form of Eq. (2.8),
we must have



2768 M. B. WALKER AND R. L. WITHERS 28

where v is an integer. Minimizing (2.9) subject to the con-
dition (2.10) (the details can be found in the Appendix of
Ref. 14) gives the result that

kJ =2~n/3, (2.11)

where n =0, +1; which of these three has the lowest free
energy is determined by the values of the parameters G
and D.

The term in D, which is cubic in the order parameter,
will become more important relative to the quadratic
terms as the temperature is lowered. Thus it is expected
that the c-axis component of the wave vector will be in-
commensurate at a second-order nor mal to charge-
density-wave state phase transition, and that the c-axis
wave vector will lock in to a commensurate value at some
lower temperature.

It would be of interest to attempt to study the transition
from the incommensurate to the commensurate phase by
using the free-energy density of Eq. (2.7) with the lock-in
term

J

+e ' ' '
QJ~(x)l(,' ((x)], (2.12)

where 5l =Q,l. —Ql and 5 J
——Q,'1 —

QJ (see Fig. 2), added
to the free-energy density of Eq. (2.7}. Unfortunately, be-
cause the values of QJ(x) obtained in this approach are
sufficiently rapidly varying functions of x, the approach
has questionable validity. It is therefore better to develop
an independent discussion of the commensurate phase.

III. THE COMMENSURATE PHASES

At low temperatures the charge-density-wave basal-
plane wave vectors in 1T-TaSez and 1T-TaSq are observed~ I

to lock-in to the commensurate values Q,&
or Q,l shown in

Fig. 2 and thus to give a basal-plane unit cell 13 times
larger in area than the original normal-state basal-plane
unit cell (e.g. , see Fig. 1). Because experiments ' on both
1T-TaSz and 1T-TaSe~ show that charge-density waves

with wave vectors Q,l and Q,'l do not coexist, we assume

that only the charge-density waves with wave vectors Q,l
have nonzero amplitude, and write the basal-plane projec-
tion of the charge density in the 1th layer as

3

p((x)=Re g e (3.1)
j=l

i Hl)y„=ae ', (3.3)

where a and Hlj are real. That part of the free energy of
Eq. (3.2) determining the phases elJ for the 1th layer is

f=Da cos(8((+8(2+8(3)

+Ea icos(38(l —8(,+, ) .
J

(3.4)

The free energy of Eq. (3.4) has been minimized with

respect to the Olj by Nakanishi and Shiba, ' who find

8(l (9pl+ 3q(+r()+P(
13

8(2 (p( +9q(+ 3r( }+P(13
(3.5)

8(3 (3p(+q(+9rl)+Pl
13

The transformation properties of the p(J with respect to
translations and to S6+ are given by Eqs. (2.2), (2.3), and

(2.4} with g(l(x) replaced by p(l and Ql replaced by Q,l.
(The operation o„ transforms the order parameters p(& as-

sociated with the Q,3 into order parameters associated~l
with the Q,l and will not be needed here. } The intralayer
contribution to (2.7) contains all terms up to and including
those of fourth order in the P(J which are invariant with
respect to normal-state Bravais-lattice translations and the
operation S6+; this intralayer free energy is the same as
that used by Nakanishi and Shiba. ' The coefficients Ao,
8, C, D and E are required to be real by symmetry argu-
ments and do not necessarily have the same numerical
values as the corresponding coefficients in Eq. (2.7).

The terms in G„represent the interlayer interactions
and the sum over n is over positive integers. Because the
interlayer interaction is expected to fall off rapidly as the
number of layers between the two interacting layers in-

creases,
I
G„

I

is expected to be a rapidly decreasing func-
tion of n. The G„are allowed by symmetry arguments to
be complex. Other interlayer interactions of higher order
than second in the ()}IJ may be important in determining
the stacking of the layers in the commensurate structure,
as will be seen later.

