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Phase diagrams of uniaxial two-dimensional systems with commensurate, incommensurate, and liquid

phases are derived by combining exact results for the quantum sine-Gordon model with the Kosterlitz-

Thouless theory of melting. The phase diagram depends on the order of commensurability, p. In particu-

lar, for p =3 (the "chiral Potts" case), we conjecture that the phase diagram contains no Lifshitz point, in

contrast to previous authors; for p =1, dislocations remove the original CI transition completely.

It is well known that two-dimensional statistical mechanics
can be formulated in terms of one-dimensional (1D) quan-
tum field theory. Thus the phases of uniaxial surface struc-
tures can be analyzed from the ground-state properties of
the one-dimensional sine-Gordon model. ' The solitons of
the sine-Gordon theory represent domain walls in the
two-dimensional system driving the commensurate-
incommensurate transition. ' To obtain the full phase dia-

gram, it has recently been emphasized' ' that it is necessary
to include dislocations in the surface structure in order to
assess the stability of the incommensurate phase against
melting into a liquid phase.

We will here derive phase diagrams of systems which un-
dergo transitions between commensurate (C), incommensu-
rate (I), and liquid (L) phases. Our strategy is first to con-
sider the CI transition and the correlation functions in the I
phase in the absence of dislocations. To this end we use ex-
act results for the sine-Gordon model with a finite density
of quantum solitons which have recently been obtained by
one of us by means of the Bethe-ansatz solutions. The

melting transition is then studied by adding the effects of
dislocations through the theory of Kosterlitz and Thouless,
essentially "by hand. " Though our results are only strictly
valid in the limit of vanishing fugacity for dislocation pair
creation (the "low vorticity" limit), we conjecture that the

topology of the phase diagrams remains the same at finite
vorticity. Our treatment is in the spirit of the treatment of
the effects of in-plane anisotropy in the XY magnet by Jose
et al. '

The phase diagram depends strongly on the order of com-
mensurability p (the period of the surface structure mea-
sured in units of the substrate lattice constant). The theory
gives a unified description for all values of p, and the results
are summarized in Fig. 1. In certain limits, previous well-

known results are reproduced. For p )4, a floating incom-
mensurate phase always separates the L phase and the C
phase, as found first by Jose er al. ' For p & JS (i.e.,
p = 1, 2) our findings agree with Villain and Bak and Cop-
persmith et al. who found that a liquid phase always

separates the C phase from the I phase at finite tempera-
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FIG. 1. (a)-(e) Phase diagrams derived by combining results from the quantum sine-Gordon model with the Kosterlitz-Thouless theory.

The "pseudo"-CL transition for p =1, and the alternative phase diagram (with Lifshitz point) of other authors for p =3, are indicated by

broken lines. For p 2, the line corresponding to the exact solution of Ref. 6 is indicated by the broken line, and the dotted line is the Cl
line in the absence of dislocations. The singular p -3 and p -4 (vector) Potts points P3 and P4 are also marked.
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ture. For p=3, 4, our results suggest that the I phase
everywhere separates the C and L phases except at an iso-
lated p =3 or p = 4 clock point. In particular, for p =3 (the
"chiral" Potts model case) our phase diagram differs from
the one suggested by Ostlund, ' Selke and Yeomans, "Huse
and Fisher, ' and Howes, Kadanoff, and den Nijs, " who

suggest a Lifshitz point where the C, I, and L phases meet,
as indicated by the broken line in Fig. 1. Though, as will be
discussed, certain independent evidence is consistent with

our p =3 result, modification by finite vorticity effects can-
not be ruled out, and additional calculations (or experi-
ments) should be performed.

For p = 1, the dislocations have a second dramatic effect:
The transition between the C and L phases is completely
washed out at finite temperature, and only the transition
line between the I and L phases remains.

In the absence of dislocations, the thermodynamic proper-
ties of a uniaxial system undergoing a CI transition can be
described by the ground state of the 1D quantum sine-
Gordon Hamiltonian'

H = Jtdx [ —,'gii'+ —,'g '('vt q —p, )' ——cos(pq&)], (I)

where p, is the natural misfit of the 2D system, A is the sub-
strate potential, and g is a measure of the temperature of
the 2D system: g =2m T. y is a canonical field variable
describing the position of the adsorbate relative to the sub-
strate, and H is its conjugate momentum. The transition
line separating the C and I phases has been calculated by
Pokrovsky and Talapov'. For P' =p'g ~ P,„(i.e.,
T~ T,„), the mod. el (1) has a commensurate phase at
small p, which becomes incommensurate at p, = +pc(P)
(see Fig. 2). In terms of (1), the commensurate phase is a

ground state with no solitons, and the incommensurate
phase appears at p, = p, , where the excitation energy of the
soliton vanishes. The limiting value P,„ is found from the
condition that the renormalized value of P' (renormalized
by substrate potential effects) equals 8 rr Hence.
P',. „=8m(1+5) and T,„=4(1+5)/p', where 5 is propor-

P I&q ~ 2 ~ I, 5
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FIG. 2. Phase diagram derived from the quantum sine-Gordon
model (1), as a function of misfit parameter p, and temperature.
The commensurate (C) region and the lines of constant correlation
exponent q in the floating incommensurate (I) phase are shown.
This represents a theory of the CI transition that neglects the effects
of dislocations on the 1 phase; hence diagrams for different com-
mensurability order p may be scaled onto each other.

tional to A. at small A..
To determine the Kosterlitz-Thouless melting temperature

for the IL transition, we apply the results of Haldane for
the exponent q which describes the decay of the density-
density correlation function in the incommensurate phase.
This is obtained from (I), without considering modifications
due to finite vorticity effects.

