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An efficient Monte Carlo procedure is applied to the study of the kinetics of low- and high-Q
Potts models on surfaces quenched from a high temperature (T» T, ) to low temperatures (T & T, ).
The kinetics of these models are analyzed in simulations which yield the time dependence of the size
and shape of the domains. After an initial transient period, the mean domain size R increases with

time as R -t". For the triangular lattice at all temperatures and for the square lattice at tempera-

tures T & 0.5T„the exponent n decreases from —, for Q =2 (Ising model) to approximately 0.41 for

large Q. The distribution of grain sizes and shapes is also calculated from the results of the simula-

tious. For large Q, these distributions are time independent. On the square lattice at low tempera-
tures the growth exponent is approximately equal to 0, due to the nucleation of pinned domains.
The Monte Carlo results are discussed in terms of experimental studies of the ordering of adsorbed
atoms on surfaces and of the growth of grains in polycrystalline materials.

I. INTRODUCTION

The kinetics of domain growth has a direct influence on
polycrystalline microstructures and is a subject of consid-
erable interest in surface science' and in metallurgy. '
The development of long-range order in a system with
more than one equilibrium state is fairly well understood
for three-dimensional systems such as binary alloys
with two equivalent sublattices which are quenched from
high to low temperatures. At high temperatures, there are
no ordered regions even in equilibrium. A short time after
a quench to low temperatures, the entire sample consists
of domains of ordered regions. These domains grow due
to curvature, and equilibrium is characterized by domains
of macroscopic size. When the order parameter is con-
served in three dimensions, the average domain size in-
creases as the square root of the time (t), and this has been
confirmed by both Monte Carlo (MC) simulations and ex-
periments on alloys such as Fe-Al and Cu-Au. In two di-
mensions (i.e., on surfaces) the growth exponent remains
unchanged, but roughening fluctuations result in a strong
temperature dependence to the growth rate, as shown in

earlier papers. '

While systems with Q =2 degenerate ground states ap-
proach equilibrium in the manner described above, the sit-
uation for highly degenerate (Q & 2) systems is not as sim-

ple. Examples of systems with Q & 2 are found in the su-

perlattice structures observed for adsorbed atoms on sur-
faces as discussed in the preceding paper, which we refer
to as I. In addition, grain growth in crystals can be
viewed as the Q~ ae limit of such models, in the approxi-
mation that all grain boundaries are energetically
equivalent. When Q&2, the effects of intersections of
three or more domains must be considered in addition to
the effects of curvature when analyzing the kinetics. ' In
the preceding paper it was shown that in two dimensions,
for Q & 2, it is possible for certain isolated domain
geometries to remain frozen, with neither growth nor

shrinking resulting in a decrease of the free energy. These
results on isolated domains suggest that for systems with

Q &2, the effects of domain-wall intersections can result
in slower kinetics than the Ising-type (Q =2) systems. Of
course, the extreme result of no growth is only to be ex-
pected when the completely pinned configurations dis-
cussed in the preceding paper are dominant in an actual
quench. "

In this paper, we present a detailed Monte Carlo study
of the kinetics of domain growth in two-dimensional sys-
tems quenched from high to low temperatures, for both
small (Q =3,4,6) and large (Q =12—64) degeneracies.
The two-dimensional case is studied since it requires a
smaller number of lattice sites and because the topology of
the domain configurations is easily visualized and
analyzed. The results are directly applicable to the growth
of superlattice structures in the adsorption of atoms on
surfaces, where the Q-component Potts systems studied
here have been shown to provide good models for the
equilibrium phase transitions. ' In addition, the high-Q
results should be applicable to the growth of polycrystal-
line domains in thin films if surface grooving effects are
unimportant. Finally, since the exponents obtained for
growth of the average domain size as a function of time,
are not related to fluctuation effects (i.e., they are obtained
on the triangular lattice at T =0), it is possible that they
are appropriate to the problems of three-dimensional or-
dering and grain growth as well.

The main results of this paper are (i) the analysis of the
growth exponent n, , defined by R -t", where R is the aver-
age linear domain size, and (ii) the demonstration of the
time invariance of the distributions of domain sizes and
shapes. For quenches on a triangular lattice at all tem-
peratures and on a square lattice at high (T & 0.5T, ) tem-
peratures, the growth exponent is shown to vary from
n =0.5 for Q =2 to an apparently asymptotic value of
n =0.41 for high Q. This indicates the role of domain-
wall intersections in slowing down the kinetics of the
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high-Q systems. It is only on the square or honeycomb
lattices with nearest-neighbor interactions and at low tem-
peratures that the domain configuration remains com-
pletely frozen and the growth exponent is zero. When the
system contains longer-range interactions, it is possible
that the completely pinned configuration described in I is
no longer stable, and that the exponent n is the same as for
the triangular lattice. Preliminary versions of these results
were presented in Refs. 15 and 16.