It will be assumed that the interlayer interactions are
weak and can be treated in perturbation theory. Further-
more, only those states will be considered which, in the ab-
sence of interlayer interactions, have equal amplitudes for
all three charge-density waves in a layer. Thus the order
parameter for the Ith layer will have the form

(3.6)Pl+Vl+ "l

where p(l is independent of x. where pl, ql, and rl are integers which, without loss of gen-

The free energy of the commensurate phase will be as erality, can be taken to satisfy
sumed to be

FN + g g ~0
I 4» I

'+ 'D Re(4((4(20(3}-

+C
I AgAg+( I'+&

I b(l I'

+&Re(4(ld(l+I )

cosP( = —,
' [(1+e )

' e]— (3.7)

if D&0, and from

If E&0, the free-energy minimum is given by taking

Pl =0 and choosing the sign of a so that Da & 0. If E & 0,
a is taken to be positive and Pl is determined from

+ g Re(G„(t((l.(t((+„l )

n&0
(3.2)

cosP( = ——,
' [(1+e )'~ +e]

if D &0, where

(3.8)
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e=Ea/D . (3.9)

Both Eqs. (3.7) and (3.8) have two solutions for Pt and
these will be denoted by +p and —p, where p&0 and
60' &P & 120'.

In considering the stacking of the different layers, it is
convenient to note that whatever the values of pl, ql, and
rl in Eq. (3.5) for a given layer I, the phases for that layer
can always be written in the form

[',I'+
I

3.0

2.0

1.0

Q J rt+'pt (3.10) 0.0
00

where rl is a normal-state basal-plane Bravais-lattice vec-
tor (i.e., nl ——nai+maz where ai and aq are defined in
Fig. 1). It follows from the analog of (2.2) for the (titj that
if the phases of the charge-density waves in the 1th layer
are initially given by Otj=Pt and these charge-density
waves are translated by the vector rl, the translated
charge-density waves have the phases given by Eq. (3.10).
Thus a part of the problem of determining the three-
dimensional structure involves determining the relative
translation vectors rl of the different layers.

To determine the stacking of the layers, first consider
the case E &0 so that p=O. The largest contribution to
the interlayer interaction will be assumed to be the
nearest-neighbor quadratic interaction in Eq. (3.2) which,
for the nearest-neighbor layers I and 1+ 1, is

Ftt+, (itiG)=
~

G ~a cos Pa+ (3m+n)2 2v

277+cos P, + {—4m+3n)
13

2~+ cos ((ia+ (m —4n)
13

(3 ~ 11)

where Gi ——
~

G
~
exp(i/a), and where the stacking vector

rl l+& ——ri+& —rl ——m ai+n aq describes the relative stack-
ing of layers I and l+ 1. There are 13 different possibili-
ties for the stacking vector corresponding to the positions
of the 13 Ta ions in the commensurate phase unit cell
shown in Fig. 1. A given stacking vector is specified by
giving the value of (m, n), where m and n are the integers
occurring in rll+& ——ma~+naz. For a given m (which
may be —2, —1,0, 1, or 2), the symbol [m, O) is used to
denote the set of stacking vectors (m, 0), (O, m), and (m, m),
where m= —m, all of which give the same interlayer
stacking energy I'l l+ i. The nearest-neighbor interaction
energy for each of these sets of stacking vectors is shown
in Fig. 3 as a function of the phase (t a. It can be seen that
the set L2,0I gives the lowest energy if 0'&itiG & 112.6',
the set [2,0J gives the lowest energy if 247.4' & (()a & 360',
and the vector (0,0) gives the lowest energy if
112.6' & (tia & 247.4'.

Table I lists the different ways of stacking commensu-
rate layers, and some of the properties of the resulting
structures. The structures numbered 1 to 4 are formed by
stacking layers having Pq =0 and will now be described in
greater detail.

Structure l. If the stacking vector (0,0) gives the lowest
nearest-neighbor energy, the three-dimensional structure is

uniquely determined as being the one in which rl is in-
dependent of l. This structure has the space group P3

—2.0

(C3;) and primitive Bravais-lattice vectors for this struc-
ture can be chosen to be a, ~, a, q, and c (which are de-
fined in Fig. 1).

