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The approach to equilibrium of ordered superlattice structures on surfaces is analyzed. Both
Monte Carlo methods as well as analytic models of interacting domain walls are used to study the
kinetics of quenched, two-dimensional systems with Q degenerate equilibrium states I.n particular,
the growth of long-range order in the magnetic analogs (Q-component Potts models) of the com-
mensurate superlattice structures found on surfaces is analyzed in a study of the kinetics of typical
domain geometries that are found when systems are quenched from high (disordered state) to low
temperatures. Calculations and simulations of the time and temperature dependence of the domain
sizes for the model system of isolated domains indicate that for two dimensions roughening fluctua-
tions of the domain walls strongly influence the grain growth kinetics. Strip-shaped domains ap-
proach equilibrium almost entirely through these fluctuations, while circular domains shrink due to
deterministic curvature, but with a rate that is strongly temperature dependent even for temperatures
outside the critical region. Pinning effects in systems with Q & 3 lead to extremely slow kinetics for
particular domain geometries. Low-temperature quenches on a triangular lattice indicate that these
pinned geometries are rarely nucleated, while quenches on a square lattice equilibrate much more
slowly due to pinning. The application of the theory to superlattice grain growth on surfaces is dis-
cussed in the following paper which presents results for the kinetics of quenched systems in terms of
the simple domain geometries examined here.

I. INTRODUCTION

Recent experimental interest has focused on the lattice
structures observed for atoms that are adsorbed on solid
surfaces. ' At high temperatures, the adsorbed atoms are
in a disordered (gas or liquid) phase on the surface while
at low temperatures, they form periodic structures. If the
surface density of adsorbed atoms is less than the surface
density of substrate atoms, the periodic structures formed
have lattice constants that are larger than the substrate lat-
tice constants and are known as superlattices. For phy-
sisorbed systems, such as rare-gas atoms adsorbed on gra-
phite, superlattices that are either commensurate (i.e., the
superlattice periodicity is an integral multiple of the sub-
strate lattice constant) or incommensurate' with the sub-
strate periodicity have been observed. On the other hand,
the stronger interactions that exist in chemisorbed systems
[e.g. , 0/W(110), 0/Ni(111), H/W(001) (Ref. 6)] usually
result in a commensurate overlayer of atoms. In addition
to surface studies, similar superlattice structures have also
been observed in intercalation compounds, where the
large spacings between intercalant layers can result in
quasi-two-dimensional behavior.

Although most experimental and theoretical studies
have centered on the equilibrium properties and phase
transitions of surface superlattice structures, some aspects
of the kinetics have been examined as well. Experimental
studies of oxygen atoms on tungsten [0/W(110)] have re-
ported a slow evolution of the domains of an ordered su-

perlattice. Monte Carlo simulations of adsorbed atoms on
surfaces quenched from high to low temperatures
(T & T, ) have also found very long equilibration times re-
sulting in disordered, quenched-in polycrystalline struc-
tures. " Lifshitz' was the first to predict slow kinetics

in magnetic systems with several degenerate equilibrium
states. Recently, Lifshitz's arguments were extended' to
show how the competition between various types of
domain walls between regions with thermodynamically de-

generate superlattices which differ only by their orienta-
tion, can result in the polycrystalline structures observed
in the simulations performed in Refs. 8—11.

In this paper and in the following one, '" we present a
detailed theoretical study of the time and temperature
dependence of domain sizes for ordering systems with
several degenerate equilibrium states. The system is
quenched from a high-temperature disordered state to low

temperatures below the critical temperature T„and the
kinetics of ordering are analyzed. We show that the ap-
proach to equilibrium is infiuenced by the effects of
roughening fluctuations, ' domain-wall interactions, and
pinning in two dimensions. These effects result in both
quantitative as well as qualitative modifications of the
usual theory of domain growth developed for three-
dimensional systems. ' ' ' In two dimensions, domain
growth rates become strongly temperature dependent,
while domain-wall competition can result in a disordered
structure characterized by the quenched-in domains of
some average size. In addition to the theoretical interest,
an understanding of the kinetics of ordering is important
from a practical viewpoint, since the chemical and elastic
properties of epitaxial layers are functions of the domain
sizes. For ordering alloys in three dimensions, both
theoretical and experimental studies of domain kinetics
are well known in both the physics and the metallurgical
literature. ' ' ' It is the extension of these theories to
two-dimensional superlattice ordering that is the purpose
of the present work, which we hope will provide an im-

petus for experimental measurements of the kinetics of or-
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dering on surfaces. In this paper simple domain

geometries are studied using both an analytic domain-wall

model as well as Monte Carlo simulations. In the follow-

ing paper the results of global quenches of large systems
are presented. The kinetics of the quenched systems is re-

lated to the kinetics of the model domain geometries dis-

cussed in this paper. Preliminary versions of some of the
material in this paper were presented in Refs. 13 and
19—22.

The organization of this paper is as follows. In Sec. II
we introduce the magnetic analogs of the superlattice
structures. The present analysis is couched in the

language of magnetic ordering, and is limited to a simpli-

fied description of surface superlattices. In this section we

also introduce the analytic domain-wall model and the

Monte Carlo method used in our calculations. In Sec. III
we present the results of our calculations and simulations

for isolated domains in two-component systems. We show

how the roughening of the domain walls by thermal fluc-

tuations results in a strong temperature dependence for the
kinetics of circular domains and in a relatively quick

equilibration for strip-shaped domains. These results are

in contrast to the situation in three dimensions, ' where

circular domains have a growth-shrinking rate that is not

intrinsically temperature dependent and where infinite

strip domains are strongly metastable. We report the

analysis of multicomponent (degeneracy Q & 3) systems in

Sec. IV where we treat the kinetics of simple domain

geometries. The specific domain-wall geometries that lead

to frozen-in or blocked structures are identified and the
annealing of these structures at high temperatures is

demonstrated. The relevance of these model systems to
the equilibration of large quenched systems is discussed in

the following paper where we present the results of Monte

Carlo simulations of quenches from high to low tempera-

tures.

