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Monte Carlo studies of a Laplacian roughening model for two-dimensional melting
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Monte Carlo simulations are used to study the thermodynamic properties of the Laplacian
roughening model. Nelson has shown that this model is related via a duality transformation to a gas
of disclinations in a two-dimensional solid, and mimics the positional and orientational symmetries

relevant to two-dimensional melting. In our simulations thermodynamic functions vary continuous-

ly over the full temperature range and agree with analytic results at low and high temperatures.
Correlation functions exhibit three distinct regimes as a function of temperature and yield strong
evidence for the existence of an intermediate phase characterized by short-range positional order and

quasi-long-range orientational order. The Monte Carlo results are in quantitative agreement with

the predictions of the Kosterlitz-Thouless-Halperin-Nelson- Young theory and establish the existence
of two successive continuous phase transitions for the Laplacian roughening model. The corre-
sponding transition temperatures are obtained from the temperature dependence of the renormalized
elastic constant Eq and the Frank constant K&.

I. INTRODUCTION

The nature of the two-dimensional (2D) melting transi-
tion has been a matter of considerable controversy since
the development of the dislocation-mediated melting
theory by Kosterlitz, Thouless, Halperin, Nelson, and
Young (KTHNY). ' Computer simulations and experi-
ments have not always led to unambiguous answers.
Many of the simulations have led to inconclusive results
due to finite-size effects and fluctuations on time scales
comparable to practical simulation times. Although some
computer studies are consistent with the KTHNY theory,
most simulations indicate a first-order melting transition.
Several experiments seem to favor dislocation-mediated
melting. The experiments have been performed either on
systems such as liquid crystals in which the molecules
themselves have inherent angular degrees of freedom, or
on systems such as noble gases adsorbed on graphite in
which some external angular order is imposed by the sub-
strate. A recent experiment supports the description of
2D melting as a two-step process with an intermediate
hexatic phase separating solid from liquid. The data sug-
gest that the hexatic phase exists as a consequence of melt-

ing, not as a consequence of the substrate interaction.
Recently Nelson has proposed the Laplacian roughening

model, ' a modification of the solid-on-solid model for in-
terfacial roughening, which is related by a duality
transformation to the disclination Hamiltonian of the
melting problem. A similar relationship exists between
the 2D XY spin model and the gradient roughening
model. " Simulations performed in the gradient roughen-
ing model have advanced the understanding of the 2D XY
model. ' We have performed simulations of the Laplacian
roughening model to investigate the thermodynamic prop-
erties of the disclination system and the mechanism for
melting in two dimensions.

A theoretical description of the melting of a 2D elastic
solid requires a mechanism for the destruction of the
quasi-long-range translational order and the long-range
bond angular order characteristic of the solid phase. '

(Quasi-long-range order refers to the algebraic decay of
the appropriate correlation function. ) Kosterlitz and
Thouless' (KT) proposed a dislocation unbinding mecha-
nism which leads to a continuous transition into a phase
characterized by short-range translational order. Halperin
and Nelson ' and Young (HNY) found that quasi-long-
range bond angular order persists in the presence of free
dislocations. Each dislocation is a tightly bound disclina-
tion pair, and a second continuous transition associated
with the unbinding of disclinations takes the system into
an isotropic fluid phase. The KTHNY theory for two-
dimensional melting thus predicts two successive continu-
ous transitions and an intermediate hexatic phase charac-
terized by short-range translational order and quasi-long-
range bond angular order. An alternative mechanism for
melting via the nucleation of grain boundaries' predicts a
single first-order transition from a 2D solid into an iso-
tropic fluid. Grain boundaries are a collective excitation
of the disclination system that might preempt the KT
transition if the core energy of disclinations is small
enough. ' A better understanding of the thermodynamic
properties of the disclination system should enhance the
understanding of the problem of melting in two dimen-
sions.

The Hamiltonian for the Laplacian roughening model
10

HLR=(JI2kttT)y
~
bh(r)

~

where
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(1.2)

The {5J] are the six nearest-neighbor vectors in a triangu-

lar lattice (see Fig. 1) and the integer h (r ) is the height of
the interface at site r. The quadratic Hamiltonian (1.1)

may be diagonalized by a Fourier transform to give

For large r, V( r ) has the form

V(r)=(3' /16m)(r lnr+Ar B—),
where A and 8 are lattice-dependent positive constants.
This interaction has exactly the same form as the disclina-
tion Hamiltonian'

HD (K——/16mkaT} g I
r —r '

I

'ln
I
r —r ' Is(r)s(r ')

H« ——(J/2ksT)QG '(q) ~h(q) ~',

where

h(q)=(1/iV'~ )gh(r)exp(iq r)

and

(1.3)

+(E,/k&T)gs'(r),

with elastic constant

K =K/ks T =2(3' )n ks T/J,

(1.9)

G(q)={4——', [cos(5i q)+cos(52 q)+cos(5q q)]]

(1.4)

H =(2rr2k&T/J) g V(r r')s(r—)s(r '), (1.5)

where

V(r)=(l/N)Q G (q)[exp(iq r)+ —'(q r) —1]

(1.6)

and the {s(r)] are integers satisfying the restrictions

gs(r)=0 (charge neutrality}, (1.7a)

g rs(r)=0 (dipole neutrality) . (1.7b)

is the triangular lattice Green's function.
A duality transformation applied to the partition func-

tion of the Laplacian roughening model leads to an exact
factorization into high-temperature and disclination con-
tributions, Z =ZH&ZD. ' The high-temperature approxi-
mation ZHq is obtained by treating the {h ( r ) ] as continu-
ous variables and performing the resulting Gaussian in-

tegrals. The remaining contribution ZD to the partition
function is described by the Hamiltonian

and core energy E, =BK/16m, and where s(r) is the dis-

clination charge at site r. Note that the duality transfor-
mation maps high temperatures T in the Laplacian
roughening model onto low temperatures T in the dis-
clination model and vice versa. Note also that the r term
in (1.8) makes no contribution to the partition function
when charge and dipole neutrality are imposed. The core
energy E, depends on the lattice geometry and is fixed by
the transformation. Thus study of the Laplacian roughen-
ing model provides information about the behavior of the
disclination system at a fixed core energy.

