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Phase transitions in monolayers adsorbed on uniaxial substrates
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The phase diagram of a p x1 uniaxial adsorbed layer is investigated theoretically, including the possibility
of incommensurate phases. For p =3 and 4 we determine the incommensurability crossover exponents at

the commensurate-fluid multicritical point. We then argue that due to a strong renormalization of the
dislocation core energy the incommensurate phase should be stable up to the multicritical point for p ~3.
Possible phase diagrams for general p are discussed.

Monolayers adsorbed on substrates of uniaxial symmetry
exhibit various types of phase transitions: Examples are the
commensurate ( C)-incommensurate (IC) transition in

Xe-Cu(110) (Ref. I) and H-Fe(110) (Ref. 2), the C-fluid

(disordered) transition in H-Fe(110) (Ref. 2) and Ba-
Mo(112) (Ref. 3), or the IC-fluid transition in Pb-Cu(110). 4

Theoretically, the uniaxial C-IC transition can be under-
stood in terms of domain-wall creation. ' ' For an IC phase
of higher density than the C phase, walls are local compres-
sions and are called "heavy. " In the opposite case one has

light walls. C-fluid transitions are often described by lattice

gas models. " The IC phase has a continuous translational
symmetry (i.e., it is a floating solid), and therefore the tran-

sition to the fluid state should occur by the unbinding of
dislocation pairs. ' " In the present paper we investigate the
structure of the C-IC-fluid phase diagram in the vicinity of a

p x1 C phase (p =2, 3, and 5 in the above examples). Our
results are also relevant to the currently much studied chiral

I

Potts models. "
We consider a two-dimensional sine-Gordon model with a

misfit parameter 5 which favors an IC structure:

1
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Here u is the x component of the atomic displacement field,
and u =2m/p corresponds to a shift by one lattice constant
of the substrate. The cosine term is the substrate potential,
and the layer is assumed to be commensurate in the y direc-
tion. The statistical mechanics of the model (1) has been
treated previously, using the equivalence to a one-
dimensional quantum problem. ' ' In those papers, disloca-
tions are not included, so that a fluid phase cannot occur.
Allowing for dislocations, the Hamiltonian describing the
statistical mechanics of F at temperature T is

T'
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Here v is the momentum density conjugate to u, z=e
e, is the dislocation core energy, and n is a short-distance
cutoff. The constant z determines the probability of thermal
creation of dislocations.

In the fermion representation" of H, the dislocation
operator OD creates or destroys p fermions, as derived previ-
ously. ' On the other hand, OD is the quantum representa-
tion" of the vortex operator of the XY model. ' Conse-
quently, for 5=0 the model (I) exhibits the phase transi-
tions of the XY model with p-fold anisotropy': For p =1
there is no ordered state; for p =2, 3, and 4 there is a C-

fluid transition of Ising, three-state Potts, and nonuniversal
types, respectively. From a fermion equivalent' of H, the
correlation length exponent for p =4 is
v=(32rr'u'h. z/T) '~'. For p ~5 and not too large h, and z

there is a transition from the C to a floating phase at
T = To, and only at a higher temperature T the floating
solid melts into a fluid. For X,z 0 one has T =mdiv/2,
T0=16T /p' On the other hand. , for sufficiently strong X

and z the two transitions may merge into a single first-order
C-fluid transition, as occurs in the general five-state model
(k ~). In the notations of Ref. 20 one has z =(xlx2)',
so that z decreases along the first-order line

xq=( JS —I)/2 —x~ from its maximum value at x~=x2
(Potts model) towards the point where the first-order line

l

splits into two Kosterlitz-Thouless lines.
Let us now consider the possibility of IC phases for 5 A 0.

A direct C-IC transition is only possible" for p'& 8. For
p =1 there is no ordered C state at all, but at T =0 an IC
phase occurs for (5( ) 4/mdiv/p, . For large )S) the sub-
strate potential is unimportant, so that dislocation unbinding
leads to an IC-fluid transition which is of the Kosterlitz-
Thouless'0 type as are all IC-fluid transitions below (Figs. 1

and 3) (Ref. 21).

p=1,

I\g

C

(a)

FIG. 1. Phase diagram for (a) p=1, 2 [the dashed and dotted
lines are the C-fluid (F) and disorder lines, respectively, and do not
exist for p =1]; (b) p =3 and 4 with the multicritical point at 5=0.