II. THEORETICAL KINETIC MODELS

In this section, we relate the lattice-gas representation of
adsorbed atoms and commensurate superlattices to the
magnetic models used in our calculations. We present the
kinetic equations governing the equilibration of these mag-
netic models as used in the Monte Carlo simulations. Fi-
nally, we derive the equations of motion for interacting,
fluctuating, domain walls that are used in our analytic cal-
culations which make use of a continuum approximation.

A. Adatom: spin models and Monte Carlo procedure

Commensurate overlayers of atoms on surfaces have
been commonly described by lattice-gas models with in-

teractions which extend to several neighbors. The sub-
strate defines a regular array of preferred adsorption sites
and each adsorption site can be either empty or occupied
by a single adatom. For atoms whose effective sizes (e.g. ,
the Lennard-Jones diameter) are larger than the lattice size
of the substrate, the maximum ratio of adsorbed atoms to
substrate sites is less than unity. As an example, consider
the adsorption of krypton (Lennard-Jones diameter 3.60
A) on the hexagonal basal plane of graphite (see Fig. 1)
where the nearest-neighbor separation of adsorption sites
is 2.46 A, resulting in a nearest-neighbor exclusion as

FIG. 1. Sublattice sites labeled A, 8, and C for the V 3X V 3

structure applicable to adsorption on the hexagonal basal plane
of graphite. The dots label the sites of the "Potts lattice, " each
site of which includes an A, B, and C site of the original lattice.

described above. Further neighbor interactions are attrac-
tive and short ranged. For a commensurate overlayer, the
maximum ratio of krypton atoms to graphite sites is —,

and there are three possible triangular superlattice ar-
rangements which differ from each other by only unit
translations.

The important feature of the superlattice ordering for
Kr/graphite is the existence of three possible equilibrium
states which are degenerate in their (free) energy. The en-

tire lattice can be subdivided into sites belonging to one of
these three possible superlattices. At high temperatures,
for coverages of less than —,', the occupation of any one of
these superlattices is random, while for low temperatures,
only one of the three possible sublattices is occupied, re-

sulting in a structure with long-range order. For a cover-
age of exactly —,', a random occupation is, of course, im-

possible if the constraint of nearest-neighbor exclusion is
maintained. However, the introduction of vacancies
and/or imperfect registry can relax this constraint. In the
present work, the presence of vacancies and/or incom-
mensurately adsorbed atoms is not explicitly taken into ac-
count. Implicitly, however, these effects are presumed to
be responsible for the finite energy of domain-wall boun-
daries between regions of different superlattice (see Fig. 2),
where the constraint of nearest-neighbor exclusion has
been relaxed. We thus consider the case of maximum cov-
erage ( —, in the previous example) and account for the

canceling effects of nearest-neighbor exclusion and vacan-
cies or discommensurations by a11owing nearest-neighbor
occupation of two different sublattices, but with a large
but finite positive energy contribution. We note that not
all superlattice structure can be mapped even approxi-
mately into simple Potts models. For example, 0/W(110)
orders in a superlattice with four degenerate ground

FIG. 2. Two neighboring domains of regions of ordering on
sublattice A and sublattice B {see Fig. 1) result in domain walls
where there is nearest-neighbor occupancy of A and B sites.
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states. However, the lattice is completely covered by only
two of the four states and the system is not represented by
a simple four-state Potts model.

To incorporate the constraint of constant coverage, we

map the actual lattice gas into a Potts spin model. This
has been described for the case of krypton on graphite in
Ref. 23. For the case of maximum coverage, in the ap-
proximation described above, each set of three adjacent A,
8, and C sublattice sites in Fig. 1 are mapped into one site
of triangular lattice (the Potts lattice), as shown in Fig. 1.
At each lattice site, we place a Potts spin which can
"point" in one of three possible directions, each direction
corresponding to the occupation of either the A, B, or C
site. The nearest-neighbor exclusion is taken into account
by allowing only one of the sites to be occupied. However,
the possibility of domain boundaries between two different
sublattices (Fig. 2) still exists since two neighboring sites
on the Potts lattice can have spins pointing in different
directions, corresponding to the occupation of neighboring
3 and 8 or C sites. A more detailed mapping of the
lattice-gas problem to the Potts model, which explicitly
takes into account vacancies, was presented by Berker
et al. in Ref. 23 where only the equilibrium properties of
the overlayer were considered. The kinetics of the more
realistic model will be analyzed in future reports.