The Laplacian roughening model may display one or
two transitions and can display behavior analogous to
grain boundary melting or KTHNY melting. In the
KTHNY description, the first of the two transitions corre-
sponds to the system becoming rough and to the orienta-
tional ("tilt" ) order becoming quasi-long-range rather than
long range as in the low-temperature phase. The second
transition corresponds to the loss of the orientational
("tilt" ) quasi-long-range order. The smooth, oriented
low-temperature phase corresponds by duality to the iso-
tropic fluid phase in the melting problem and the rough,
unoriented high-temperature phase corresponds to the
solid. The rough but quasioriented phase corresponds to
the hexatic phase. The correspondence between the transi-
tions of the disclination system and those of the Laplacian
roughening model' is summarized in Fig. 2.

The possibility of two transitions is due to a competi-
tion between nearest-neighbor and more-distant-neighbor
terms in the Hamiltonian, as can be seen by rearranging
the Hamiltonian to obtain

(a)

Smooth
oriented

Rough Rough
quosioriented unoriented

I
I

T~

Fluid
b) T

Hexatic Solid

FIG. 1. Nearest-neighbor 5, next-nearest-neighbor p, and
second-nearest-neighbor p vectors for the triangular lattice.

FIG. 2. Correspondence between (a) the phase diagram of the
I.aplacian roughening model as a function of temperature T, and
(b) that of the dual disclination system as a function of tempera-
ture T, as predicted by the KTHNY theory of melting.
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H =(2J/9k&T)g 5+[h(r) —h(r+5J)]
J

—g [h (r) —h (r+p~)]

——,'g [h(r) —h(r+p&)]
J

(1.10)

charged disclinations separated by a distance r [Fig. 3(a)].
The KTHNY picture predicts that this energy diverges at
large r throughout the solid (rough, unoriented) and hexat-
ic (rough, quasioriented} phases but remains finite in the
fiuid (smooth, oriented) phase, ' thus establishing the
correspondence between the roughening transition and the
disclination unbinding transition.

(ii) The tilt-tilt correlation function

g(r) =g ([h (r) —h (r+51 ) —h (0)+h (5J)] ) .

where the I5&], IP~], and Ip~I are the nearest-, next-
nearest-, and second-nearest-neighbor vectors in a triangu-
lar lattice, respectively (see Fig. 1). The gradient roughen-

ing model (which exhibits only one continuous transi-
tion' ) is recovered if the second and third terms in (1.10)
are neglected.

In this paper we report the results of a Monte Carlo
simulation of the Laplacian roughening model on a tri-
angular lattice. We have found this model to be very well
behaved in simulations. The high- and low-temperature
behavior may be calculated analytically including an exact
treatment of finite-size effects. Our results confirm the
existence of two continuous transitions. We find a
roughening transition at T~ ——1.84+0.01 and an orienta-
tional transition at T2 ——1.925+0.015, where T is the di-
mensionless temperature unit ksT/J. The behavior in
each of the three phases is in good agreement with the pre-
dictions of the KTHNY theory.

Our simulations were performed on a 32 X 32
(N =1024) triangular lattice with periodic boundary con-
ditions. The Monte Carlo runs usually included an aver-
age over 20000—50000 passes through the system for
thermodynamic quantities and correlation functions. At
temperatures near the transitions the configurations were
equilibrated for a total of 50000—100000 passes. Except
where otherwise indicated, the error bars were estimated
by averaging groups of 2000 passes and computing the
standard deviation treating these "block" averages as in-

dependent measurements.
In Sec. II we present our results for local thermodynam-

ic quantities: (i) the internal energy E, (ii) the interface
width

ck(r)= exp 2nikg( —I) h(rj)
J

(1.15)

and

aF%i

(1.14)

This correlation function will remain finite at large r in an
oriented phase, and will diverge as r tends to infinity in an
unoriented phase. In this model g (r ) is related by duality
to the free energy of two dislocations (each of them a
tightly bound disclination pair) separated by a distance r
[Fig. 3(b)].' The KTHNY picture predicts that this ener-

gy diverges at large r in the solid (rough, unoriented} phase
and remains finite in the hexatic (rough, quasioriented)
and fluid (smooth, oriented) phases. ' The loss of orienta-
tional quasi-long-range order in the roughening model
thus corresponds to the dislocation unbinding transition.