Structure 2. If the stacking vectors minimizing the free
energy F~t+I belong to either [2,0) or [2,0[, the
nearest-neighbor energy does not completely determine the
stacking sequence. Three different relative stackings of
three consecutive layers are shown in Fig. 4, all having the
same nearest-neighbor interaction energy F& z+Fz 3. The
second-neighbor interaction energy [due to the term in Gq
in Eq. (3.2) treated in first-order perturbation theory, the
term in G& in Eq. (3.2) treated in second-order perturba-
tion theory, and other terms] will remove the degeneracy
between the stacking sequence (a) on the one hand, and the
sequences (b) and (c) on the other hand. If the sequence
(a) has the lower free energy of these two possibilities, the
stacking order is again completely determined, for this
case rl ——(I —1)ri q, the space group of the crystal is P1
(C;), and the primitive Bravais-lattice translation vectors
can be chosen to be the vectors a, i, a, q, and c+ri q.
This structure is periodic in the c-axis direction with a
period of 13 layers and is thought to be the low-
temperature phase of both T-TaSz and 1T-TaSez. The or-
der parameter for this state has the form

—il Q~. r
& &

ik. lc
1(tJ ——ae " ' =ae

and is thus characterized by the c-axis wave vectors

(3.12)

k~= ——(Q,j r, ~)+vc',
c

(3.13)

where v is an integer and c' =2m/c. If the stacking vector
r

~ z is the vector (2,0), the c-axis wave vectors are

(3.14)

This result has been obtained previously by Moncton
et al. If the preferred stacking vector is r i z

——(2,0) rath-
er than r i q

——(2,0), the allowed c-axis wave vectors will be
the negatives of those given by Eq. (3.14). Replacing
ri z ——(2,0) by ri z ——(0,2) in (3.13) is equivalent to rotating

—3.0-
FIG. 3. Nearest-neighbor interlayer interaction energy FII+~

defined by Eq. (3.11) plotted as a function of t{)o for the different
sets of stacking vectors [m, 0).
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TABLE I. Properties of the commensurate structures. An open circle, plus sign, or minus sign in the structure figures represents
the basal-plane position of a threefold axis of a layer with P~ zero, positive or negative, respectively; an asterisk represents the common

threefold axis of a pair of adjacent layers having the same values of r~ but Pl s of opposite sign. New structures can be derived from
those shown by interchanging the plus and minus signs. The vectors are stacking vectors as described in Fig. 4. A sequence of three
dots to the left and right of a stacking sequence indicates that the sequence is to be continued indefinitely to the right and left. A pos-

sible set of primitive Bravais-lattice vectors for each structure is a, 1, a, 2, and x, where a, 1 and a, 2 are defined in Fig. 1 and x is the
primitive Bravais-lattice vector given in the table. Only one of two possible sets of c axis wave vectors for each structure is shown; the
other set is the negative of the one shown.

Structure
No. Structure Space group

Primitive Bravais-
lattice vector

c-axis period
(in layers)

c-axis wave vectors
(in units of c)

P3 (C3;)

~ ~ ~ 0—&0 0 p ~ ~ ~ P1 (C) C+r12 13 7 8 11
13 s 13 ~ 13

0—%0 P31 (C3), P32 (C3) 3G + 1—3

1, 2 gggggq
— I/3 i 2c+ r12+ r2 3 26 1 3 9 5 15 19

13 s 13 s 13 s 26 s 26 & 26

~ ~ ~ +- ~+ + + ~ ~ ~

P3 (C3)