The organization of the paper is as follows. In Sec. II,
we discuss the Monte Carlo model and procedure used for
the high-Q simulations. An efficient algorithm for the
spin-flip kinetics was necessary, since for high Q there are
many possible spin flips that must be attempted. Section
III contains our results for the lattice and Q dependence of
the growth exponent. The temperature dependence of n is
discussed as well and some simple arguments are present-
ed to qualitatively explain the observed trends with lattice
and with Q. The distribution of domain sizes and shapes
is presented in Sec. IV, where the time invariance of the
configurations is demonstrated. In addition, the Monte
Carlo results are discussed in terms of experimental stud-
ies of domain sizes and distributions in metallurgical sys-
tems. ' In particular, the normalized distribution function
for the domain size is shown to much more accurately
reproduce the experimentally observed' distribution than
the theoretical distribution calculated by Hillert. '

II. MODEL AND MONTE CARLO METHOD

exp( —hE/kT), bE & 0
1, LE&0 (2)

where AE is the change in energy caused by the spin flip.
We define the unit of time as 1 Monte Carlo step per spin
(MCS/S) which corresponds to N inicrotrials or spin-flip
attempts, where N is the total number of spins. The data
quoted below represent averages, taken over at least five
runs. We found that it was very useful to store an array

We studied the Q-component ferromagnetic Potts model
with a nonconserved order parameter (Glauber dynamics),

H = —Jgfis, .s,.
NN

where S; is the Q state of the spin on site i ( I & S; & Q) and

6; J is the Kronecker 6 function. The sum is taken over all
nearest-neighbor (NN) spins and I& 0. In all of our simu-

lations, we started the system in a high temperature state
and rapidly quenched to T & T, . To reduce boundary ef-
fects, we employed very large systems (200X 200 sites for
the triangular lattice and either 200&(200 or 150& 150 for
the square lattice), and used periodic boundary conditions.
Both standard MC methods and a generalization of the
Bortz, Kalos, and Lebowitz ' "n-fold" technique for the
Potts model were used, as described below.

Some of the T =0 data and all of the T &0 data were
obtained using standard MC methods, with Glauber
dynamics. In this method, both the spin and a new trial
spin orientation were chosen at random. The transition
probability 8'is given by

of size L XL XQ which contained for each site the num-
ber of nearest neighbors of each Potts spin of orientation
Q. At T =0 a spin flip is successful only if b,E is less
than or equal to zero. Thus considerable time was saved
by not checking those spins for which more than half of
the neighboring spins were of the same orientation. At
late times, most of the spins were not on the boundary,
and this lookup table saved considerable computer time,
even though the table had to be updated whenever a spin
was flipped.

At very low temperatures and high Q, the probability of
flipping an arbitrary spin to a randomly chosen orienta-
tion is extremely small, since only a small number of the
(Q —I) other orientations of the spin have b,E &0. In or-
der to overcome this problem, we have generalized the
continuous-time method (n-fold way) developed by Bortz,
Kalos, and Lebowitz ' for the Ising model to the general
Q Potts model. This method has recently been employed
by Graim and Landau for the study of three- to one-
dimensional crossover in the Ising model. In the Ising
(Q =2) version of this method, a spin is flipped at each
trial and the time elapsed since the previous flip is calcu-
lated. Since every spin flip is successful, this method is
more effective than the standard method at low tempera-
tures. However, for T&0, it is only practical for very
small Q, since one must keep track of all possible spin en-
vironments. This obviously grows rapidly with Q. There-
fore, we have generalized this technique for the Potts
model and employed it only for T =0.

We first review the method of Bortz et al. ' for the Is-
ing model (Q =2). The spins are first grouped into classes
by their local environment. The probability of flipping
any spin in a class is identical and equal to

N;exp( bE/kT), bE—& 0

N;, LE&0

where N; is the number of spins in class i and the total
probability is

(4)

Here N, is the number of classes of spins and depends on
the type of interactions included. A random number be-
tween zero and P is used to determine which class of spin
shall be flipped and then a second random number is used
to determine which of the spins in the class shall be
flipped. The time since the previous flip is then

(5)

where R is a random number, 0 & R & 1, and ~ is the aver-
age time between attempted spin flips (one microtrial in
the standard method). For their problem, Graim and Lan-
dau have reported a factor of 10 net improvement at
T =T, /2 over the standard method.

This method can be readily generalized to the Potts
model, but because of the large number of possible local
environments for large Q, it is not obvious that it is practi-
cal. However, we have found that it is a very useful
method for speeding up the calculation at T =0, where the
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number of local environments which must be considered is

greatly reduced. At T =0, there are basically only two
classes of spins. The first class consists of those spina for
which a flip to any of the (Q —1) other orientations raises
the energy and is therefore not allowed, p; =0. The other
class of spins are those for which at least one of the
(Q —1) orientations has LE&0. For the triangular lat-
tice, most of the spins in this latter class can flip to either
1, 2, or 3 other spin orientations. The quantity P is then
simply the sum over all sites of the number of orientations

Nf;, each spin i can fiip to

P =QNf; . (6)

A random number between 0 and P is used to determine
which of the spins is flipped and a second random number
is generated to determine which of the Nf; possible orien-
tations will be chosen. The time since the previous flip is
then computed as

P

The (Q —1) factor enters, since in the standard MC
method only Nf; l(Q —1) attempted spin flips are ever
successful. This formula reduces to the Ising result since
for Q =2, Nf; ——0 or l. It also has the correct behavior at
very high temperatures, where Nf;=(Q —1) for every
spin, in which case P=N(Q —1). Then as expected
(b,t) =~/N since (inR) = —1. For T&0, the probability
for flipping a spin to each and every one of the other
(Q —1) orientations would also have to be included in the
computation of P. While this is easy to include for small