Although the case of the threefold-degenerate superlat-
tices appropriate to the v 3 XV 3 structure was explicitly
described above, similar mappings of the adatom com-
mensurate structure to Q-component ferromagnetic Potts
models can be done for degeneracies Q&2. The nearest-
neighbor repulsions are accounted for by the mapping to
the Potts model and the longer-range attractive interac-
tions are transformed into spin-spin interactions with the
Hamiltonian,

H = —J g 5s,.s,.
&ij &

where S =A,B,C, . . . is one of the Q states and 5s s is the
J

Kronecker function. For simplicity, the sum is over
nearest-neighbor spins on the Potts lattice and J&0.
When Q=2, the Hamiltonian is equivalent to the Ising-
model Hamiltonian. We note that for Q=2, the fer-
romagnetic Potts model on the Potts lattice is actually the
result of a transformation of the antiferromagnetic Ising
model appropriate to the real lattice-gas system with half
of the sites filled (i.e., fixed total magnetization equal to
zero). Using Monte Carlo techniques, we have studied
both model domain geometries with well-defined initial
conditions (this paper) as well as systems which are
quenched from the disordered state (T »T, ) to the or-
dered state ( T & T, ) (following paper). We have analyzed
the time and temperature dependence of the sizes of the
ordered domains as the system approaches equilibrium.
To reduce the effects of the boundary, in our studies of
quenched systems, we have studied very large systems, up
to 200X200 sites with periodic boundary conditions. For
the study of the kinetics of single domains, the lattice size
used was always much larger than the size of the domain
of interest.

Dynamics for the spins are introduced in the standard

manner for both Glauber as well as Kawasaki dynamics.
Since it is the sublattice ordering that is the focus of the
present work, and the order parameter (sublattice
occupation —magnetization) is a nonconserved variable,
Glauber dynamics are sufficient to describe the basic
physical processes. However, for the study of systems
where only two types of domains are important (see Sec.
III},we have also simulated the Kawasaki dynamics of an-
tiferromagnetically coupled Ising spins, which correspond
to the actual sublattices (spin-up is occupied, spin-down is
unoccupied). This allows a study of the more realistic
processes relevant to surface adsorption where atoms
change their sublattice occupation by hopping to empty
sites—i.e., by an interchange of occupied (spin-up) and
unoccupied (spin-down) sites. In the case of Glauber
dynamics, we choose a site randomly and compute the
change in energy AE to flip the spin at that site. We next
obtain the transition probability W using

1 —LEE/kT gF 0
W='

1—,LE&0,
. 'r

(2a)

where k is the Boltzmann constant and T is the tempera-
ture. The constant r sets the time scale for the Monte
Carlo study. Since I/r is like an attempt frequency, we
expect it to have an Arrhenius temperature dependence for
any particular experimental system. Thus
~ ~ exp( Q'/kT) w—here Q' is an activation energy related
to the coupling to the heat bath. In the following calcula-
tions, r just sets the (possibly temperature-dependent) time
scale. However, if Q' « kT, r is independent of tempera-
ture for the growth kinetics. In any case, the temperature
dependence introduced by ~, although important in a de-
tailed comparison of theory and experiment, is unrelated
to the cooperative interactions between the spins. Using
Eq. (1), the transition probability W is computed and com-
pared to a random number R (0&R & 1} and the spin is
changed if W &R; otherwise, the old configuration is re-
tained. In the case of Kawasaki dynamics, the procedure
is similar, except that we randomly choose nearest-
neighbor pairs of spins for exchange. The energy hE is
computed before and after the spins are exchanged. The
transition probability W' is defined by

—hE/kr

~EZar (2b)
& 1+e

As above, the exchange is carried out only if 8"& R. For
both types of dynamics, the configurational averaging is
obtained by averaging the data over many runs.

B. Domain-wall model

Although Monte Carlo methods have the advantage of
being able to simulate a wide variety of domain-growth
situations, additional physical insight into the mechanisms
and dynamics of domain growth can be obtained from an-

alytic studies of model systems. In principle, it
would be desirable to calculate the kinetics of a Potts
model at all stages of the approach to equilibrium from a
high-temperature quench. However, such global, analytic
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calculations are first now being performed for even the
simple two-component Ising systems. Field-theory calcu-
lations have been performed for the "early" time regime,
where well-defined domains are not yet present. ' ' Other
calculations, which have as their basis the kinetics of the
domain walls (as opposed to the spins), have been reported
for later times. ' ' For example, Ref. 17 discusses the
role of curvature energy in the kinetics of grain growth
and shows that a spherical domain of one sublattice (spin-

up) surrounded by an infinite sea of the other sublattice
(spin-down) shrinks with its area decreasing linearly with
time.

In the present work, we use a model of interacting, fluc-
tuating domain walls to analyze the kinetics of particular
domain geometries. When a given domain-wall geometry
is specified, the stochastic equations of motion for the
domain walls are derived from the standard equations of
motion for the entire spin (or sublattice) system. Away
from the intersections points of three or more domain
walls, a given wall separates only two degenerate states
(even for Q&2). Section IV contains a dicussion of the
pinning effects of wall intersections. Here, we derive
equations of motion for simple wall configurations which
separate two degenerate domains. We thus consider only
the ferromagnetic Ising model in a continuum approxima-
tion for both the spins and the lattice. Remembering that
S represents the sublattice occupation which is a noncon-
served order parameter, the Langevin equation of motion
for S(r, t} is

5F
+vs (3)

where S=OS/Bt. The dimensionless time t =t/~, where ~
is the hopping time which may be temperature dependent.
In Eq. (3), F[S(r,t)] is the free-energy functional which is
written for a nonhomogeneous spin distribution in the
continuum approximation as

F = f dr [Y~ JIVS(r, t)
I

+Jg(S(r,t)}], (4)

where g(S(r, t)) is a nonlinear function of the order pa-
rameter. In Eq. (4), all lengths are scaled by the lattice
constant. Near the domain wall, the order parameter is
small so that g can be expanded as

g ——,aS + —,PS (5)

For T & T„both a and P are positive and a ~ ( T, —T)/T,
for T near T, . In the Langevin equation of motion for
S(r, t), its is the stochastic noise which is assumed to be
delta correlated in both space and time,