P1 (C1) c+ r12

1

13
7 8 11
13 s 13 s 13

P31 (C3), P32 (C3) 3G
1

3

P3 (C3;) 2G
1

2

~ ~ ~ + ~+ ~+ -+ ~ ~ ~ P1 (C) 2c+r12 1 3 9 5 15 19
13 ' 13 ' 13 ' 26 ~ 26 7 26

10 P 3 1 (C3)s P 32 (C3) 6c 1 1 1

6s 3' 2

11
~ ~ ~ +~~&+~» ~ ~ ~ P1 (C) 2( c+ r1,2) 26 7 8 11 1 3 9

13 ' 13 ' 13 s 26 s 26 s 26

2c+ r12+r2 3
1 3 9 5 15 19

13 s 13 s 13 s 26 s 26 s 26

the triclinic axis c+ r& ~ by an angle of 2m. /3 about the
normal-state c-axis c and leads to a permutation of k&,

k2, and k3 in Eq. (3.14).
Structure 3. If the three-layer stacking sequences of

Figs. 4(b) and 4(c) are favored relative to that of Fig. 4(a),
it is necessary to consider the third-nearest-neighbor inter-
layer interaction in order to determine which is the stable
structure. One possibility is r3 +] rf p r3 +2 r2 3,

r3 +3 r3 4 where r
& z, rz 3, and r3 4 are as shown in ei-

ther Fig. 5(a) or 5(b). The stacking sequence shown in Fig.
5(a) gives a structure (which will be called a right-handed
helical structure} with the space group P3t (C3), whereas
the stacking sequence shown in Fig. 5(b) gives a structure

(which will be called a left-handed helical structure) with
the space group P3q (C3). The primitive Bravais-lattice
vectors for both of these structures can be chosen to be

a, ~, a, q, and 3 c, and they both have the same energy (one
can be obtained from the other by inversion with respect
to an appropriate inversion center, the inversion center be-

ing a symmetry element of the normal-state space group).
Structure 4. The other possibilities which can occur

when the favored three-layer stacking sequence is as
shown in Figs. 4(b} or 4(c) are that r~ t+ l = r t 2 for I odd,
and r~i+~ ——r23 for I even, where r~ 2 and r23 are as
shown in Figs. 4(b) or 4(c). Both of these structures
(which will be called zigzag structures because of the zig-
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0
l

= 0
2

2, 3
=0

3

gy of a given stacking sequence is

Fi/I„=N+ F+ +N +F + +(N++ +N )F(),

(3.19)

3
0

, 3

0
l

=0
2

2, 3

0
l

(b)

=0
2

0
3

FIG. 4. Three different stackings of the layers I = 1, I =2,
and I =3, all having pi=0. An open circle with an integer I

under it represents the basal-plane position of an axis of three-

fold symmetry of the charge-density distribution in layer I. The
charge-density distribution in layer I + l is obtained by translat-

ing that of layer I by the basal-plane translation r~i+1, the vec-

tors r~ I+1 being shown in the figure.

zag pattern of the stacking vectors) have the same energy,
and the set of primitive Bravais-lattice translation vectors
a, ~, a, q, and 2c+r&z+rz&. This zigzag structure is
periodic in the c-axis direction with a period of 26 layers,
and the c-axis wave vectors having nonzero charge-
density-wave amplitudes are given by

kj = ——Q,J ( r, z+ rp 3) + z
vc' .

2c

If r& &+rp 3 —(2,2), this gives

(3.15)

13 s 26 s

1 15 3 19k ——— k ———
2 13 s 26 s ~ 13 s 26 (3.16)

and

F~ =FI t+i(QG+2p),

F + =F( (+,($G —2p},

(3.17)

(3.18)

respectively, where Ftt+i(PG) is given by Eq. (3.11). If
neighboring layers have the same pt, the interaction ener-

gy is Fo =Ft t+ i(PG). The total interlayer interaction ener-

3
0

l rI 2 2
0 =0

, 3 f'3 2, 3

0
31 l'}2 2

FIG. 5. Right- and left-handed helical structures for layers
having PI ——0 are shown in (a) and (b), respectively.

As above, structures in which the kJ's are given by the
negatives of the values in Eq. (3.16), or are permuted, are
possible.