(iii} The correlation functions

w =([h(r) —h] ),
where h is the average height of a particular configuration
and ( . ) denotes an ensemble average, and (iii) a mea-
sure r of local fluctuations in tilt defined by

2

g ( —1)jh ( r +5) )

J

(1.12)

In Sec. III we present our results for the following:
(i}The height-height correlation function

H(r)=([h(r) —h(0)] ) . (1.13)

This correlation function will remain finite at large r
below a roughening transition and will diverge as r tends
to infinity in a rough phase. In this model H(r ) is related
by duality to the free energy of a pair of oppositely

FIG. 3. Configurations of disclination charges corresponding
to (a) the height-height correlation function H(r), (b) the tilt-tilt
correlation function g(r), and (c) the orientational correlation
functions ck(r) and c(r).
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2

c(r)= g ( —1)'h(rJ)
1

(1.16)

2.5"

(corresponding to r), where the rj are situated on a hexa-

gon of linear size r [Fig. 3(c)]. These correlation functions

are related by duality to the free energy of six disclinations

arranged in a hexagon of size r [Fig. 3(c)].' This configu-

ration of disclinations can be viewed as three dislocations.
As r increases, both the dislocations, and the disclinations

within a given dislocation, are pulled apart. Thus these

correlation functions are sensitive to both the disclination

unbinding and dislocation unbinding transitions.
In Sec. IV we make a quantitative comparison of our

correlation-function results with the predictions of the

KTHNY theory. ' Within the KTHNY picture, we calcu-

late finite-size forms for these functions in all three

phases. ' ' Our Monte Carlo results give good fits to the

predicted forms. Using these forms, we extract renormal-

ized values for the elastic constant K and the Frank con-

stant Kz as a function of temperature. HNY predict that

Kz ~16m. at T'2 (corresponding to the dislocation unbind-

ing transition at T ) and that KA~72/ir at Ti (corre-

sponding to the disclination unbinding transition at T; ). '
We find good agreement with these predictions.

2.0"

I.5"

I.O"

05"

00 2.0 5,0 5.0

II. LOCAL THERMODYNAMIC QUANTITIES

A. Internal energy

We have computed the energy per site of the Laplacian
roughening model by Monte Carlo simulation and by low-

and high-temperature approximations. The low-

temperature expansion obtained by considering the
lowest-energy excitations yields the expression

E/I =(—') [42X '+192X +132X +216X +720X

+246X ' —1512X +258X + 1056X

+720X +552X +1692X

FIG. 4. Internal energy E~ as a function of temperature T~.

The Monte Carlo data are shown and compared with the 1ow-

temperature expansion (curve a) and the high-temperature ap-

proximation (curve b).

i4.0

i2.0"

IO.O

+576X +0 (X )],
where X =exp( —, T' '), and T—»=ksT/J .

(2.1)
E
T"

80"

The high-temperature approximation described in Sec. I
yields 6.0'

E = ,
' ks T and E» =E—/J= , T» . — (2.2)

4.0"

Our Monte Carlo results are shown in Fig. 4. We find ex-
cellent agreement with the low-temperature expansion for
T» g 1.65 and with the high-temperature result for
T» & 2.25, with a rapid continuous rise in between.

We have calculated the specific heat by computing
bE»/hT». The result is shown in Fig. 5. We see one
rather narrow peak at T» approximately equal to 1.85.
There may possibly be a shoulder on the high-temperature
side of the peak near T» =1.9, but the resolution of our
computations does not allow us to make a conclusive
statement about this possibility.

2Q"

0.0
1.4

k 4 k

i.5 i.6 i.7 i.8 ~.9 20 2.i 2.2

FIG. 5. Specific heat hE»/hT» as a function of temperature
T». The solid curve is composed of straight lines between neigh-

boring data points.
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B. Interface width

As a measure of surface roughness we have computed
the interface width defined by

w =(1/N) g [h (r) —h] (2.3)

—62X + 12X + 102X~+60X +72X

+192X"+84X"+o(X") . (2.4)

Our Monte Carlo results are in excellent agreement with
this expansion for T» & 1.65.

The high-temperature approximation described in Sec. I
yields

w =(T»/N)g G (q), (2.5)

where G(q) is given by (1.4). Above the roughening tem-

(4.0"

where h is the average height of a particular configuration.
We have subtracted the average height for each configura-
tion to cancel the effect of possible long-time fluctuations
of h away from zero. ' Our Monte Carlo results are shown
in Fig. 6.

The low-temperature expansion for this quantity is

w =2X '+12X +12X +24X +72X +12X '

perature the interface width diverges linearly with N.
This divergence is due to the fact that G(q) diverges as
1/q for small q. In a finite system, however, the width is
bounded even when the interface is rough. The sum in
(2.5) may be evaluated by an integral approximation as-
suming the small-q form for G(q) (since small q is the
major contribution to the integral) and a circular Brillouin
zone of radius (8n/3' )' chosen to preserve the zone
area. This integral approximation yields

w = T» (6N /128vr ) =4.86T» for N = 1024 . (2.6)

As is clear from Fig. 6 this integral approximation does
not give good agreement with our Monte Carlo results.

We therefore evaluate the sum over q in (2.5) exactly
for a finite-size system with periodic boundary conditions
to obtain

ur =3.114T» for N =1024 . (2.7)

C. Local orientation

This form is in good agreement with our Monte Carlo
data for T» &2.25. The average values are within 5% of
the predictions given by (2.7). The fluctuations in these
values are quite large and increase with temperature.
These large fluctuations are due to the fact that the width
is sensitive to long-wavelength modes. Fluctuations in the
interface width are given in the high-temperature approxi-
mation by Aw =(2'~ )w. In this temperature regime both
w and b, w are predicted to grow linearly with temperature
for a finite-size system.

I2.0"
A local measure of the fluctuations in the surface orien-

tation is given by

i0.0-

'2
((/iV( g g( —(Vh(r+5J( ),

J
(2.8)

"80-

60"

4.0"

where the I 5~ j are the six nearest-neighbor vectors. Note
that r is not sensitive to a uniform tilt of the nearest-
neighbor hexagon, and is therefore a measure of a very
different character than w.