{gs(r t)gs(r t )}=2kT5(r"—r ')5(t t '), —

{gs(r,t)) =0.
(6a)

(6b)

Stationary solutions of Eq. (3} exist which consist of
two domains separated by a wall at x=0, i.e., Sp(r} is
given by the solution of

g —v's =o
BS

with boundary conditions at x =+~ of Sp(x)~+S,

1.0

where S, is the two-dimensional equilibrium value ob-
tained by setting

Bg

BS s=s,

For a general g(S) which has only two degenerate minima,
the behavior of Sp( r ) and its derivatives is shown in Fig.
3. For x~+oo, Sp(r) approaches +S, with only ex-

ponentially small corrections, while near x=0, there is a
linear region where Sp( r ) changes sign in a region of
width g. For example, for the form for g (s) given in Eq.
(5), there is a one-dimensional solution, '

Sp(x)=S tanh
2x

(9)

where g=(8/a)'~ is proportional to the two-dimensional
correlation length. In the present work, the temperatures
of interest are low enough so that critical fluctuations can
be neglected. At very low temperatures, the domain-wall
width approaches the lattice constant, which is set to unity
in our calculations.

An effective stochastic equation for the motion of a
domain wall can be derived from Eq. (3) by looking for a
shape-invariant solution for the domain wall with the wall
location x =Xp(y, t) being a stochastic variable that is both
time and space dependent. We thus writ0

S(r, t)=Sp[x Xp(y, t)]—and use the equation of motion
for So to find

$2X QX
SoXo=JSo' —JSo 2

+JSo'
Qy Bp

+asBg

(10)
with Sp=BSp/Bx. For x~p(y, t), we approximate
Sp(0)=2S, /g and Sp'(0)=0 to find to lowest order in

BXo/()y,

a'X,
Xo ——J

2

In Eq. (11), rt is proportional to the effective noise on the
boundary, i.e.,

't) = —r)s(x =Xp(y, t),y, t )
e

—10
—4

XI(

FIG. 3. One-dimensional, time-independent domain-wall
solution to Eq. (7). The magnitude of the local spin field at posi-
tion x normalized to the domain-wall width is shown, as are its
first two derivatives.
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(rt(y, t)rt(y', t'})= kT5(y y—')5(t t—'),
2S,

(12)

Since we deal with lattice systems, the 5-function correla-
tions for i), [Eq. (6)] are appropriate only for large dis-

tances. At small distances (less than a correlation length),
the correlations are unity. The correlation functions for rt

are

walls annihilate that the free energy is lowered. For large
wall separations, V(h, —h2) goes to zero exponentially,
and the equations of motion for two independent walls are
recovered.

A derivation of this equation for the case where g(S) is
given by Eq. (5} is obtained by writing S for two interact-
ing walls

(i)(y, t) ) =0 . (13) S=S,tanh —[x —hi(y, t)] tanh —[x —h2(y, t)]
2 2

Kawasaki and Ohta have presented a more rigorous
derivation of these equations and have shown that there
exist corrections to Eq. (11)of order (BXO/By) . A similar
procedure can be used to find the equation of motion of a
circular domain wall. In polar coordinates, Eq. (3) be-

comes

From the equation of motion for S we find that

S=JaS,sech Zisech Z2(1 —tanhZitanhZ2)+its

(20)
ag J a as J a'sS=—J +——r +— +psBS r Br Br r Be

(14) with

Z;= —(x —h;) .
2We write S(r, t) =So[r —R (H, t)] and use Eq. (14) to find

T

SoR = —J +JSo + So +Soag „J„aR,J
r' a8

Looking locally near x =h i (y, t) and x = hi(y, t) and keep-—)hl —h2 )

ing terms that are linear in the small quantity e
as well as the time and space derivatives of h i and hz, we
recover Eqs. (18) as given above. We thus identify the in-
teraction V(h, —hz) with

J BR——So +as .
r ao

(15}

Again, for r=R(e, t), So'(0)=0, and to lowest order in

(BR /BH) we find the equation of motion

—J J aRR=
R 'R2 ae2 R1/2

V(hi —hz)= —4j exp( —4~ hi —h2
~
/g) . (21)

with noise correlations

(16) More rigorous treatments can be found in Ref. 28.
Finally, defining the relative wall separation
h =hi(y, t) h2(y, t), w—e obtain the equation of motion

(17)(7)(e,t)rt(e', t') ) = kT 5(8 8')5(t t ') —. —
2S,

B h BV(h)h=J —2
By

i Bh
(22)

Bh, B
hi ——J — V(hi —h2)+rti,

By~ Bh i

(18a)

ah2
h2 ——J

By

B
V(hi —hp)+rtg,

2

(18b)

where gl and g2 are the noises on the two walls. It is as-
sumed that they are uncorrelated with each other. Their
self-correlations are given by Eq. (13). In Eq. (18), the
first term on the right-hand side is the curvature driving
force which is the same as in the independent wall equa-
tions. The second term is the attractive force due to the
interaction V(h, —h2) between the walls. This interaction
is attractive and short ranged, since it is only when the

The unusual form for the noise term is a consequence of
the property of the 5 function in polar coordinates.

Interactions between the domain walls are shown to be
short ranged, due to the fact that So(r) approaches its
asymptotic value with only exponential corrections for
x &&0 or x g&0. Again this approximation breaks down
near the critical point, but is good for the region of in-
terest in our calculations. We include interactions between
the walls by writing a coupled set of equations of motion
of, for the two walls at x =hi(y, t) and x =h2(y, t), respec-
tively,

where i)T is the total noise acting on h (y, t) with correla-
tions

(rtT(y, t)gT(y', t') )=2, kT5(y y')5(t t '—
) . —

2S

(23)

At low temperatures g, S,~ l. We shall use this approxi-
mation in the following sections.

