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Finite-size-scaling study of a two-dimensional lattice-gas model with a tricritical point
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We present a finite-size-scaling study of a two-dimensional square-lattice-gas model with nearest-

neighbor repulsion and next-nearest-neighbor attraction. This system may be used as a simplified

model of adsorbates on transition-metal (100) surfaces. An accurate determination of the tricritical

temperature is obtained by the utilization of the degeneracy of the three largest eigenvalues of the

transfer matrix at a tricritical point. We obtain the phase diagram and critical and tricritical ex-

ponents, all quite consistent with previously known results. We also find that a recent conjecture re-

lating the critical exponent g to the correlation-length amplitude seems to work well even at the tri-

critical point.

I. INTRODUCTION

The phenomenological finite-size-scaling hypothesis for
critical phenomena, which was introduced by Fisher and
collaborators' and extended by Nightingale, has already
been successfully applied to study a variety of critical sys-
tems. In the present work we apply finite-size scaling
to obtain the phase diagram and critical properties of a
two-dimensional square-lattice-gas model with nearest-
neighbor repulsion and next-nearest-neighbor attraction.
One of our main objectives has been to see to what extent
this method can be used to determine the location and in-

dices of a tricritical point. The system studied may be
used as a model for certain adsorbates on (100) surfaces of
transition metals, when surface reconstruction is either ab-

sent or simply results in a renormalization of the interac-
tion energies. ' We also briefly consider the question of
whether this finite-size scaling yields meaningful results in
the case of first-order transitions, where the correlation
length as usually defined remains finite. Kinzel and
Schick have previously presented a preliminary applica-
tion to a square-lattice-gas system with nearest-neighbor
exclusion and next-nearest-neighbor attraction. This sys-
tem also has a tricritical point. '

The model studied in this work is defined in the grand
canonical ensemble by the lattice-gas (LG) Hamiltonian

9 LG ltBN=K pc;c—j aK g c;ck —(—p+e) pc;,
NN NNN l

understanding of the tricritical behavior seems to exist. "
Equation (1) is transformed to Ising-spin language by tak-
ing c; = (1—cr;)/2, where cr; =+1, and takes the form

4 =Jg cr;oI a'J—g o';trk —H g tr;
NN NNN l

(2)

with J=K/4 and H= (p+—e)/2+(1 —a)K. In this
work we take a= —,'. The magnetization M is related to
the coverage 8 by M =1—28. The Ising model is invari-
ant under the transformations ( I o; },H)~ ( I

—tT; }, H). —
For weak fields

j
H

~
/J &4, the ground state is doubly de-

generate antiferromagnetic (corresponding to an ordered
v 2X v 2 structure), while for strong fields

~

H
~

/J & 4, it
is singly degenerate paramagnetic (corresponding to a
disordered lattice gas). Monte Carlo renormalization-

group calculations" indicate that the tricritical point is lo-
cated at ktt T, /J = 1.208+0.009, H, /J =3.965+0.017,
with tricritical indices v, =0.556+0.006 and

g, =0.14 +0.02. These values for the tricritical exponents
are in agreement with the extension by Nienhuis et al. of
den Nijs's conjecture for the thermal eigenvalue, ' and
with the conjecture by Pearson and by Nienhuis, Riedel,
and Schick for the magnetic eigenvalue. ' The coexistence
curve is approximately known from Monte Carlo simula-
tions. ' The finite-size-scaling transfer-matrix calcula-
tions presented here reproduce these results with high ac-
curacy, thus apparently confirming the applicability of
finite-size scaling at tricritical points.

where I( &0 and a is a real constant. The variable c; is
one or zero, depending on whether the site i is occupied or
empty, and e is the fraction of occupied sites, or coverage.
The chemical potential and binding energy per site are p
and e, respectively. The sums gNN and gNNN extend

over all nearest-neighbor pairs and over all next-nearest-
neighbor pairs, respectively. The model is equivalent to
the Ising metamagnet previously studied by Landau using
Monte Carlo simulation' and by Landau and Swendsen
using a Monte Carlo renormalization-group technique. "
It is thus a two-dimensional model for which an excellent

II. FINITE-SIZE SCALING AT CRITICAL POINTS

pe(K)=L(z&t (Kt ) as N~ ao . (3)

Detailed descriptions of the phenomenological finite-
size-scaling method and transfer-matrix calculations on
two-dimensional systems are given in Refs. 2 and 14,
respectively. Therefore we give here only a brief descrip-
tion of the method.

Under a scaling transformation which transforms a sys-
tem of linear size N into one of size N/L, the correlation
length asymptotically scales as
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Here K is the set of coupling constants for the original
system [in our case (J/T, H/T)] and KL, is the set for the
rescaled system. Since a critical point K, is a fixed point
of the transformation, a finite-size estimate for K, is pro-
vided by the solution of the equation

4«(K. ) =L(Na, «. ) (4)

We now consider a strip of Ising spins of infinite length
and width N with periodic boundary conditions. Since the
ground state is antiferromagnetic, N must be even to avoid
the introduction of interfaces. With L =N/(N+2), Eq.
(4) takes the form

It is easily shown ' that for a strip of infinite length
and finite width N, the correlation length is given by the
ratio of the two eigenvalues of T which are largest in abso-

lute value,

(N(K, )/N =gN ~z(K, )/(N+2) .

For the method to be of any use, these finite-size estimates
for K, must converge rapidly towards the infinite-system
value. This appears to be the case both in this work and
in previous applications of the method. As discussed in
Sec. IV the convergence is rapid so that we have not found
it necessary to use corrections to scaling or extrapolation
methods to determine the line of transition points.