1iy
Near 5=0 one has T,(0) —T,(6)~5 ~ [cf. Eqs. (4) and (6)].

28 2746 1983 The American Physical Society



28 PHASE TRANSITIONS IN MONOLAYERS ADSORBED ON. . . 2747
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in an XXZ spin chain. In the language of Ref. 17, the most
relevant part of 0, is 0 i i, so that at T,(5=0)

For p = 2 there is always a fluid phase between the C and
states &t with an Ising type C fluid transition " as for

5=0 [Fig. 1(a)]. In the fluid phase there exists a disorder
line: The correlations develop an oscillatory component,
and the position of the structure factor maxima changes
with increasing 5 as (5 —5d;, ) 'i'. Note that the power law is
the same as at a C-IC transition' ', however, the disorder
line is not a phase transition.

For p «3 and 5 ~0 a direct C-IC transition is possible. "
We first consider the behavior near the C-fluid transition at
5=0. The XY model with fourfold anisotropy is in the
same universality class as the Ashkin-Teller model. " In
that model a finite 5 is represented by a chirality operator
H, =5X„O,(r), where r are the sites of a square lattice,

O, (r) =S(r) T(r') —T(r)S(r')

S, T = +1 are spin variables, and r' is the nearest neighbor
of r in the positive x direction. To assess the relevance of
0, we evaluate the long-range behavior of the correlation
function of O, (r) Under the . transformations of Kohmoto,
den Nijs, and Kadanoff, "0, translates into an operator,

where the n, (=0 p —1) are Potts variables at site r.

After some manipulations with the Kronecker symbols, and
using the permutation symmetry of the Potts model, one
finds

(O, (r)O, (s)) = (5„„+5„„—5„„—5„„)
+q((5„„5„„)—(5„„5„„)).

The first term is the second derivative of the spin correla-

tion function, and decays as ~ir
—s

~

', x, = 1+xH, with xH

the magnetic exponent. We have not been able to evaluate
the second term for general p. Assuming the first term in

Eq. (5) to be dominant, from the known value" "of xH we
obtain the crossover exponent for p = 3 as

$) = —,
8

=0.7222. . . (6)

The results (4) and (6) show that a nonzero 5 is a relevant

perturbation for p =3 and 4, i.e., the C-fluid transition at
5=0 is multicritical, as predicted by Huse and Fisher' from
qualitative arguments. Their estimated crossover exponents
are close, albeit not equal, to our above results.

We now consider the stability of the IC phase against
dislocation unbinding. ' " From Ref. 16, near the C-IC
transition the potential energy of an isolated dislocation pair
of distance r =(x,y) is

(O, (r)O, (s))~ ~r —s~

x, = 1/xr+xr/4
e "' ' '= -C'i [1+(x-/i)'+(i, y/i')'] (7)

and xT is the thermal exponent. From crossover scaling, '6

the incommensurability crossover exponent for p =4 fol-
lows:

$4= (2 —x, )/(2 —xr) = 3v/2 + ——v /(2v —1) (4)

To obtain results for p =3 we first consider the p-state
Potts model with chirality operator

OC ~ll, ll r + 1 5ll, ll r
—]

I' I'

where l is the mean distance between walls, and C and lo

are constants independent of l and r. Short-distance ef-
fects, coming from walls of the unfavored type and neglect-
ed by the cutoff at x = I in (7), are important on length
scales $0 « i (go is the correlation length of the C state at
5=0), and may be included in C. The partition function
can be obtained by integrating over all possible dislocation
configurations, '0 and after the scale change x'= x/I,
y' = io y/f' becomes