Q, most of the gain in computer time would be lost in the
necessity of keeping track of a large number of local envi-
ronments. We found this technique to be valuable in the
late stages of the domain growth when most of the sites
are bulk sites and therefore cannot be flipped. In the very
early stages of the growth, immediately after the quench,
this method was in fact slower than the standard pro-
cedure, since almost every spin is flipped. Thus in the
first few MC steps after the quench, we used the standard
MC method, switching over to the continous-time method
when P &N/5. This new procedure was particularly use-
ful in following the domain growth out to long times,
since the computer time per MCS/S decreased as the
number of boundary sites decreased. This was not true of
the standard MC procedure since it had to check all sites
with equal probability even though most of them would
not flip. Finally, we also were able to speed up the
continuous-time method even further by generating a table
of those spins which were not surrounded entirely by like
neighbors. This table was updated after each MCS/S and
this limited the number of spins which had to be checked
during the run. As a check on the method and our pro-
gram, we carried out an extensive test of the new method.
Results for Q =12 and 36 were obtained by both methods
and averaged over five configurations. The results for the
average domain area versus time were in excellent agree-
ment.

III. KINETICS OF DOMAIN GROWTH

In this section, we present the kinetic results of our
Monte Carlo simulations of domain growth for both small
and large Q, triangular and square lattices, for T =0 and
finite temperatures. It is observed that for all Q on the tri-
angular lattice, the domains are not pinned and that the
growth exponent is independent of temperature. However,
for Q & 3, the domains are pinned on the square lattice at
T =0. These domains become progressively unpinned
with increasing temperature; the growth ultimately ap-
proaching the kinetics observed on the triangular lattice.
On the triangular lattice, at all temperatures, and on the
square lattice, at elevated temperatures, the growth ex-
ponent is found to initially decrease with increasing Q and
then become independent of Q for large Q.

A. T =0 kinetics

0 =3 1=100MCSISPIN a=6 I=coo

FIG. 1. Spin configurations for the Q =3, 6, 12, and 64 Potts
model on a triangular lattice that were quenched from T &&T,
to T=O. Solid curves represent the boundaries between regions
of unlike spin. The times were chosen to yield comparable
domain sizes.

In Fig. 1 we display instantaneous spin configurations
for the Q =3, 6, 12, and 64 Potts models on the triangular
lattices that were quenched from high temperatures
(T» T, ) to T=0. Gross inorphological changes occur as
Q increases from near the Ising value (Q =2) toward the
limit of an infinitely degenerate order parameter (Q = DD ).
The low-Q configurations consist of very irregular and
asymmetric domains; the irregularity increasing with de-
creasing Q. On the other hand, the domains in the high-Q
configurations are significantly more compact and
equiaxed. The cause of these large differences can be clar
ified by considering the possible modes of growth in the
two limits. Figures 2 and 3 show the development of the
observed morphologies for Q =4 and 64, respectively.
Comparison of these two figures indicates that in the
low-Q limit, large discontinuous changes in the area of in-
dividual grains can occur when one domain meets and
coalesces with another domain with the same spin orienta-
tion. The probability of such chance meetings scales for
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t = 200 MCS/spin

t = }400 1 = 2000

WA WB

FIG. 2. Spin configurations for the Q =4 Potts model on a triangular lattice that was quenched to T -=0. In the bottom three con-
figurations, the letters indicate spin orientation of the enclosing domain. The t =3000 configuration illustrates a coalescence event,
where two domains of orientation A merge into a single domain.

large Q as Z/Q, where Z is the nuinber of second-
nearest-neighbor domains. ' Since such coalescence events
are strictly forbidden in the Q = oo case, the rarity of such
events in the Q =64 simulations indicate that the infinite-

ly degenerate system can be successfully modeled with a
large finite value of Q. An example of a highly degenerate
system can be found in the grain structure of polycrystal-
line materials, where the spin direction can be associated
with ihe local orientation of the crystalline lattice. This
correspondence can be observed by comparing the config-
urations in Figs. 1(d) and 3 with the experimentally ob-
served microstructure of the polycrystalline iron sample,
reproduced in Fig. 4.

In analyzing the results of the present simulations, we
monitored the mean area per grain (A (t}),which is sim-

ply related to the characteristic linear domain size R (t).
While R (t) is most frequently calculated via structure fac-
tor analyses and A (t) via cluster enumeration techniques,
as in Sec. IV, we have adopted a new, much faster topo-
logical form of analysis. Using a generalized form of
Euler's formula, we calculate the total number of domains
D(t) in terms of the number of edges E(t) and vertices
V(t):

'0 for infinite systems
D(t) E(t)+ V(t)= .—

1 for finite systems.

Further, for an infinite system or one in which periodic
boundary conditions are maintained, we know that every
edge is two ended and each vertex three rayed, implying
2E(t)=3V(t) and therefore, D(t)=V(t)/2 Equi. valently,
the mean area is related to the total area Az- by

(A (t)) =2A~/V(t) . (9)

Since the number of three-point vertices are much faster
and simpler to compute than doing the cluster enumera-
tion, we are able to obtain much better statistics for our
kinetic analysis.