III. FLUCTUATION EFFECTS
FOR ISOLATED DOMAINS

In this section, we calculate the kinetics of isolated
domains, e.g. , a single domain of spin up surrounded by
an infinite sea of spin down. This simple configuration
often dominates the late stage kinetics of three-
dimensional metallurgical systems where fluctuation ef-
fects are generally unimportant. We show that the effects
of thermal roughening fiuctuations in two dimensions
greatly speed up the kinetics of strip-shaped domains. For
circular geometries, these fluctuations result in a strong
temperature dependence of the growth-shrinking rate
which can be measured in scattering experiments.
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FIG. 4. (a) Width L (t) of an initially strip-shaped domain [L(0)=La] is plotted as a function of time using Eq. (33). Also shown is

the rms variation o(t) of the average width L (t). The time is normalized to L 0 as explained in the text and the temperature in units of
the interaction strength J is unity. (b) Domain width L (t) normalized to the initial width Lo as a function of time for values of Lo = 8

(solid), 16 (dotted), and 64 (dashed). The inset shows the initial configuration of the two domain walls. The time is normalized to L 0

as explained in the text.

A. Strip domain kinetics the probability distribution function P

The strip geometry considered here is shown in Fig. 4.
It consists of an infinite strip of one domain surrounded

by semi-infinite planes of the other type of domain. If
h(y, t) is the relative separation of the two domain walls,
the time development of h is given by the solution of Eq.
(22) with the initial condition h (y, O) =La. If fluctuations
are neglected, this equation can be solved for the exponen-
tial form for the interaction described above and we find
for h in units of 2/(

P[Ih;), t]= g +2kT P[[h; I,r],
l

J

(25)

where h; is a spatial discretization of the continuous field
h(y, t) and 5F/5h; are the first two terms of the right-
hand side of Eq. (22). The extra factor of 2 comes from
the correlation function, Eq. (23). The equations for the
first two moments of h;, its average value (h; ) =L (t), and
the correlation function (h;h~ ) are

h (y, t) =Lo+ —,ln(1 8Jae 't) . — (24) L=— 5F
)

(26)

Thus the strip shrinks uniformly and very slowly with a
characteristic equilibration time t-exp(2L )0where Lo is
the initial width. As we shall see, the effects of thermal
fluctuations change this characteristic time from being ex-
ponentially large in Lo to a simple power.

To solve the full stochastic equation (22), we make use
of a Gaussian ansatz for the time-dependent probability
distribution function for the stochastic variable h(y, t).
Following Ref. 32, we note that the Langevin equation of
motion is equivalent to the Fokker-Planck equation for

—(h;hj)= — h; + hj

+4kT5; J, (27)

where h;=h; L(t). Transforming —to momentum space
we write
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hq —— g h;e
Eqs. (30) and (31), we find

28a

L = —LE2(t), (33a)

hs =h&
—~Nb o5& o,

G(q, t) =(h,h, ),
(28b)

(28c)
G=2 2kT G—(q t) Jq +E 1—

0-2
(33b)

P[{hej,t] 0): exp —
& g hqG (q t)h

q (29)

where N is the number of lattice sites. The probability
distribution is parametrized by writing

I): =2U (v 22ro ) 'e

N

Q—G(q, t) = g—(h,') .

(33c)

(33d)

By properties of the Gaussian, averages
can easily be performed. Thus

2
(e' "') =e't'L("exp g G(q, t)

2N

such as (e ')

(30)

( i+ j) P IttL(t)(h h )5' J
5=0

2

)&exp g G(q, t)
q

(31)

2 =2 Up 5(h;)),
l

(32a)

—(h;hj) = J(h;V hj)+2UO h; 5(hj)

+2kT5; j +(i~j) . (32b)

Using the Fourier representation of the 5 function and

Approximating the short-range potential V by a 5 func-
tion,

V(h )= —U05(h ),
the equations of motion for the first two moments are

An analysis of these equations of motion indicates that
initially, when the fluctuations are small and L(t) «o,
L(t)=0 and (T is proportional to Tt'j . When the fluc-
tuations increase so that 0 ——,Lo, L(t) begins to de-

crease. This decrease in the domain width is initially
linear in time, with a slope proportional to Lp . The
characteristic shrinking time scales with L p, much faster
than the deterministic result as described above. These re-
sults are in agreement with the numerical solutions shown
in Fig. 4 where the time dependence of the domain width
and mean-square fluctuations are plotted. In Fig. 4(b), the
time is scaled by L p and the initial slopes of the linear re-

gions are the same for all initial Lp. In three dimensions,
it would take an exponentially long time for a wall which
is initially straight to develop enough fluctuations, since
even above the roughening temperature, where the present
model is applicable, the initial time dependence of o is
proportional to T lnt.