2 2n 2n

Z= X, , e 'i "' 'J gd r„exp —~ X X ssln(1+r2) (si, . . . , s„=l,s„,. . . , s „=—1), (S)n! v 1 J 1 i j+]

where n is the number of dislocation pairs and s; is the sign
of the Burger's vector of a dislocation. All l dependence
has disappeared from the exponent in Eq. (S), and the sys-
tem can be described as a dislocation "gas" with a renormal-
ized core energy,

e, =e, + ,
' T(p' 6)ln—i, — (9)

which becomes very large near the C-IC transition (i ~)
for p )6. The origin is quite easy to understand: Near a
dislocation p, domain walls come very close to each oth-
er, "'6 and consequently loose a large amount of "meander-
ing entropy, ""leading to an increase of the effective core
energy (Fig. 2). In the Kosterlitz- Thouless scaling
analysis, '0" Eq. (9) implies that the IC phase should always
be stable near the C state for p' & 8.

The analysis of Ref. 16 relies on the fact that near the C-

IC transition only one type of walls (heavy or light) is im-

I

portant. Whether this is still true in the vicinity of the mul-
ticritical point (5=0) is not clear a priori. However, it has
been argued" that for any finite 5 the important fluctuations
near the boundary of the C state involve only one type of
walls, as assumed in Ref. 16. The above arguments then
suggest that for any nonzero 5 (and p' )S) the disordering
of the C state occurs in two stages: C-IC-fluid [Fig. 1(b)].
For small 8 the IC region is quite narrow: From the varia-
tion of the correlation exponent of the IC state' with 5 the
IC state is unstable as soon as I =go. Crossover scaling'6
implies T, (0) —T, (5)a 5' v for both the C IC and IC-fluid-
transitions. Figure 1(b) disagrees with previous results"
for the chiral Potts model. In Refs. 12 and 13 the renor-
malization of ~, is neglected. Monte Carlo'4 and series ex-
pansion' may miss a very narrow IC strip between the fluid
and C phases. However, for e, smaller than some critical
value the analysis of Ref. 16 may be inapplicable, and we
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(a)

FIG. 3. Phase diagram for p «5 for (a) weak substrate potential;
(b) strong potential (tentative). The heavy line is of first order.

FIG. 2. Near a dislocation (cross) p walls (p =3) come close to
each other, leading to the renormalization 6, 6,. Different
domains are labeled A, B, and C.

cannot therefore exclude a direct C-fluid transition for 8 WO

in that case.
Finally, for p ~5, dislocation pairs are bound as long as a

C state is stable, " leading to the C-IC transition described
previously' ' [Fig. 3(a) j. However, finite-energy configura-
tions involving only one type of walls may occur if disloca-
tions are present. This will lead to next-to-leading singulari-

ties, which may be observable on the C side where the am-

plitude of the leading singularity vanishes' for z =0. If X

and z are sufficiently large, so that the C-fluid transition is
of first order at 8 =0, we expect the first-order transition to
persist for small g, and a phase diagram like Fig. 3(b) may
be anticipated, though we do not have any detailed results
near the C-IC-fluid triple point.

In conclusion, we have investigated theoretically the
phase diagram of a p &1 adsorbed layer in the vicinity of
commensurability. Most notably, we have found the cross-
over exponents at the multicritical point for p =3 and 4.
We have argued that the IC phase should be stable up to

the multicritical point for p ~3. Strictly speaking, the
model (1) applies for weak substrate potentials. However,
universality implies that the same critical behavior should
also occur for stronger substrates (i.e. , chemisorbed
phases' 4), where usually lattice gas models are used. s 9

Some of our results apply directly to experimental systems:
An IC-fluid transition, apparently of Kosterlitz- Thouless
type, occurs in Pb-Cu(110) (p =5).' For the p =2 system
Xe-Cu(110) (Ref. 1) the apparent C IC line ma-y rather be a
disorder line. However, more experiments with high-
resolution techniques, especially on p =3 and 4 systems,
seem desirable.

After finishing this paper we received a report of work
prior to publication by Haldane, Bohr, and Bak, who argue
for a phase diagram similar to our Fig. 1(b)—however, on
the basis of arguments for z =0 only.
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