The time dependence of the mean domain size is com-
monly fitted to the expression

R —Rp ——Bt,
where Rp is the mean domain size at t =0. When R g) Rp
Eq. (10) can be approximated as

R =Ct",
where n =1/m. Equation (11) is the form that is most
commonly used in fitting experimental data, since n can
be directly extracted from a plot of logic(R) vs logi&&(t) at
long times (Fig. 5). The power-law behavior was checked,
in a few cases, by verifying the linearity of Eq. (10) for
time ranges exceeding 10 MCS/S, where only a few

t = 3000 MCS/SPIN t = 7500

FIG. 3. Spin configurations for the Q =64 Potts model on a triangular lattice that was quenched to T =O. Unlike in Fig. 2, coales-
cence events occur only rarely for this Q value.
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FIG. 6. Q dependence of the domain growth exponent n for
the quenched Potts model on a triangular lattice.

FIG. 4. Cross section of a high-purity polycrystalline iron
sample which was etched to highlight the grain boundaries.

domains remained. The time dependence of the mean
domain size was determined by monitoring the number of
three-domain vertices during the simulation and employ-
ing Eq. (9). A nonlinear numerical fitting procedure was
employed to calculate the exponent m in Eq. (10). In Fig.
6, we plot n = I/m as a function of Q for the triangular
lattice at T=O. The exponent n is found to decrease
linearly with increasing Q, for Q &30. Extrapolating this
curve to the Ising limit (Q =2), we find that the well-

known result (n = —, ) is reproduced. For Q &30, the ex-

ponent n is independent of Q and has a value of
0.41+0.02. This value represents a slight increase over
the exponent which we recently reported. ' The difference
is due to a slight programming error which has since been
rectified. The Q independence of the exponent again sug-

1.2-

0.8—
IX

Ql
0.6-

gests that it is possible to simulate infinitely degenerate
systems with a Potts model with a finite Q. Because of
the slight uncertainty in n implicit in the simulation, the
sharpness of the transition of n (Q) around Q =30 is un-
known. For large Q, where the exponent n is constant, the
prefactor C in Eq. (11) is found to be inversely proportion-
al to ~Q.

In contrast to the triangular lattice, configurations on
the square lattice reveal the symmetry of the underlying
lattice. In Fig. 7 we display spin configurations for a
Q =6 Potts model quenched from a high temperature to
T=O on the square lattice. The spin configurations for
the high-Q simulations on square lattices are not displayed
since their growth is so slow that the number of boundary
sites is of the same order as the number of bulk sites. As
can be seen in the longer time configurations of Fig. 7, the
domain sizes and morphology appear to be evolving to-
ward a "frozen-in" configuration where all boundaries
meet at 90' or 180' and have no curvature. Analyzing the
kinetics as described above shows that the growth ex-
ponent n is zero for Q & 3. A growth exponent of zero is
possibly indicative of logarthmic growth, as was predicted
in the preceding paper on the basis of the evolution of
simple domain configurations. Similar kinetics were also
found for domain growth on a honeycomb lattice at T=0.
These observations are in accord with the predictions of
Lifshitz' and Safran, who suggested that the domains
would be pinned for Q & d + 1, where d is the dimen-
sionality of the lattice. It should, however, be noted that
Q =d+1 is the minimum Q value for which a pinning
configuration can be developed. However, the mere ex-
istence of pinning configurations does not imply that the
system is frozen, since it is neccesary that the pinning con-

0.4—

0.2 I i I i I i

1 1.5 2 2.5 3 3.5 4

)09„(t)
FIG. 5. Plot of logio(R) vs logio(t) for a Q =48 Potts model

that was quenched to T=O. Dots represent data that has been

averaged over five simulations. Solid lines are fitted to either
the short-time (R «Ro) or long-time (R »Ro) behavior. The
exponent n is extracted from the slope of the long-time-fitted
line.

t = F000 MCS/spirt t = 2500 t ~ 7000

FIG. 7. Spin configuration for the Q =6 Potts model on a
square lattice that was quenched from T» T, to T 0.
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figurations be nucleated in sufficient number to pin the
entire structure.

In continuum models of domain growth, the driving

force for growth is the reduction in curvature of the boun-

dary. In lattice models, the curvature is discretized as
kinks on the boundary. Such kinks can be annihilated by
two distinct mechanisms: (1) two kinks of identical orien-
tation (as defined by the lattice) and of opposite sign can
meet and mutually annihilate, or (2) the absorption of a
kink at a vertex where more than two grains meet. The
first mechanism corresponds to purely curvature-driven
growth, i.e., it can occur in Ising systems where no ver-
tices are present. The second mechanism can only operate
when vertices are present. Vertices, of zero-dimensional
grain intersections, only exist provided that Q & d +1. In
other words, by absorbing kinks, vertices are capable of
reducing the curvature. This decrease in curvature slows
down the domain growth, so that in the limit that all of
the kinks have been absorbed, no domain growth is possi-
ble.