To test this model which demonstrates how fluctuations
greatly increase the kinetics of strip domains in two di-
mensions, we have carried out Monte Carlo simulations.
We have studied the kinetics of strip-shaped domains for
both the p=2 ferromagnetic Potts model using Glauber
dynamics and the Ising antiferromagnetic using Kawasaki
dynamics. The domains were taken to be 4, 8, and 12 lat-
tice constants wide and the simulations were performed on
rectangular (NXM) lattices. Although the results ob-
tained from the two different dynamics are in qualitative
agreement with each other and show the same scaling
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FIG. 5. Evolution of an initially strip-shaped domain for various instants of time for T=0.6T,.
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FIG. 6. Normalized domain width L(t)/Lo vs t/Lo for a
strip domain obtained in simulations using Glauber dynamics
for T=0.6T, . (a) Lo ——4, 160&(20 lattice (open circles), (b)

Lo ——8, 160X40 lattice (open diamonds), (c) Lo ——8, 1000&32 lat-

tice (open triangle), and (d) Lo ——12, 1000)&40 lattice (crosses).
The data were averaged over 40 runs each for (a) and (b) and

over four runs for (c) and (d). Note the agreement with the scal-

ing prediction of the model.

t/[ O~

FIG. 8. Normalized domain width L(t)/Lo vs t/Lo for the
initial domain configurations shown in the inset. Glauber
dynamics were used for Lo ——4 on a 1000' 20 lattice. The circles
are for a Potts degeneracy Q=4 while the diamonds and trian-

gles are for Q=3. The data was averaged over five initial con-

figurations.

behavior, the overall time taken for a strip of a given
width to completely disappear is shorter for the spin-flip
dynamics as compared with the spin-exchange case.

Diagrams of the shrinking domain are shown in Fig. 5.
Data showing the domain width as a function of time are
shown in Fig. 6 for Glauber dynamics and in Fig. 7 for
Kawasaki dynamics where we plot L(r)/Lo vs r/Lo, as
suggested by the theoretical results. The time t is in units
of Monte Carlo steps per spin and the hopping time is set
to unity. The simulations were performed for tempera-
tures T=0.4T, and T=0.6T, . For an initial short time
period which depends on Lp and T, the average width
stays essentially constant, since fluctuations are small and
the average curvature is approximately zero. As time in-
creases, fluctuations build up, and the average curvature in
some regions along the length of the strip becomes quite
large, resulting in the formation of necks where the two

domain walls are close. Fluctuations cause these necks to
narrow until they finally disappear, leaving the initially
long strip divided into a number of ellipses of different
sizes. The average curvature of the domains then causes
them to shrink rapidly. During this intermediate-time re-
gime, the average width decreases linearly in time with a
slope proportional to L0 as predicted above. However,
for very long times, the average width decreases much
slower than linearly in time. This long-time tail is ap-
parently caused by the slow disappearance of some very
long domains which are statistically formed in some con-
figurations.

To contrast the dynamics of the strip which are dom-
inated by fluctuations with the dynamics of an interface
which is dominated by the deterministic curvature energy,
we have also carried out simulations (described below) on
an initially circular domain. Here we note that the
characteristic time for the disappearance of the circular
domain is proportional to the square of the radius while it
is proportional to Lo for the strip in two dimensions in the
presence of thermal fluctuations and to exp(LO) if fluctua-
tions are ignore. These results are in agreement with the
predictions of the continuum model for interacting, fluc-
tuating domain walls, as described above. Finally, Fig. 8
shows the time dependence of the width of a strip of one
sublattice (Potts spin in B direction) surrounded by half-
planes of spins of two different sublattice types (e.g., C on
the right and A on the left or A on both sides). For the
strip geometry, the results are essentially the same as those
of the two component configuration. This is not the case
for more complex geometrical arrangements as described
in Sec. IV.
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B. Circular domain kinetics

In contrast with the strip domain where the kinetics is
dominated by fluctuations, an initially circular domain of
one spin surrounded by an infinite sea of the other spin
shrinks because of the deterministic force due to curva-

t/Lo

FIG. 7. Normalized domain width L(t)/Lo vs t/Lo using
Kawasaki dynamics for T=0.6T,. The open and closed circles
correspond to strips of widths Lo ——4 and 8, respectively, on a
rectangular lattice of 1000)&32 sites. Again the data scale in
agreement v ith the predictions of the model.
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ture. However, in contrast to the situation in three di-
mensions where fluctuations can be ignored, there is a
strong temperature dependence to this shrinking rate. We
use Eqs. (16) and (17) derived above to describe the kinet-
ics of a nearly circular domain, described by a boundary
R (8, t). We find that in the absence of the thermal noise
term, the area decreases linearly in time, with a
temperature-independent coefficient, in agreement with
the three-dimensional case that has been previously con-
sidered. To analyze the two-dimensional case in the pres-
ence of thermal fluctuations, we note that for finite times
R (8, t) can be calculated by a perturbation theory. This is
possible because the roughening of a two-dimensional
domain wall is infinite only for infinite times. We thus
write

MCS=O MCS =100 MCS =200

MCS =260 MCS =300 MCS =360

FIG. 9. Evolution of an initially circular domain using
Kawasaki dynamics for various instants of time as indicated at
the top of each diagram for T=O.ST,.