The low-temperature expansion for this quantity is

z=12X '+48X +24X +48X +144X +84X '

—432X"+60X"+240X +192X"+ 144X"

2.0"

0
0.0

l.0 2.0 3.0

+360X +96X +o (X ) .

The high-temperature approximation is
r

r=(T»/N)Q G (q) 6 —2+ e
J

'q 0) y 'q Pg'
J J

(2.9)

FIG. 6. Interface width w as a function of temperature T~.
The Monte Carlo data are shown and compared with the low-
temperature expansion (curve a), the high-temperature approxi-
mation (2.5) for a finite system with periodic boundary condi-
tions (curve b), and the integral approximation (2.6) to the high-
temperature result (curve c).

(2.10)

where Ig j, Ip j, and Ip j correspond to the six nearest-,
next-nearest-, and second-nearest-neighbor vectors, respec-
tively (see Fig. 1). Approximating the sum by an integral,
as described above, yields
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r= [m/8(3' )]T» =0.226T», (2.11) III. CORRELATION FUNCTIONS

~=0.230T~ (2.12)

independent of N, whereas summing numerically yields
A. Height-height correlation function

The height-height correlation function, defined as

H(r)=([h(r) —h(0)] ), (3.1)

for N =1024. The results (2.11) and (2.12) agree quite
well with one another since ~ is a truly local quantity and
is not sensitive to long-wavelength modes.

Figure 7 shows our results for 7. The agreement with
high- and low-temperature results is excellent for
T»&2.25 and for T»&1.65, respectively, as already ob-
served for the internal energy and interface width.

Our determination of local thermodynamic quantities
demonstrates that the Laplacian roughening model is well
suited to Monte Carlo simulation. We conclude from
these quantities that if there are two transitions they occur
between T»=1.65 and T» =2.25. All three of the local
quantities computed show very similar temperature depen-
dence. A11 three quantities have been determined both by
heating from a perfectly flat interface and by cooling from
an equilibrated configuration at high temperature. We see
no hysteresis in any of these quantities.

is sensitive to the roughening transition. The high-
temperature approximation is

H(r) =(2T»/N)Q G (q)[1—exp(t q r)] . (32)

The integral approximation to (3.2) yields

H(r)/T» =(3'~ /8n')[r ln(N'~ /r) Ar —+B], (3.3)

where A and B are the same constants which appear in the
interaction V(r) given in (1.8). Note that in the thermo-
dynamic limit H(r) diverges as lnN for all r at high tem-
peratures.

Figure 8 shows our Monte Carlo results for the height-
height correlation function. At low temperatures the
height-height correlation function should approach a fi-
nite asymptotic value. The curves for T&»1.8 clearly
show this behavior. In addition, we have plotted the exact
finite-size high-temperature form (3.2) for a 32X32 sys-
tem. Despite rather large fluctuations at large r it is clear
that the high-temperature result fits the data well for

I.o"
2.00"

1.75"

T"Q4.0
T"=2.5

T"=2.0
T+a 3.5"

0.8 "
I.50-

T =45

T =1.95

0.6 "
I.25"

l.00-

T =l.938..

T =1.925
~ ~

04"
0.75"

02" 0.50"

0.25"
T =I.9

0.0
I.O

R

2.0 3.0 4.0 5.0
0 2 4 6 8 lo

r
l2 l4

T s ).85

16 I8

FIG. 7. Local tilt fluctuations ~ as a function of temperature
T». The Monte Carlo data are shown and compared with the
low-temperature expansion (curve a), the high-temperature ap-
proximation (2.10) for a finite system with periodic boundary
conditions (curve b), and the integral approximation (2.11) to the
high-temperature result (curve c).

FIG. 8. Monte Carlo data for the height-height correlation

function H(r) as a function of separation r at various tempera-

tures T». The curve X---)( represents the high-temperature

approximation (3.2) for a finite system with periodic boundary

conditions.
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TABLE I. Monte Carlo results for m and H(r =16) for low and high temperatures, and the values

for (h(r)h(0)) at r =16 which follow from Eq. (3.4).

H(16j z [2w H—(16)] (h (0)h (16)) (high T~)

1.6
1.75
1.8
1.825
2.0
2.5
3.5
4.0
4.5

0.016
0.056
0.065
0.138
6.10
7.08

10.36
12.90
13.50

0.032
0.114
0.132
0.264

15.48
18.00
22.08
32.38
31.80

0.000
—0.001
—0.001

0.006
—1.64
—1.92
—0.68
—3.29
—2.40

—1.56
—1.96
—2.74
—3.12
—3.52

T» & 2.0. In addition, the data at T~ = 1.95 and
T*=1.938 show the same shape as that in the high-
temperature region.

As an additional check on our Monte Carlo data at high

and low temperatures we compare the results for H(r}
with those for w. Note that

H(r)=([h (r}—h (0)] ) =2w —2(h(r)h (0)), (3 4)

and that as r approaches infinity at any temperature we

expect

B. Orientational correlations

1. Tilt tilt cor-relation function

The transition to an unoriented interface may be studied

by computing the correlation of the tilt of the surface at
one point with the tilt at a point a distance r away. De-
fine'

g(r)=g ([h(r) —h(r+5J) —h(0)+h(5J)] ) .

(h(r)h(0)) ~(h(r)) (h(0) }~0. (3.5)

In Table I we list our Monte Carlo results for io and
H(r =16) for low and high temperatures, and the values
for (h(r)h(0)} at r =16 which follow from Eq. (3.4).
For T*&1.825, (h(16)h(0)) is essentially zero. We con-
clude that the length associated with the decay of
(h(r)h (0) ) is smaller than r = 16, and that finite-size ef-
fects are negligible in this temperature range. At higher
temperatures finite-size effects are significant, and can be
estimated by calculating (h(16)h(0)} in the high-
temperature approximation, as shown in Table I for
T*)2.0.