The ability of vertices to absorb kinks is a function of
the detailed vertex configuration and kink orientation. On
a square lattice all vertices are constructed such that the
included angles are 90', 90', and 180' [Fig. 8(c)]. As is il-

lustrated in Fig. 8, a kink on the vertical boundary is
readily absorbed at the vertex. On the other hand, a kink
on the horizontal boundary is neither absorbed or
transmitted through the vertex (Fig. 9). Since a boundary
can only end in a manner analogous to the vertical boun-
daries on Figs. 8 and 9, all boundaries are terminated on
either end by kink-absorbing vertices. On a triangular lat-
tice, three distinct types of vertex configurations exist; a
60,60', 240' vertex, a 60', 120', 180 vertex, and a
120', 120', 120' vertex. The second two are illustrated in

Fig. 10. However, it is easily shown by line tension ar-
guments that only the 120', 120', 120' vertex is stable. In
Fig. 11, we illustrate the kink-vertex interaction for the
triangular lattice. In this case, a kink in any of the three
allowed orientations can move on two of the three boun-
daries that meet at a vertex. The vertex transmits a kink
from one boundary to the next, regardless of its sign or
orientation. Therefore, the difference in the kinetic
behavior of domain growth on triangular and square lat-
tices is determined by the kink-absorbing, and hence
curvature-reducing, properties of the dominant vertex
type.

FIG. 9. Schematic illustration of a vertex-kink reaction on
the square lattice for a kink traveling on one of the 180' boun-
daries. In this case, the kink, moving toward the left, is not ab-

sorbed by the vertex.

B. Finite-temperature kinetics

The kinetic and morphological differences in the
domain growth observed on the square and triangular lat-
tices at T =0 disappear as the temperature is raised. This,
however, is not due to critical phenomena since these
changes begin to occur at temperatures much lower than

T, . Figures 12 and 13 show spin configuration for Q =4
Potts models quenched from an initially high temperature
(T»T, ) to 0.6T, on triangular and square lattices,
respectively. Unlike the T =0 studies, there are no dis-
cernable differences between the two lattices. The domain
growth exponent n for the triangular lattice was found to
be independent of temperature from T=0 to T=0.7T, .
Simulations at temperatures exceeding 0.7T, were made;
however, because of the large thermal fluctuations present,
too many runs were required to obtain reliable data. We
observed a decreasing prefactor [C in Eq. (11)] with in-

creasing temperature. This result is in qualitative agree-
ment with that found for the temperature dependence of
the prefactor for the shrinking of a circular domain,
analyzed in the preceding paper, and for the growth ob-
served in Ising models. ' In Figs. 14(a) and 14(b), we plot
the effective domain growth exponent n as a function of
temperature for the square lattice with Q =6 and 36,
respectively. While the effective growth exponent is zero
at T=0 on the square lattice for Q & 3, with increasing
temperature, n approaches the growth exponent found for
the identical Q on the triangular lattice. The transition to
the lattice-independent exponent occurs at a lower normal-
ized temperature (T/T, ) for Q =6 than for Q =36 since
T, decreases with increasing Q and the thermal fluctua-
tions are T, independent. These results suggest the pres-
ence of universal or lattice-independent kinetics at tem-
peratures below T, .

As was discussed above, the slowing down of the kinet-
ics by domain pinning is due to the removal of kinks or

FIG. 8. Schematic illustration of a vertex-kink reaction on
the square lattice. A kink moving down the vertical boundary is

absorbed at the vertex. The net result of the kink moving down

the boundary and being absorbed is the horizontal translation of
the vertical boundary by one lattice unit.

FIG. 10. Two possible vertex configurations on a triangular
lattice. Only the first configuration is stable.
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t = 400 MCS/spin

FIG. 11. Schematic illustration of a vertex-kink reaction on
the triangular lattice. A kink traveling down one of the boun-

daries is transmitted through, rather than being absorbed by, the
vertex.

FIG. 13. Spin configurations for the Q =4 Potts model on a
square lattice that was quenched from T&&T, to T=0.6T, .
These configurations more closely resemble the configurations of
the triangular lattice Potts models (Figs. 2 and 12) than the low-

temperature square lattice Potts models (Fig. 7).

curvature by certain types of vertices. With increasing
temperature the kink absorption at the vertices is compen-
sated by the thermal generation of kinks due to the
roughening of the domain walls by thermal fluctuations.
As a result of the roughening, the difference in kink densi-

ty between boundaries on square and triangular lattices is
reduced with increasing temperature. Pinning by vertices
is less effective for low-Q values than for large-Q values,
since for small Q, growth by coalescence may also be im-

portant. Therefore, the transition from logarithmic
growth to power-law growth should occur at a characteris-
tic temperature that decreases with decreasing Q. Com-
parisons of these temperatures for Q =6 and 36 (Fig. 14)
show that this is indeed the case.

C. Discussion

While the kink-absorbing properties of the square lattice
can be overcome by the thermal generation of kinks, the
square lattice can be unpinned in a completely different
manner. By generalizing the Potts Hamiltonian [Eq. (I)]
to include second-nearest-neighbor interactions of strength
equal to that for the first-nearest-neighbor interactions we

were able to unpin the square lattice. Even though kinks
are still absorbed by vertices, the generation of certain
types of kinks at the vertices is a hE =0 process. Since in
this case the vertices act as kink sources, in a manner
analogous to the spontaneous kink generation along the
boundaries at elevated temperatures, we should expect that
the kinetics of this model should be identical to those of
the square lattice Potts model with first-nearest-neighbor
interactions in the high-temperature limit. T =0 simula-
tions on the square lattice with this modified Hamiltonian
show the same kinetic exponent as was observed on the
triangular lattice (first-nearest-neighbor interactions) at
T =0 and the high-temperature limit of the first-nearest-
neighbor square lattice. This result further indicates the
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presence of lattice-independent kinetics, provided that lo-
cal pinning can be circumvented.