Well inside the incommensurate phase (i.e., for large soli-
ton density) the lines of constant ri can be found by a

Kosterlitz-Thouless-type renormalization-group theory us-

ing the condition that scaling stops when the cutoff length
becomes comparable to the distance between the solitons.
Asymptotically, the value of q for p. && p, , is then simply
given by the harmonic theory obtained by neglecting the
cosine term in (1), i.e. ,

g- g/2m p'=/2rrp' as p- ~ . (2)

Closer to the CI transition, the soliton density becomes low,
and the scaling trajectories diverge out of the range of vali-

dity of the simple Kosterlitz-Thouless theory. Here we

must use the general Bethe-ansatz integral equations' for q.
Close to the CI transition, they simplify to give

—,'p'q —1=4~&R(P)[p,/p, (P) —I]'" . (3)

and for 2 (p'q (4, the constant-q lines flow to T= T,„,
p=0, as c(q) p, ,(T), where c(q) increases monotonically
from 1 to ~ in this range. However, if p, 0 at T = T,„,
p q 4, and the line p q=4 flows to p, =0, T= T,„, as
const[p, ,(T)]'i'. For p'q)4, the constant-q lines hit the

p, =0 line at T & T,. „, doing so in a cusp for p'q (5 but
crossing the p, = 0 line smoothly (though with residual
nonanalyticity) when p q ) 5.

We now apply the Kosterlitz-Thouless theory to deter-
mine the melting of the incommensurate phase by
dislocation-pair unbinding. The philosophy we use is the
same as that used by Jose et al. when p, =0, and by Villain

and Bak' near T=O. When q( 4 the I phase is stable;

when q )—it is unstable with respect to dislocation un-

binding and it melts. In the limit of weak vorticity q is

given by the value calculated in the absence of dislocations,
i.e. , the value we have already determined. For a given

value of p, the zero vorticity limit-of the melting line is the curve

q =
4

in Fig. 2. This leads directly to the phase diagrams in

Fig. 1 for p= 1, 2, 3, 4, and 5. (For p =1 and p =2 the
old CI line is modified as discussed belo~, since dislocations
are relevant. ) At finite vorticity, renormalizations increase

q above g(zero vorticity) in the I phase: This correction
will be regular everywhere except in the vicinity of the line

p, =0.
The case p =1 is special since the liquid phase resulting

from the dislocation-induced melting of the I phase is indis-

tinguishable from the C phase with interstitials and vacan-

where R (P) is a certain function of P. '4 As p, p, „we
find q 2/p', which was first obtained by Schulz" in the
present context (the equivalent result was independently ob-
tained by Haldane' in the context of the CI transition exhi-
bited by the Heisenberg-Ising quantum spin chain).

The resulting curves of constant q in the p, —T phase dia-

gram are depicted in Fig. 2. The lines with p'q (2 all flow

to the point T=0, p, =p, ,(0). For 0( T( T,„, p'rt 2

asp p (T) As T T,.„,

p, ,( T) —
p, ,(0)exp( —const( T Tm»( ' ') —0
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cies. The commensurate "order parameter" is always

nonzero since the periodic substrate potential acts as a field
conjugate to it—just as for a ferromagnet in a magnetic
field. The Cl line is washed out and only an IL (or IQ line
remains. " At zero temperature, this is a transition due to
vanishing soliton density, but for T )0, it is a Kosterlitz-
Thouless transition. Similar conclusions have been reached

by Schaub and Mukamel. "
For p =2, the transition between L and Cphases is an Is-

ing transition (Bohr, Pokrovsky, and Talapov, Ref. 6). For
one value of T, given by pi=4Tr, their Hamiltonian could
be diagonalized exactly, and there is no I phase at this tem-
perature. (We predict the I phase to exist only at lower tem-

peratures, p'=2Tr. ) Furthermore, in Ref. 6 it was found
that dislocations lower the values of iA, (T) and p,„as
shown in Fig. 1 (full line) below the values given by the
theory of the sine-Gordon model (1) [Fig. 1(b), dotted
line).

For p=3 and p=4, our simple theory predicts that the
melting and CI lines meet at the singular point p, =0,
T T,„, which by symmetry should be a p-state clock
point. For p=3, this contradicts the common belief'
that there should be a Lifshitz point at finite p, where the L,
C, and I phases meet, and thus a whole Potts (or Potts-

type'i) line for small iA near T,„. The evidence for such a
Lifshitz point comes from Monte Carlo simulations" and
series expansions, '3 but does not seem conclusive.

Our method applies only for vanishing fugacity of disloca-
tions, so the immediate vicinity of the Potts point really lies
beyond our reach. At finite fugacity, it is possible that the
Potts point might thus extend to a line in a small region
around the symmetric (iA=O) Potts point. On the other
hand, Huse and Fisher' have analyzed the stability of the
symmetric p =3 Potts point with respect to chirality p. . Us-
ing scaling laws and the known Potts exponents, they find
that p, represents a relevant perturbation. Our prediction of an
isolated Potts point at p, =0, with an I phase separating the
C and L phases at all finite p, , would be a natural realization
of this result.

We suggest further experiments and numerical calcula-
tions, in particular in the cases p=1 and p=3, in order to
test our predictions. Since this work was completed, H. J.
Schulz (private communication) has informed us that he
has independently reached similar conclusions on the p =3
critical structure. He has also pointed out that, provided the
positive crossover exponent for p is smaller than 1, the
cusps in Fig. 1 at points Pi and P4 are removed (as in the

p =2 case).
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