In order to determine the temperature at which the
roughening transition occurs, we look for the temperature
at which the function H(r) begins to diverge as r tends to
infinity. Since in our finite system we have no true diver-

gence, we look for a change in behavior. Qualitatively,
such a change may be seen from Fig. 9 to have occurred
between T*=1.8 and T*=1.845. We define r„„as the
smallest radius at which H (r) is within 1% of its value at
rp= 12. In Fig. 10 we plot r„„asa function of tempera-
ture. The parameter r„„measures the length associated
with the decay of ( h ( r )h ( 0 ) ), and its abrupt increase as a
function of temperature is a signature of the roughening
transition. We tentatively identify the roughening tem-
perature T

~

——1.825+0.025. Our estimate does not change
significantly if we use rp 16 as our reference——point or if
we replace 1% in our definition of r„„by0.5% or 2%%uo.

The errors in r»ym are estimated by determining rzsym

for blocks of 2000 passes and then averaging the values
thus obtained and computing the standard deviation.
Typical errors are shown in Fig. 10.

O. ) 5

T R I.85

O. I 0"
T"=I.838

T"=I.845

0.05"

T =I.825

T =I.8
T"= I.75

0.0
0

= T = I.6

2 4 6 8 IO I 2 t4 16 18

FIG. 9. Monte Carlo data for the height-height correlation
function H(r) as a function of separation r at various tempera-
tures T~ & 1.85.
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I2.0 I.OO
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T"=4.0
T"= 2.5
T"„=2.0
T =45
TN= 3.5

T = 1.95

T = 1.938

TO=1.925

7.0-

6.0-
O
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3.0

2.0

I.o-

0.0
I.6

I

l.8
i i

2.0
I

2.2
i

2.4

g(r }
T" 0.50

0,25"

0.0
I

T= 19

T»1.838
T% = 1.85
T =1.845

T =1.825
T" = 1.8
T" = 1.75

T =16
I I I r I x e e e ~ k
r ~ r r ~ ~ I I I ~ I

4 6 8 IO l6

FIG. 10. Parameter r„„,defined as the smallest radius at
which the height-height correlation function H(r) is within 1%
of its value at ro ——12, as a function of temperature T'.

FIG. 11. Monte Carlo data for the tilt-tilt correlation func-

tion g(r) as a function of the logarithm of the separation r at
various temperatures T*. The curve &(- - -)& represents the
high-temperature approximation (3.6) for a finite system with

periodic boundary conditions, and the curve . represents the

integral approximation (3.7) to the high-temperature result.

Below the orientational transition g ( r ) is expected to tend
to a finite value at large r. In the thermodynamic limit

g (r ) will diverge at large r above the orientational transi-

tion. In the high-temperature region g(r) takes the form

g(r)/T~ =(6/N)g G(q)[l exp—(i q r)] . (3.6)

The integral approximation to (3.6) yields

g (r)/T* = [3(3'~ )/2ir] (lnr +c) . (3.7)

In Fig. 11 our Monte Carlo results for g (r) are shown,
along with the high-temperature form (3.6) and its integral
approximation (3.7}. The constant c in (3.7) is chosen to
give agreement with (3.6) at r = 1. The results for
T~&2.0 fit the finite-size high-temperature result (3.6)
quite well. The integral approximation (3.7} is shown to
be in good agreement with the finite-size exact sum (3.6)
for r &8. Discrepancies for larger values of r are due to
finite-size effects. Despite the flattening due to these ef-
fects, g(r) does not saturate until r is greater than 14.
Saturation of g (r) for smaller values of r is an indication
of orientational order. From Fig. 11 we estimate that the
orientational transition occurs between T» = 1.9 and
T~ = 1.95.

We now compute r„„,the smallest radius at which

g(r) reaches values within 1% of g(r =12). The results,
shown in Fig. 12 as a function of temperature, confirm the

existence of an orientational transition at T2
=1.925+0.025. Typical errors are estimated as for Fig.
10.

The quoted uncertainties in T'i and T& reflect the tem-

perature range within which the abrupt change in r„„
occurs. As shown in Fig. 13, the temperature shift be-

tween curves a and b is roughly constant and equal to 0.1

for r„„&6. Thus, although the determination of T] and

T2 is uncertain to within +0.025, the temperature interval

T2 —T
&

remains approximately equal to 0.1.

2. The correlation functions ck(r) and c (r)

The correlation function ck( r ) is defined by'

re(rl (exp 2rrrkZ( —IV=h(rr) ),
J

(3.&)

t) ck(r)
c(r)=-

(2ir} Bk k p

=( Z( —1Vh(rr)
J

(3.9)

where the [ rj J are situated on a hexagon of size r [see Fig.
3(c)] and k is an arbitrary constant. The related correla-
tion function
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2.2

(3.10)

The integral approximation to & . y'(3.10) ields

c (r) = T~[3(3'~ )/8ir] (ln —'„)r (3.1 1)

te that at high temperatures c (r) divergesr es as the area ofNotet a a i
(r) deca s exponentially withthe enclosed hexagon and cI,&~r ecays

(kr) Nelson . has argued that
'

t10 that the interm iate,
hase is characterized by algebraic decay o

ck(r) and a logarithmic divergence of c (r) as r app
infinity.