The higher-order topological connectedness that exists
in high-Q systems introduces kinetic effects that are not
possible in simpler, Q &d+ I, systems. In the simpler or
Ising-type systems, barring coalescence, the motion of one
boundary is unaffected by the motion of any other boun-
dary. In such a case the dynamics of a boundary is
governed by its own curvature. On the other hand, for
higher Q, the domains are coupled through the vertices.
For example, the shrinking of one domain might rotate a
vertex. Such a rotation will change the curvature on all
three boundaries that meet at that vertex. Similarly, a
kink propagating down one boundary to a vertex can ro-
tate the vertex (see Fig. 15), instead of being translated
through the vertex onto a second boundary. The partial
vertex rotation shown in Fig. 15(b), can be completed by

0.2-

t = 500 MCS/spin

0.1-

0"
0 0.2 0.4

I

0.6
T/Tc

0.8

(b)

1.0

FIG. 12. Spin configurations for the Q =4 Potts model on a
triangular lattice that was quenched from T && T, to T =0.6T, .

FIG. 14. Temperature dependence of the effective domain
growth exponent n on the square lattice Potts model for Q =6
(a) and for Q =36 (b).
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(c)

(e)

FIG. 15. Schematic illustration of a vertex rotation by a kink

absorption mechanism. A kink moving down one of the boun-

daries (a), stops at the vertex (b). In order to restore the 120'

boundary condition, the vertex can absorb one kink from each of
the other two boundaries (c), thereby completing the vertex rota-

tion (d). If additional kinks of proper orientation arrive at the

rotated vertex, the boundaries can be straightened (e).

the absorption of one additional kink from each of the
other two boundaries meeting at that vertex [Figs.
15(c)—15(d)]. The arrival of additional kinks are capable
of rotating the entire three-domain structure [Fig. 15(e)];
however, this is unlikely for the quench case since each
domain is connected to other vertices as well. While kink
annihilation at vertices control the kinetics of domain
growth on the square lattice at T =0 (Fig. 8), at higher
temperatures, where the kink annihilation properties of
the vertices are less important, vertex rotation through
kink absorption will become an important process [see
Fig. 9(b)] just as it is on the triangular lattice at all tem-

peratures. Therefore, since curvature or, equivalently,
kinks are removed from the system by vertex rotations,
the advent of such rotations should slow the kinetics of
domain growth. Furthermore, since domains are connect-
ed at the vertices, it is possible to redistribute curvature
from one domain to another via rotations. The kinetics of
such rotations-redistributions may differ from that of pure
curvature-driven growth, thereby modifying the domain
growth exponent for the large, multidomain aggregate. It
may be concluded, therefore, that the decrease in the
domain growth exponent with increasing Q, the differ-
ences between the square and the triangular lattices at
T =0, as well as their equivalence at elevated temperatures
are all explainable in terms of interactions that occur at
the domain vertices. While the kinetics of the Q =2 (Is-
ing) model is describable purely in terms of curvature, the
presence of vertices (Q & d + 1) introduces nonlocal curva-
ture effects. Such effects should become increasingly im-

portant as the relative density of vertices increases. This
relative density is given by the number of vertices per unit
length of boundary or, provided that the domains grow in
a time invariant manner (see below) this is given in time
invariant form by the ratio of the perimeter to the domain
radius R since the mean number of vertices per domain is
6 for d =2. This is considered in more detail in Sec. IV,
where the domain topology is considered explicitly.

Experience with previous domain growth theories'" and
Ising models ' suggests that the exponent n is identical in
two and three dimensions. While the verification of this
conjecture is currently being pursued, comparison with ex-
isting data in the high-Q or grain growth limit (Q = ao )

can be made. Such comparisons, however, are difficult
since values of the domain growth exponent n vary over a
wide range (0—0.5). Additional complications arise be-
cause many authors have analyzed their data by plotting
the left-hand side of Eq. (10) against t, for particular
values of m, so as to facilitate comparison with theories
that predict a growth exponent n of —, or —,. Further-

more, experimental studies of grain growth in metals often
show grain growth exponents that are temperature depen-
dent; however, this has usually been attributed to the pres-
ence of impurities. Therefore, limiting ourselves to zone-

refined metals which show temperature-independent
growth exponents over the temperature range of the exper-
iments, we find two studies on lead which yield ex-

ponents of 0.40 and 0.41, one study on tin with an ex-
ponent of 0.432 and one on aluminum giving 0.25.
While admittedly this sampling is limited and the varia-
tion of exponents quoted is wide, we find that the average
of these exponents, 0.37+0.07, is in reasonable agreement
with that found for the Potts model in the high-Q limit.
A sampling of the ceramic grain growth data shows that
for ZnO, it is —,'; for MgO, ' '

—,
'

and —,'; for CdO, 3.,
for Cao &6Zro 840] 84, 0.4; and for UO2, ' —,'. Unfor-

tunately, in the cases where the exponents are indicated as
fractions, the exponents were obtained using Eq. (10),
where usually only one or two integer m values were
checked. However, the average of these exponents is
0.37+0.06, again, in reasonable agreement with our results
on the high-Q Potts model. These results contrast with
the predictions of most grain growth theories, ' ' which
invariably predict exponents of —,', presumably due to
neglect of vertex effects.