R =Rp+R i +R2+ (34)

with Ro (the deterministic part) independent of T, and R i

and R2 being of order T' and T, respectively. In the fol-
lowing, the Boltzman constant is set to unity. Equating
equal powers of T in the equations of motion [Eqs. (16)
and (17)],we find

or

n 6„
A =2ir —lg g

8 Rp
(42)

R 0
———J/Rp,

R i
=JR i /R o+JR iee/R o+ r)/R o

(35a)

(35b)

R 2 =JR 2 /R o JR i /R o +—JR 2gg /R o —2JR i R i gg /R o

——,gR )/Rp
1 3/2 (35c)

The area of the minority domain is then computed as a
function of time. Since

A/Ap
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Ro(0) —R,'(t) =2Jt . (37)

The equation for R& is linear and may thus be solved by
Fourier transformation. We write

N —1

(R, (0, t)R, (8,t)) = g G„e'" (38)

The cutoff X=nR is due to the discreteness of the lattice.
Equation (35b) then becomes [see Eq. (25)]

only the angle-averaged values of Rp, Rt, and R2 are2

needed.
To solve these equations, we note that the solution of

Eq. (35a) is the deterministic solution
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The time rate of change of the area is

A =77 Ro+ g 6~+2RoR2

G„=2JG„(1—n )/Ro+ T/4rrRo

with the solution

(39)

(41)

t/Ao

FIG. 10. (a) Normalized area A (t)/Ao vs t/Ao [Ao A(0)] for-—
circular domains of initial radius R =20 lattice constants at dif-
ferent temperatures obtained using Glauber dynamics. The tem-
perature T=0.9T, (diamonds), O.ST, (circles), 0.7T, (crosses),
0.5T, (triangles), and 0.4T, (squares). The data were averaged
over 60 configurations for T/T, =0.9 and 0.8, 40 configurations
for T/T, =0.7 and 0.5, and 20 configurations for T/T, =0.4.
The statistical error in A/Ap is comparable to the size of the
symbols. (b) Normalized area A(t)/Ap of an initially circular
domain is plotted vs t/Ap using Kawasaki dynamics. The
closed circles, open circles, and squares correspond to circular
domains of initial radii of Rp ——8, 11, and 14 lattice constants,
respectively, at T=0.6T, averaged over 60 configurations.
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FIG. 11. Shrinking rate a=a/r [see Eq. (43}] is plotted as a

function of temperature normalized to the interaction energy J.
The points are the results of Monte Carlo simulations using

Glauber dynamics, and the line is the result of the roughening

model described in the text. For both the simulations and the

model calculation, the hopping time ~ has been set to unity. The
value for a obtained from the model calculation is normalized to
its T=O value.

2n'

with R2 ——(1/2ir) R2d8. We note that the time is still

in units of the hopping time. Using the results for R&&, R ~,

and R2, we find (omitting terms of order 1/R)

1 3 Ta=——A= —2 1 ———
8 J

Numerical solutions of the equations of motion yield simi-
lar results for a, with some radius-dependent corrections.

The area thus decreases linearly in time, but with a
temperature-dependent coefficient which decreases the
shrinking rate as the temperature is decreased. We note
that this effect is not due to critical fluctuations which are
important only for T=T„but rather to roughening fluc-
tuations of the domain boundary location. The effects of
the roughening fluctuations on the kinetics, as seen in the
Monte Carlo simulations, are shown in Fig. 9 where dia-

grams of the evolution of an initially circular domain are
shown at different times for T=0.6T, . It is seen that the
circular domain roughens very rapidly due to thermal
fluctuations. At low temperatures (T (0.5T, }, we found
that the circular domain remained essentially circular
throughout its evolution, whereas at T) 0.8T„ thermal
fluctuations are so strong that the domain becomes ex-
tremely wavy in less than ten Monte Carlo steps.

The simulations and the theoretical results can be com-
pared quantitatively as well. Figures 10(a) and 10(b} show
the linear time dependence of the area of the domain for
several different temperatures. The approximate expres-
sion for the shrinking rate a is plotted in Fig. 11 along
with the results of Monte Carlo simulations for Glauber
dynamics for an initial radius of 20 lattice spacings. The
analytical results and the simulations have been fit at one
point, since the overall time scale used in the simulation
differs from that of the continuum theory. In both cases,
the hopping time ~ has been set to unity; ~ could provide
some extrinsic, additional temperature dependence in real

0.4 0.6 0.8 1.6 1.8

FIG. 12. Logarithm of the slope a obtained from simulations
using Kawasaki dynamics is plotted vs J/T. The inset displays
a'=a~exp(0. 4J/kT) vs T/T, . Note that a' obtained in this
manner has the same temperature dependence as the shrinking
rate shown in Fig, 11. At the lowest temperatures, (T (0.3T, ),
a is temperature independent.

experimental situations. The agreement between theory
and the simulation is excellent in the region T &J. In this
region a is linear in temperature due to the roughening ef-
fects. These fluctuations effectively increase the area at
any given time, resulting in a decreased a when compared
with a calculated from a deterministic theory. The devia-
tion from the deterministic theory is not small, indicating
the importance of these roughening effects.

At low temperature, the simulations show a
temperature-independent value which is about 30% lower
than that predicted by the extrapolation of the continuum
theory to zero temperature (equivalent to the results of
Ref. 17). The reason for this discrepancy lies in the ef-
fects of the discreteness of both the space lattice and the
spins, which do not allow a perfectly circular initial
domain. Furthermore, the motion of the domain boun-
dary must proceed in discrete steps in the simulations.
Thus when compared with a continuum theory for an ini-
tially circular domain, these discreteness effects result in
some effective roughness, even at zero temperature. This
effective roughness leads to the temperature-independent
decrease of a at low temperatures from the predicted
theoretical values.