14 hows our Monte Carlo results for c (r) withFigure s ows
d 0.125. Small values of k correspoond to slowk =0.1 an

referable for nu-deca of ck(r) with increasing r, and are pre era

the largest hexagon that can ben be accommodat in a

is e ual to r in (2.8) for r =1. For arbitrary r, c r mea-is equal to ~ in

correlation function will remain finite at large r in t e
t d hase and will diverge for largelow-temperature, oriente p ase,

th high-temperature, unorient phase.
correlation func-In the high-temperature region these corre

tions are given by

c(r) = —ln[ck(r)]/(2ir ki)
2

= ( T» /N)g G ( q ) g ( —1)lexp(ir q 5~ )

0.0 ~ ~

l.8 2.0

a function of temperatureFIG. 13. Parameter r „as a funct' p
Curve a is t e resu

r cf. Fi . 10). Curve b is the result compuuted

) Cfrom the tilt-tilt correlation function g(r) c . ig.
shows theresult rom r s

'
s f H( ) hifted in temperature by AT~ =0.1.

2.42.2

oundar conditions. For32)C32 lattice with periodic boun y
T~ p 2.0, the Monte Carlo results fit the high-temperature

3.10 uite well and ck(r) is found to decay like the

lowered a weaker decay is observed, an
saturation into a finite value or arge r se

he behavior of the system at intermediate ptern cra-
u

' ' ' ' '
. 15 b lotting lnck(r) vs lnr.

The existence of a linear regime oor 5 & r & 8 signa s a ge-
e r in the temperature rangebraic decay of cq r in e

1.9. Our Monte Carlo results for c r, s1 825&T~& . . ur
behavior c (r) -1nrin Fig. 16, also exhibit the asymptotic be av'

925. The saturation of c(r) to a inite
e or T~ (1.825 is characteristic of orientatio

long-range or e . Tr er. For T
lost and c(r) diverges faster t an nr. ese r

e of the intermediate p ase oport the existence o e
imated values of1.825 & T~ 1.925, consistent with the estima v

T& and Tq obtained in Secs. IIIA an

IV. DETERMINATION OF K AND Kg

The correlation functions defined in Sec. III may be
wri

' ' ' '
n lan ua e via a duality trans or-

n ' In this section we use t e pre ic
'

tion test c arges.
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FIG. 14. Monte Carlo data for the logarithm of the orienta-

tiona1 correlation function ck(r) for k =0.125 and k =0.1 as a
function of the square of the separation r at various tempera-

tures T». The curve X---&( represents the high-temperature

approximation (3.10) for a finite system with periodic boundary

conditions for k =0.125. The curve represents the integral

approximation (3.11) to the high-temperature result for
k =0.125.

FIG. 15. Monte Carlo data for the logarithm of the orienta-

tional correlation function ck(r) for k =0.125 and k =0.1 as a
function of the logarithm of the separation r at various tempera-
tures T» (1.925.

II.O

IO.O

of the KTHNY theory for two-dimensional melting'3 to
obtain finite-size forms for these correlation functions' '
in the quasioriented and unoriented phases. By fitting our
Monte Carlo data to these forms we extract the tempera-
ture dependence of the elastic constant K and the Frank
constant Kz.

In order to perform the duality transformation, it is
convenient to introduce

c(r)

9.0

7, 0.

6.0

5.0

gk(r) =g (expI 2m.ik[h(r) —h(r+5J )

—h(0)+h(5i)]) ), (4.1a) 3.0'

ck ( r ) = exp 2nikg ( —1) h'( r1 )

J

Hk(r)=(exp[2irik[h(r) —h(0)]] ) .

(4.1b)

(4.1c)

2.0

I.O.

0.0
I 4 5 6 7

T =1.838
T"= l.85

T =1.825
T =1.8

— TO= 1.75

8

The correlation functions defined in Sec. III are thus given
by

FIG. 16. Monte Carlo data for the orientational correlation
function c(r) as a function of the logarithm of the separation r
at various temperatures T» & 1.925.
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(4.2a)
8 Hk(r)H(r)=-

(2m )~ Bk~ k p
(4.2c)

8 c (r)c(r)=-
{2m) Bk k p

(4.2b) The orientational correlation functions (4.1a) and (4.1b)
transform via duality into'

gk(r) =g exp[ —(2ir)iT~k [—2V(r) —2V(5i)+ V(r+5J )+ V(r —5J )]]

)( exp 2m T~k s r' —V r' —r +V r' —r —5J +V r' —V r' —5J
r

(4.3a)

and

es(r)=exp —(2sr) (T k /2)g ( —) )'(+) 'V(rs —r-) (exp (2rr) T*kgs(r ')g ( —) ))V(T) —r ')

JWJ p J
(4.3b)

where ( . . )d implies an average over a disclination ensemble subject to the neutrality constraints (1.7). The interaction

between disclinations in this ensemble is given by V( r } defined by {1.6}. The forms (4.3) allow us to interpret these corre-
lation functions in terms of the free energy of configurations of disclination test charges situated as in Figs. 3(b) and

3(c).'0 In both cases the prefactor measures the bare interaction between the test charges of strength k, and the second

factor is due to interactions between these test charges and thermally excited disclinations. At low temperatures T in the
disclination ensemble [high T, see (1.9)] there are no thermally excited disclinations, and thus the prefactors in (4.3)
reproduce the high-T~ results of Sec. III.