IV. SIZE DISTRIBUTION AND TOPOLOGY
OF GRAINS

In this section we report the results of a detailed cluster
analysis for Q =3, 6, 12, 36, and 64 on a triangular lattice
at T =0, and Q =36 on a square lattice at T =0.6T, . We
have evaluated two distinct types of parameters associated
with each domain: (i) the extensive parameters such as
area A, perimeter S, and effective radius R, and (ii) the to-
pological parameter N„nmuber of domain edges. The pa-
rameters are determined from the simulation data employ-
ing a computer code in which (i) the domain area is mea-
sured by counting the number of sites which have at least
one nearest neighbor of the same orientation, (ii) the per-
imeter is measured by adding the number of sites which
have at least one nearest neighbor with a different orienta-
tion, and (iii) the number of domain edges is measured by
counting the various neighboring domains which share
boundaries with the domain under consideration. The ef-
fective radius is calculated from the domain area using
R =&A/m.

The cluster analysis was carried out for each Q as a
function of time. The domain area distribution was then
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times for (a) Q = 12 and (b) Q =36 on triangular lattice at T =0.
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FIG. 17. Averaged size distribution function fit(logipx) for
(a) Q =6, (b) Q = 12, (c) Q =36, and (d) Q =64. The solid line

corresponds to log-normal function with the appropriate values

of u and p taken from Table I for different Q's.

examined by plotting the frequency of occurrence f versus
the logarithm of the normalized area x =A (t)/A(t) where
A(t) is the mean domain area at time t. In Figs. 16(a) and
16(b) we plot the area distributions at fifteen different
times for Q = 12 and 36, respectively. We observe that for
all Q &3 the scaled curves are time invariant within the
statistical error of our simulations. The time-averaged
domain area distributions for Q =3, 6, 12, 36, and 64 are
presented in Figs. 17(a}—17(e). To observe time invariance
for Q=2, one requires lattice sizes much larger than our
present storage capacity allows.

The mean p and standard deviation 0 of f~(logiox} and
the standard deviation of f(2(x), 0„for different Q are
listed in Table I. The distribution f(2(x) is characterized
by a mean of one, independent of Q (this is due to the defi-
nition of x). The standard deviation of f&(x) on the tri-
angular lattice decreases from o„—=2 for Q small to the
limiting value a, -=1 as Q becomes large. We also note
that f(2(x) for Q =36 is congruent (within statistical error)
with fII(x) for Q =64. This is consistent with the
behavior of the growth exponent n on the triangular lat-
tice, which has the limiting value n=0. 41 for Q&30.
Moreover, we find that fg(x) for Q =36 on the triangular
lattice is also congruent (within statistical error) with

f(2(x) for Q =36 on the square lattice, in the high-
temperature limit where the growth exponent for the
square lattice also approaches n =-0.41 [Fig. 18]. We con-
clude from these results that the domain area distribution

f(2(x) has the limiting form F(x) as Q becomes sufficient-
ly large. F(x) is independent of the lattice in the teinpera-
ture regime where the growth exponent is independent of
lattice (n -=0.41), and is characterized in part by
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TABLE I. The mean p and standard deviation 0 of
fit(logiox) and the standard deviation a, of f&(x) are tabulated
for systems quenched from T)&T, to T =0 on the triangular
lattice.

3
6

12
36
64

—0.48
—0.33
—0.23
—0.21
—0.22

0.70
0.58
0.49
0.49
0.50

1.72
1.34
1.09
0.95
0.96
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FIG. 18. Same as in Fig. 17 for Q =36 on triangular lattice
(solid line) at T=0 and on square lattice (dotted line) at
T =0.6T, .

p„=0.„=1.The existence of a limiting distribution sup-
ports the assumption that large-Q Potts models can be
used to describe the Q= ac Potts model. Furthermore,
the observation of the lattice independence of n and F(x)
under appropriate conditions (Q) 30 and T)0.6T, in
this study) suggests that growth characteristics of the
large-Q Potts model are universal (at sufficiently high
temperature). This provides the motivation for modeling
domain growth in polycrystalline metals and ceramics by
identifying Q with the grain orientation.

Comparison of F(logiox) with domain area data taken
from the literature is given in Fig. 19. The experimental
data consist of the domain diameter distribution measured
for two-dimensional cross sections of three-dimensional
specimens of high-purity Al (Ref. 35) and the ceramic
MgO. ' For these materials it is observed that (i) the di-
ameter distribution is time invariant when plotted as a
function of D/D (D =2t/A/7r), and (ii) the form of the
distribution (over the range of sizes in which the data
could be collected) is nearly log normal. The log-normal
fit to the actual data is plotted. We note that good agree-
ment is obtained between the simulation distribution and
the experimental data. In particular, the maximum
domain size found in the simulation (D/D=2. 8) agrees
with these data and general observations in metals and
ceramics.

Our understanding of the correspondence between the
simulation results and the two-dimensional measurements
of three-dimensional domain distributions is not complete.
However, the above results are consistent with theory and
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FIG. 19. Comparison of grain size distribution from the
present simulations (histogram) with the experimental data for
high-purity Al (solid line) and MgO (dotted line). The dashed

line is predicted by Hillert (Ref. 19).

observation of grain growth in polycrystalline materials.
First, the mean-field treatment of grain growth' predicts
nearly identical size distributions for two- and three-
dimensional growth (although the shape and exponent of
the mean-field distributions disagree with experiment, e.g. ,
Fig. 19). Second, Feltham ' has shown that for the log-
normal function the planar distribution of diameters mea-
sured from two-dimensional cross sections closely
represents the spatial distribution of grain diameters.