We now turn to a discussion of the stacking when

Pt ——+P and P & 0. The nearest-neighbor interaction ener-

gy between layers I and I + 1 for the cases where pt = +p,
Pt+ ~

———P, and where Pt = —P, Pt+, ——+P are

where N+ is the number of interfaces with interaction
energy F+, etc. The total interlayer interaction energy
F;rt is minimized by having the Pr s alternate in sign [i.e.,
pt=( —1)p] if ,'(F+—+F+) &Fo, and by having the
pr's all have the same sign if ,

'
(F+—+F+ ) &Fo (note

that the equality N+ ——N + must hold). Thus only two
possibilities need be considered further„one in which the
Pt's alternate in sign and one in which the Pt's all have the
same sign. A systematic exploration, similar to that
described above for the case pt ——0, allows one to
enumerate all possible structures in the present case also.
These structures will now be defined by giving rt and Pt
for each, and their properties are summarized in Table I.

Structure 5. For this structure ri is independent of I
and pt =+p; the structure with rt independent of I and

Pt = —P has the same energy (because inversion is an ele-
ment of the normal-state space group).

Structure 6. Here the prototypical structure has

Pt =+P and rt=Iri i, the structure having rt= —Iri i
and pt = —p has the same energy. The vector r, q can be
either (2,0) or (0,2) and these two different values give
structures with different energies for the prototypical
structure.

Structure 7. The prototypical structures here are the
right- and left-handed helical structures for which

Pt=+P and rt=rq„+„——r„„+i, where v is an integer,
n =1,2, or 3, and the r„„+& are given by Figs. 5(a) and
5(b), respectively, [ri i can be either (2,0) or (2,0) and the
figure gives the remaining r„„+,]. These structures have
space groups P3i (Ci) and P3i (Ci), respectively, and
primitive Bravais-lattice vectors a, &, a, z, and 3c. The
left- and right-handed stacking of a set of layers all having
the same pr =p differ in energy. On the other hand, the
right-handed stacking of a set of layers having pt =p has
the same energy as the left-handed stacking of a set of
layers having pt ———p. There are no zigzag structures
when Pt =P or when Pt = —P for all I.

The determination of the stacking vectors for the case
where the Pt alternate in sign is slightly more complicated
than the cases discussed previously. The allowed values of
the stacking vectors ri I+~ can be found by studying Eqs.
(3.11), (3.17},and (3.18}in connection with Fig. 3. The en-

ergy F+ depends on the stacking vector r~ i+~ connect-
ing layer I with Pt =+P to layer I+1 with Pi+i ———P;
similarly F + depends on the stacking vector rI+& I+&
connecting layer I+1 with pt+, ———p to layer I+2 with

Pi+i ——+P; these stacking vectors are denoted by (m, 0)
and (m', 0), respectively, and are found by minimizing
F+ +F + with respect to m and m'. The values of m
and m' which minimize F+ +F + depends on PG and

P; for appropriate values of these parameters any com-
bination of m = —2,0, or 2 with m'= —2,0, or 2 can be
found to give the minimum, . except for m =2, m'= —2
and m = —2, m'=2. The different possible structures
having Pt s alternating in sign will now be enumerated.

Structure 8. This structure has pt =( —1)'p and rt in-

dependent of l.
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Structure 9. This structure has ri ———,
' 1ri 2 for 1 even,

ri ——rl ~
for I odd, and Pi ——( —1)P [here r

~ 2 can be (2,0)
or (2,0)].

Structure 10. The prototypical structure here has
P~=( —1)'P; r~=rp(3&+ )

—r +~ where I is even, v is an

integer, n =1,2, 3, and r„„+~ are given by Figs. 5(b) and

5(c), respectively, and ri ——r~
&
if 1 is odd.