The height-height correlation function (4.1c) transforms via duality into
r

He(r&=exp( —(2sr& T'k [U(r) —V(r&JJ(exp (2sr) T'kgs(r '&[V(r ' —r) —V(r ') —U(r ' —r)+ U(r '&] )s,
r

(4.4)

where ( . . )~ implies an average over a disclination en-

semble subject only to the charge neutrality condition
(1.7a). The interaction between disclinations in this en-

semble is given by V( r ) —U ( r ), where

U(r)=(1/2N)g G (q)(q r) (4.5)

The form (4.4) allows us to interpret this correlation func-
tion in terms of the free energy of a pair of disclinations
of strength k separated by a distance r [see Fig. 3(a)]. The
prefactor measures the bare interaction between the test
charges, and the second factor is due to interactions be-

tween these test charges and thermally excited disclina-
tions. The prefactor can be shown to reproduce the high-
temperature result (3.2) by substituting (1.6) and (4.5) into
(4.4). The function U(r) diverges like lnN in the thermo-
dynamic limit. Thus the function H(r) diverges for all r
in the thermodynamic limit at high T*. As T* is lowered
below Tq, the screening due to thermally excited disclina-
tions results in a finite H{r) for finite re These diver-

gences cannot be observed in a Monte Carlo simulation of
a finite system.

The correlation functions (4.1) measure the response of
the disclination system to the externally imposed configu-
rations of test disclinations shown in Fig. 3. The corre-
sponding correlation functions (4.2) measure this response

H ( r) = [Kii /2(3'~i) ](ir1/N)

)& g G ( q )
~

1 —exp(i q r )
i

(4.6a)

g(r)=[K](]l2(3' )m ](1/N)

&(QG (q)g
~

1 exp(iq 5J—)
~

)&
~

1 —exp(iq r)
~

(4.6b)

c(r)= [Ka/2(3'i )m ](1/N)

)& Q 6 ( q ) g ( —I }iexp(ir q
. 5/) (4.6c)

in the limit in which the strength k of the test disclina-
tions approaches zero.

The KTHNY theory for the disclination system in the
solid and hexatic phases yields specific predictions for the
behavior of the correlation functions (4.1) and (4.2) in the
rough, unoriented and rough, quasioriented phases. ' For
a finite system with periodic boundary conditions the
KTHNY predictions in the rough unoriented phase are
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where the wave vectors q are appropriate to the finite sys-

tem and Kz is the renormalized elastic constant.
The high-temperature results of Sec. III are recovered

fol

K„~K=2(ir) (3'

As T» approaches Tz from above, screening effects due to
thermally excited dislocations do not change the r depen-
dence of the correlation functions (4.6). In this regime,
the screening effects can be completely accounted for by
the temperature dependence of the renormalized elastic
constant Kq. As T~ approaches T2 from above, Kq ap-
proaches the universal value 16~. ' ' We extract Kz by
fitting our Monte Carlo data for the correlation functions
to the finite-size forms (4.6). The results for KR as a func-
tion of temperature are shown in Fig. 17. For T~ g 2.0 the
data is in good agreement with the high-temperature pre-
diction Ka ——2(ir) (3'~ )T». Below T» =2.0, Kz drops
abruptly, and goes through 16' at T2 ——1.925+0.015, in
agreement with our previous estimate of T2 in Sec. III B l.

The presence of free dislocations in the hexatic phase
produces a screened, logarithmic interaction between dis-
clinations. In this regime the disclination system is
described by an effective Hamiltonian

H =irKq/36 g s(r}s(r ')W(r —r '), (4.7)

where I( z is the Frank elastic constant and the interaction
W(r) is given in terms of the triangular lattice Green's
function (1.4) by

W(r)=(4ir/3' )(I/N)QG(q)[exp(iq r) —1] .

H(r)=2A(T)+[K„/18(3' )](1/N)

XQG(q)! 1 —exp(iq r)! (4.9a)

g(r)=24A(T)+[K&/18(3'~ )](1/N)

Xg G(q)g ! 1 e—xp(i q 5J )!

X!1 ex—p(iq . r)!

(4.8)

For a finite system with periodic boundary conditions
the KTHNY predictions in the rough, quasioriented phase
are

(4.9b)

l20.0"
k

I 1

c(r)=6A (T)+[Kq/18(3' )](1/N)

) i0.0-

KR

l00.0"

90, 0"

80.0"

70.0"

60.0

50.0
KR = l6vr

(4.9c)

where A (T) is related to the renormalized core energy for
disclinations in this phase. The KTHNY theory predicts
that Kz diverges as T» approaches T& from below, and
that E& approaches the universal value 72/n. as T~ tends
to T& from above. *' Since

g! 1 —exp(iq. 5 )! =3G '(q),

20.0"

10.0"

l.8 2.0 2.2 2.4 2.6 2.8 3,0 5.2 3.4 5.6

FIG. 17. Renormalized elastic constant K~ as a function of
temperature T~ as obtained from fits of the correlation functions
H (r), g (r), ck(r), and c (r) to the forms (4.6). Different points at
a given temperature represent determinations from different
correlation functions and/or different Monte Carlo runs. The
solid line represents the high-temperature result
E„=2(m)~(3'i') T*.

g ( r ) rapidly approaches a finite asymptotic value with in-
creasing r, reflecting the finite energy required to unbind a
dislocation pair. The correlation functions H ( r ) and c (r)
increase logarithmically with r in the thermodynamic lim-
it, reflecting the quasi-long-range orientation al order
characteristic of the intermediate phase.