While F(logiox) is in fair correspondence with the log-
normal shape, there are two important differences. First,
the log-normal function is symmetric with tails extending
to + rxr. However, F(logiox) is skewed, and has an upper
cutoff at x =—2.8. Second, F(log(ox) peaks more sharply
than does the log-normal distribution. We find that the
log-normal form is a better representation of the simula-
tion distribution for small Q. A comparison of F(2(log, ox)
and the log-normal function computed using the parame-
ters of Table I for each Q are plotted as continuous curves
in Figs. 17(a)—17(d). The development of the log-normal
distribution in domain growth has been rationalized in
terms of a probabilistic mechanism in which individual
domains are assumed to change area (or volume) in a ran-
dom and uncorrelated fashion. This argument is not ap-
propriate in the high-Q limit, where the density of vertices
is high. The presence of vertices couples each domain to
its neighbors, so that changes in area (or volume) are
correlated. Deviations from the log-normal distribution
are therefore to be expected. However, in the low-Q limit,
the density of vertices decreases and the correlation be-
tween domains becomes smaller. In this case the assump-
tions of the argument are better satisfied, and the log-
normal distribution should be a better fit. This is in fact
what we observe [Figs. 17(a)—17(d)]. Moreover, the lack
of vertices in the Ising case (Q (d + 1) implies completely
uncorrelated growth (except for area conservation require-
inents) and would also be expected to show a log-normal
domain size distribution.

We have analyzed the topology by monitoring the num-
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ber of edges per grain N, . We plot the frequency distribu-
tion P(logic%, ) for Q=3, 6, 12, 36, and 64 [Figs.
20(a)—20(d)]. We find that P(log, ~, ) is time invariant,
as was observed for the area distribution. For Q&3,
P(log~aN, ) is approximately log normal. Further, we ob-
serve that P (log~~, ) for Q =36 is congruent with
P(logi~, ) for Q =64. This implies that P(logi~, ) ap-
proaches a limiting form with increasing Q, in agreement
with the behavior of f&(logiux) and the growth exponent
n However, for Q=3, we obtain an interesting mul-
tipeaked distribution function with peaks located at even
N, values. This is a consequence of the fact that a domain
of a given orientation can only be surrounded by domains
of the other two orientations in alternating order. Such a
multipeaked distribution function will always be observed
for Q =d+ 1.

We have divided F(logiox) into the contributions from
the separate topological classes (Fig. 21). We note that the
peak of F(logiox) is dominated by 5-, 6-, and 7-sided
domains. This is not surprising since the most probable
domain morphology has five sides [Fig. 20(d)], while the
mean number of sides must be six (from space-filling con-
straints). The mean radius for each topological class
versus the class number N, is plotted in Fig. 22. We ob-
serve that a linear relationship exists between domain ra-
dius and the number of sides per domain, as suggested by
the similarity of the domain edge distribution and the
domain area distribution. The forms of the domain edge
distribution and the topologically divided domain size dis-
tribution, and the linear relationship between domain ra-
dius and number of edges, are all in good agreement with
observations on the grain structure of polycrystalline met-
als."

As discussed in Sec. III on kinetics, the degree of
domain asymmetry is large at low Q, with domains
becoming more equiaxed and compact as Q is increased.
A convenient measure of the domain irregularity (and
boundary unevenness) is the ratio K of the mean domain
perimeter S divided by the mean domain radius R. The
quantity E is large for irregular or ramified domains, and
approaches 2~ as the domain morphology becomes more
circular. We note that the time invariance demonstrated
by the domain area distribution for Q &3, coupled with
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FIG. 21. Size distribution function fg(x) plotted for Q =64
on triangular lattice at T =0 for different topological classes.
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the compact domain shape caused by a high vertex densi-

ty, suggests that for high Q, K is a constant of growth.
Moreover, by substituting A =AT/N where AT is the total
area and N is the total number of domains, we find that
the total boundary length S is related to N by

S=-KQATl4trN. This implies that the total number of
domains (or mean area) can be followed by measuring the
total boundary length alone (provided sufficient time
passes for the steady-state area distribution to be establish-
ed). Since the total energy is approximately proportional
to the total boundary length, the number of domains (or
mean area) can also be monitored via the total energy.
The exponent n obtained by monitoring energy agrees well
with that obtained via monitoring vertices.

V. CONCLUSIONS

In summary, a detailed Monte Carlo study has been
presented for the kinetics of domain growth in two-
dimensional systems for both small (Q =3,4,6) and large

(Q =12—64) degeneracies. The average linear domain
size R is shown to grow as R -t"where n =0.5 for Q =2
and n =0.41 for large Q. On the square lattice, with
short-ranged interactions, the growth exponent is zero at
low temperatures, but approaches the apparently universal
value of 0.41 at high temperatures. An analysis of the dis-
tribution of domain sizes and shapes demonstrates the
time invariance of these distributions for high Q. The dis-
tributions obtained from the simulations are in good
agreement with the experimental results for domain
growth in polycrystalline materials.
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