Structure 11. This structure has pi ——( —1)p and

ri =1r ) 2.
Structure 12. This structure has pi ——( —1)'p,

ri I+& ——ri 2 for 1 odd and ri I+&
——r2 3 for 1 even, where

the relative orientations of r& 2 and r2 3 are as given by
Figs. 4(b) or 4(c) and r, 2

——(2,0) or (2,0).
In the high-temperature charge-density-wave phase of

1T-TaS2 the charge-density-wave period and the lattice
period are incommensurable, whereas in the low-
temperature phase of 1T-TaS2, the period of the charge-
density wave is locked to the lattice period. The presence
of two competing periodicities offers the possibility of the
existence of a domain structure in a layer in which com-
mensurate domains are separated by a special kind of
domain wall called a discommensuration. " When such a
domain wall is traversed, the charge-density-wave distri-
bution is translated by a normal-state lattice constant.
Thus if in a given domain in the 1th layer the phases of the
charge-density waves are given by Eq. (3.10), with ri hav-

ing a fixed value, the phases will be changed to those given

by Eq. (3.10) with ri replaced by ri+a when a domain
wall is crossed and a neighboring commensurate domain is
entered (here a is one of the shortest normal-state basal-
plane lattice vectors, such as a ~

or a2).
Given that it is energetically favorable to have domain

walls in a single layer, another question of interest is how
the domain walls in adjacent layers are stacked relative to
one another. If there is a domain wall in one layer and not
in an adjacent layer, then there is a change in the relative
stacking of the commensurate regions on either side of the
domain wall. The best situation energetically is one in
which the commensurate stackings on either side of the
domain wall both have the lowest possible interlayer in-
teraction energy. This limits the possible domain wall
configurations.

The nearly commensurate phase of 1T-TaS2, which has
a three-layer period in the c-axis direction, might be ex-
pected to exhibit a well-defined domain structure. This
suggests that we investigate domain structures based on
the helical structures 3 or 7 of Table I, and we now discuss
a possible domain configuration in which the domains are
commensurate regions having structure 3. The approach
used is similar to one which has been successful in under-
standing the observed domain structures in 2H-TaSe2. '

The helical commensurate structures numbered 3 have a
three-layer period in the c-axis direction, and we assume
that the domain structure does also. Thus the domain
structure is completely specified if we describe the
domain-wall configuration in layers 1=—1,0, and + 1.
It can be shown that an appropriate translation of any one
of the three layers by a normal-state lattice constant
changes a right-hand helical structure into a left-handed
helical structure having the same energy. Thus a domain
wall in layers 1 =+1+3v, where v is an integer, separates
left-handed and right-handed variants of structure 3 as il-
lustrated in Fig. 6(a). Given the existence of the domain
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FIG. 6. Domain walls in the helical commensurate states
formed by stacking layers with PI ——0. Domain walls in layers
I = —1,0, and + 1 are indicated by rows of minus signs, open
circles, and plus signs, respectively. In (a), a domain wall in
layer I =+1 separates a right-handed helical structure (on the
left of the wall) from a left-handed helical structure (on the
right). The handedness of a given commensurate region is indi-
cated by a triangular arrangement of large open circles; open cir-
cles containing a minus sign, nothing, or a plus sign lie in the
layer I = —1,0 or + 1, respectively.

wall shown in Fig. 6(a), symmetry arguments require that
the eight other domain walls with layer positions and rela-
tive orientations as shown in Fig. 6 should have the same
energy. There are only three different ways in which the
domain walls of Fig. 6 can be joined together at a vertex,
and these are shown in Fig. 7. With the vertices of Fig. 7,
only one domain structure is possible, and this is the
triple-honeycomb domain structure shown in Fig. 8. It
can be seen that the domain walls in layers 1 = —1,0, and
+ 1 each form a separate honeycomb pattern.

It should be noted that if minimizing the energy of the
commensurate regions is a prime consideration, domain
walls of the type shown in Fig. 6 will not occur in the
commensurate phases of the helical structures numbered
7. The reason is that since the layers all have the same
nonzero PI, for example PI =+P, the left-hand and right-
handed commensurate structures do not have the same en-

ergy; a domain wall whose only effect is to translate the
charge-density of a single layer by a lattice constant will
therefore always have a commensurate phase with an un-
favorable energy on one side of it.
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FIG. 7. Three possible ways in which the domain walls of
Fig. 6 can be joined together at a point.
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FIG. 8. Triple-honeycomb domain structure.