%e extract E~ by fitting our Monte Carlo data for the
correlation functions H(r } and c(r) to the corresponding
finite-size forms (4.9). The function g(r) cannot be used
for this purpose because it exhibits a weak r dependence
and its asymptotic value depends on both Kz and A (T).
For H ( r ) and c (r) we obtain a good fit to the forms (4.9a)
and (4.9c) for T» ( 1.9, while at higher temperatures the r
dependence of the correlation functions changes and corre-
sponds to the forms (4.6). This change is illustrated in
Fig. 18. The results for Kq as a function of temperature
are shown in Fig. 19. Below T2, Ez decreases rapidly
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FIG. 18. Monte Carlo data for the height-height correlation function H(r) at (a) T~ =1.9 and (b) T~ =1.925. Best fits to the
forms (4.6a) and (4.9a) are denoted by X---X and X . - X, respectively. Note the crossover from behavior at T» =1.925, charac-
teristic of the rough, unoriented phase, to that at T =1.9, characteristic of the rough, quasioriented phase.

with decreasing T», and goes through 72/n. at
T~ ——1.84+0.01, in agreement with our previous estimate
of T'i in Sec. III A.

V. SUMMARY AND CONCLUSIONS

We have investigated the thermodynamic properties of
the Laplacian roughening model over the full temperature
range. Analytic results obtained in the low- and high-
temperature limits are in excellent agreement with the cor-
responding simulation data. Our Monte Carlo results for
the correlation functions indicate the existence of a rough,
quasioriented phase at intermediate temperatures. Duality
arguments which establish the correspondence between
this roughening model and a disclination system identify
the intermediate phase as the hexatic phase of the disclina-
tion system. '

The transition from the smooth, oriented phase into the
rough, quasioriented phase occurs at T~ ——1.84+0.01.
The orientational transition into a rough, unoriented phase
occurs at Tz ——1.925+0.015. Our simulations present
strong evidence for the existence of the intermediate phase
within a temperature range h, T~ =Tz —T

&
=-0.09. Monte

Carlo simulations of the Laplacian roughening model on a
square lattice have also indicated the existence of an inter-
mediate phase. '

The internal energy, interface width, and local orienta-
tion are found to be smooth functions of temperature.

These thermodynamic quantities exhibit no discontinuity
or hysteresis, so there is no indication of a first-order
phase transition. The rather sharp specific heat peak at
T~=-1.85 could be due to a single second-order phase
transition, a possibility that cannot be ruled out on the
basis of thermodynamic functions only. However, this
peak is also consistent with the picture of two KT transi-
tions separated by a narrow temperature range. Such a
description predicts unobservable essential singularities in
thermodynamic quantities at T~ and Tq. ' ' The specif-
ic heat peak is then caused by the gradual dissociation of
bound pairs of dislocations and disclinations with decreas-
ing T» (increasing X), and its location does not identify a
transition temperature. '

The correlation functions calculated in this Monte Car-
lo simulation provide the essential information needed to
characterize the phases and detect the phase transitions.
Our results confirm the predictions of the KTHNY theory
for the disclination system. Their theory is based on an
expansion in the fugacity y =exp( E, lk& 1) and is e—x-
pected to break down at small core energy. " The Lapla-
cian roughening model corresponds via duality to a dis-
clination system of core energy E, Ik+T=BKj16n. ' The
parameter 8, which controls the core energy, is deter-
mined by the interaction V(r) between disclinations, Eq.
(1.8). We compute B from the upper transition tempera-
ture Tq using the HNY recursion relations ' to obtain 8
approximately equal to 2.1. A fit of V(r) in (1.6) to the
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FIG. 19. Frank elastic constant K& as a function of tempera-

ture T~ as obtained from fits of the correlation functions H(r),
ek(r), and c(r) to the forms (4.9). Different points at a given

temperature represent determinations from different correlation
functions and/or different Monte Carlo runs.

form (1.8) does not yield an independent estimate of B,
since the resulting value is too sensitive to details of the
fitting procedure. A consistency check follows from the
observation that the forin (1.8) with B =2.1 provides a
good fit to (1.6) (and yields A = 1.9).

The core energy for thermal excitation of dislocations,
determined by the parameter B, is of interest because there
is evidence that it may control the crossover from a KT to
a first-order transition in these systems. ' ' Saito's results
from direct simulation of the dislocation system imply
that the transition is continuous for B & 1.63 and first or-

der for B (1.13. The parameter B is generally not known
for atomic models. The value B =2.44 obtained by Fish-
er, Halperin, and Morf ' for the two-dimensional electron
system suggests a continuous phase transition for that sys-
tem. Since 8=2.1 for the Laplacian roughening model,
our observation of two continuous transitions is consistent
with Saito's results.

The transitions of the Laplacian roughening model have
been located, and their relation to the transitions of the
dual disclination system' has been established. The
Monte Carlo results for the correlation functions are fit
well by the predictions of the KTHNY theory for a finite
system with periodic boundary conditions, and yield the
temperature dependence of the renorrnalized elastic cou-
pling Kz and the Frank constant K&. The rough,
unoriented phase (corresponding to the solid) is character-
ized by a finite value of KR and an infinite value of Kz.
Kz decreases with decreasing T' (increasing T) and takes
the universal value 16m. at the transition temperature
Tz ——1.925+0.015 (corresponding to the dislocation un-

binding transition). The rough, quasioriented phase (cor-
responding to the hexatic phase) is characterized by a fi-
nite Kq and a vanishing Kq. Kz decreases with decreasing
T» (increasing T) and takes the value 72/m at the transi-
tion temperature T'i ——1.84+0.01 (corresponding to the
disclination unbinding transition). Both Kz and Kz van-
ish in the smooth, oriented phase (corresponding to the
isotropic fluid).

Our simulations have established the existence of a
rough, quasioriented phase at intermediate temperatures.
This phase only exists within a narrow temperature range,
in agreement with the recent experimental observation of
the hexatic phase. An interesting open problem is that of
stabilizing the intermediate phase over a wider tempera-
ture range by allowing for generalizations of the Laplacian
roughening model considered here.
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