The simulations using Kawasaki dynamics yield a more
complicated temperature dependence for a, since the ef-
fects of the exchange dynamics introduces another intrin-
sic temperature dependence for the shrinking rate a. This
is shown in Fig. 12 where ln(a) vs J/T is plotted. At the
lowest temperatures, a is temperature independent. For
0.3 (T/T, (0.6, the Monte Carlo results fall on a straight
line with a slope of 0.4. At higher temperatures, however,
a strong deviation from linearity (which implies exponen-
tial temperature dependence for a) is found. In the inset
of Fig. 11 a'—=ae is plotted versus T/T, and a linear
decrease (dashed line) of a' is found for T&0 6T, as.
above. The deviation at T=0.95T, from this linear
behavior is presumably due to critical fluctuations; the
domain walls lose their sharpness at T~T, . At fixed
temperatures (T=0.8T, ) we have also observed a weak
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FIG. 13. Three initial configurations used to study the time and temperature dependence of the area A(t) of an initially square
domain of Potts spin (sublattice) A surrounded by two other components 8 and C for the Q= 3 case.
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but systematic dependence of a on the initial radius. As
the initial radius is changed from 10 to 20 lattice con-
stants, a increases by —15%. However, as the initial ra-
dius is further increased to 33 lattice constants, a de-
creases by -20%%uo.

Finally, we note that simulations of the kinetics of glo-
bal quenches' on two-component systems have resulted in

temperature-dependent growth rates that are identical to
those obtained here for the isolated domain studied here.
This indicates the utility of our model domain studies
where analytic models can be used to understand this tem-

perature dependence in terms of roughening fluctuations
of the domain walls. The fact that for the Ising model,
the temperature dependence is the same for both the
model study and the global quenches reflects the appropri-
ateness of the simple geometry as being a "typically nu-
cleated" domain.

IV. MULTICOMPONENT SYSTEMS:
PINNING EFFECTS

In the previous sections we have analyzed the kinetics
of a single domain surrounded by an infinite sea of one

other type of domain for various geometries and tempera-
tures. In this section, we discuss the kinetics of simple
domain geometries for multicomponent (Q&3) systems
where there is more than one type of domain in the infin-
ite sea and pinning effects drastically change the kinetics.

In Ref. 13, following Lifshitz, we suggested that for a
system with at least three degenerate ground states, a hex-
agonal domain surrounded by alternating sequences of two
of the other degenerate states is completely pinned. It was
argued that the change in the domain-wall length is zero
when the central domain either grows or shrinks if the
domain-wall intersections are constrained to lie at 120' an-

gles. Thus if such a domain is nucleated, it will tend to
remain in the system, thus preventing equilibration and re-
sulting in an amorphous polycrystalline structure. On a
square lattice, the topologically equivalent domain is
shown in Fig. 13(c). Again, simple arguments suggest that
this domain will neither grow nor shrink at low tempera-
tures.

To confirm this idea we have simulated a topologically
similar initial domain of one superlattice (e.g., type A) in a
square geometry as shown in Fig. 13(c). For the domains
labeled (a) and (b), the curvature energy is the driving
force for shrinking. These domains indeed shrink with an
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FIG. 14. Normalized area A (t)/Ap vs t/Ap for initially
square domains of Potts spin A surrounded by the three configu-
rations of spins B and C shown in Fig. 13. The simulations were
carried out using Glauber dynamics for a Q=3 model at zero
temperature. For configuration (a) of Fig. 13, the diamonds and
crosses are for Ap=400 and 900, respectively, where the length
scale is the lattice constant. The open (Ap ——400) and closed
(Ap ——900) circles are for initial configurations (b) and the open
triangles are for configuration (c) for any Ap. The time t is mea-
sured in units of the hopping time r. The data were averaged
over 20 initial configurations.
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FIG. 15. Normalized area A(t)/Ap vs t/Ap for initially
square domains shown in Fig. 13. The simulations were carried
out using Glauber dynamics for a Q=3 model at T=0.6T, . The
symbols are the same as used in Fig. 14. Note that configura-
tion (c) of Fig. 13 (open triangles, Ap ——400) now collapses due to
roughening fluctuations. The data were averaged over 20 con-
figurations.
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area that decreases linearly in time, as for the circular
geometry discussed above. Figure 14 contrasts the zero-
temperature kinetics of these domain geometries with that
of the pinned geometry [Fig. 13(c)] which is pinned at
T=O since we only use single spin-flip dynamics. This re-

sult is in agreement with the prediction based upon the as-
sumption of fixed angles between intersecting domain
walls. In the present example on the square lattice, this
angle is either 90' or 180'. Given this constraint, the total
wall length in Fig. 13(c) remains the same if the central
domain (A) either grows or shrinks, leading to the ob-

served pinning.
At high temperatures, thermal fluctuations, which

roughen the domain walls, speed up the kinetics of this
slowly equilibrating domain. This is shown in Fig. 15
where the area is plotted as a function of time for
T=0.6T, . The domain which was pinned at zero tem-

perature is now shrinking. The physical origin of the in-
creased kinetics lies in the roughening fluctuations which
are similarly responsible for the kinetics of the strip-
shaped domain as discussed in Sec. III A. The large fluc-
tuations between samples observed in this simulation make
it difficult to determine whether the exponent for the
shrinking rate for case (c) is different than the linear rate

observed for the circlelike domains in (a) and (b) of Fig.
13.

In the following paper, similar kinetics are observed in
global quenches of multicomponent systems on square lat-
tices. It is shown that the domain geometry of Fig. 13(c)
is typically nucleated and is responsible for the extremely
slow kinetics observed in the simulations at low tempera-
tures. At higher temperatures, roughening fluctuations
speed up the equilibration of the global quenched system.
However, on the triangular lattice, the hexagonal domains
discussed in Ref. 13 are not nucleated and the system is
thus not pinned, even at low temperatures. These compar-
isons indicate the utility of studying the model domain
geometries analyzed in this paper, since their kinetics can
be simply understood in terms of both pinning and
roughening. The global quenches can be understood in
terms of the kinetics of the typically nucleated domain
geometries. This will be examined further in the following
paper.
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