It is obvious that if every layer contains a domain wall
which translates the charge density by a lattice constant,
and all of these domain walls have the same basal-plane
projection, the same commensurate structure will exist on
either side of the domain wall. Such domain walls could
exist in any of the commensurate structures described
above, and according to the considerations of Bak et al. ,

'

could give either striped or honeycomb-domain structures.

IV. DISCUSSION

The low-temperature commensurate phases of both 1T-
TaS2 and 1T-TaSe2 have 13-layer periods in the c-axis
direction, and can thus be identified as structure 2 (which
has a center-of-inversion symmetry and is formed by
stacking layers with Pt ——0) or structure 6 (which does not
have a center-of-inversion symmetry and is formed by
stacking layers with Pt ——+P for all l, or with Pt ———P for
all 1). The possibility of determining whether or not the
low-temperature structures of one or both of these materi-
als have centers-of-inversion symmetry by comparing the
Raman and infrared spectra has been discussed in the
literature, ' ' but the present data appears to be incon-
clusive, and further work along these lines appears desir-
able. NMR experiments could in principle determine
whether or not the 13-layer structure has a center-of-
inversion symmetry since, if there is a center-of-inversion
symmetry, there are 13 inequivalent chalcogen nuclei,
whereas if there is no center-of-inversion symmetry, there
are 26 inequivalent chalcogen nuclei (the success of the
Se" NMR experiment of Pfeiffer et al. in 2H-TaSe2
leads one to believe that a similar experiment in 1T-TaSe2

would be doable). The question of whether or not the
low-temperature commensurate phase has a center-of-
inversion symmetry is an important one, since if there is a
center-of-inversion symmetry the phase angles Pt ——0 for
a11 l.

The nearly commensurate phase of 1T-TaSz has a
three-layer period in the c-axis direction. This suggests
that there is a domain structure in the nearly commensu-
rate phase in which the commensurate regions have one of
the helical structures 3 or 7 in Table I. If the layers have
the phases Pt ——0, then the triple-honeycomb domain
structure of Fig. 8 is possible, while if Pt&0, the stripe
and honeycomb-domain structures are possible. ' Nakan-
ishi and Shiba' have previously discussed domain struc-
tures for the cases Pt ——0 and Pt&0. Our result for the
case Pt ——0 agrees with theirs. On the other hand, their re-
sult for the case Pi~0 is such that the commensurate re-
gions do not correspond to any of our low-energy com-
mensurate structures and thus could not be reproduced by
our arguments. Furthermore, Nakanishi and Shiba find
an interesting new type of domain wall for the case Pi&0;
when this new type of domain wall in a single layer is
traversed, the sign of Pt is changed.

Finally, we note that a new feature of our model free
energy is that the parameter determining the interlayer in-
teraction is allowed to be complex. This allows a second-
order transition from the normal state to a charge-
density-wave state with an incommensurate c-axis wave
vector; the c-axis wave vector being determined by the
phase of the complex parameter; an apparently second-
order normal-to-incommensurate charge-density-wave
state, with the c-axis wave vector being incommensurate,
has been observed in 1T-VSe2. ' Furthermore, the ar-
guments of this paper suggest that in the incommensurate
phase (in which the basal-plane wave vectors are incom-
mensurate) it is possible to have a phase transition in
which the c-axis wave vectc-i locks-in to + —,c' below a
certain temperature. Further investigations of the tem-
perature dependence of the c-axis wave vector in the in-
commensurate phases of 1T-TaS2 and 1T-TaSe2 thus ap-
pear to be desirable.

Note added in proof. A structure identical to structure
4, except that the open circles are replaced by asterisks,
has been inadvertently omitted from Table I.
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