To find the correlation length gN one needs the two
largest eigenvalues of the transfer matrix T. This 2 &(2
matrix corresponds to the addition of one layer of N spins
to the end of the strip, and is defined by its matrix ele-
ments

&S
I Z l Si+i }=e"p[—P~i(s Sr+i)]

Here
~
S; ) is the 2 -dimensional column vector represent-

ing the state of the ith layer, P= 1/k&T, and the Hamil-
tonian (2) is written as a sum of single-layer contributions,

discontinuity in yz as the direction of differentiation be-
comes parallel to the line of critical points becomes round-
ed out in finite systems. The estimates for yr obtained
from (10), therefore, in general depend on the direction of
differentiation. For a wide range of directions around the
normal to the line of critical points shown in Fig. 1, the
estimates are, however, constant to within about 5)&10
To minimize these finite-size effects we therefore have
chosen to perform the differentiations in this "ortho-
gonal" direction. (It is worth noting that the orthogonali-
ty is not preserved under independent scale changes in the
fields, as stressed by Griffiths and Wheeler. '

) The ques-
tion of how to obtain the best possible finite-size estimates
for yr has also been discussed by Kinzel and Schick. '

The correlation length exponent v is defined by g„(K)
—

~

K —K,
~

". From Eq. (9) it is easily seen to be given

by v=y —1

The model studied here has a line of critical points
T, (H), extending from the Neel temperature TN ——T, (0),
to a tricritical point (H„T, ), as shown in Fig. 1. The tri-
critical point and the point (0=4J, T=O) are connected
by a line of first-order phase transitions.

Along the line of critical points we have determined the
exponent i) for the decay of the correlation function by us-

ing the interesting conjecture, due to Derrida and deSeze, '

that g is related to the amplitude of the correlation length
as

(N/N= 1/mi) .

We also have applied this relation at the tricritical point to
test its validity there. We find that it gives good agree-

ment with the expected result, as discussed in Sec. IV.

l

Q 0-"-.."~--.aa.c~~ Q3~
O~

The largest eigenvalue A, i equals the partition function per
layer and is thus always positive.

The thermal eigenvalue of the scaling transformation

with scale change I. is L, so that

gN(K K, )=L(N~L—[L (K K, )] as N~ ao—. (9)

30—

a 20—

C3

ye+1 = ln

~EN

BE ac=ac, N
N+2

asN —+00 .

Differentiating with respect to (K —K, ) and again taking
L =N/(N+2), we obtain

&& Strip widths 8/lO
Strip widths 6/8
Line of critical points Tc (Hj

~" - First —order transition temperatures a

I I

0 1
T 2

TEMPERATURE T I ~ J I

According to the principle of smoothness, yz- is indepen-
dent of the direction of the derivative in E space, as long
as it is not taken parallel to a line of critical points. ' The

FIG. 1. Line of critical points T,(H) (solid line), and line of
first-order transitions (dotted line). The data points are for
N/(N+2)=6/8 (squares) and 8/10 (diamonds). The tricritical
point is at k&T, /J =1.205+0.003, H, /J =3.965+0.001 where

T, is determined from Fig. 2.
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III. DETERMINATION OF THE TRICRITICAL
POINT

The accurate determination of the tricritical tempera-
ture T, requires some extension of the well-established
ideas of finite-size scaling at critical points. In this sec-
tion we discuss these extensions.

At the tricritical point the disordered paramagnetic and
the two ordered antiferromagnetic phases become indistin-
guishable. ' This requires the asymptotic degeneracy of
the three largest eigenvalues of the transfer matrix T. The
degeneracy of the third eigenvalue with the two largest
ones provides an additional constraint which fixes the po-
sition of the tricritical point along the line of critical
points. In finite systems this asymptotic degeneracy
shows up as a linear divergence with the strip width N of
the quantity

ka =f»(~i/I%I )] '

so for T=T„

g~~,N as N~ oo . (12)

One can interpret g~ as a length scale. It can be
demonstrated that it characterizes the decay in the direc-
tion along the infinite strip of the correlation function for
the magnetization of a single layer of N spins.

Along the line of critical points the magnetic suscepti-
bility remains finite as N~ ao, so for T & T, the charac-
teristic length g~ must be asymptotically independent of
N,

AiNe (1+BiN '+ ), T&T,

+ A,N(1+B,N '+ ), T= T(

A, (1+B,N '+ ), T&T,

(15)

In (15) we have included a regular part

=A'"s'+B'"s'N '+O(N ) (16}

as well as corrections to scaling (-N '} due to irrelevant
variables. The exponents —c; are the leading irrelevant
scaling exponents and are expected to lie between —1 and
0. This has been pointed out by Privman and Fisher. In
general the coefficients A; and the exponents c; are expect-
ed to be different in the three cases.

For temperatures slightly different from T, we expect

g~ to show crossover from the tricritical to the appropri-
ate critical or first-order behavior as X increases. This
can be utilized to obtain a numerical estimate for T, .
From Eq. (15) we thus expect a plot of g~ vs N for T & T,
to exhibit a downward curvature as N~ Oo, while for
T & T, an upward curvature is expected. Only for T= T,
should the plot approach a straight line of nonzero slope.
The tricritical temperature T, can therefore be determined
as the temperature for which the quantity (the "second
derivative" with respect to N)

4x =4~+2—2kx+kx-z)/4

vanishes asymptotically as N~ oo. From (15) we obtain

the asymptotic behavior of g z at T„
A2 asN~ao. (13)

g~(T, )=2B'" 'N

The behavior of g~ along the line of first-order transi-
tions below T, can be obtained from the following heuris-
tic argument. At a first-order transition, phase coherence
extends over distances which are much larger than N, and
the three distinct phases coexist in a one-dimensional ar-
ray of macroscopic single-phase domains. The average
size of a domain of one of the two ordered phases is pro-
portional to the dominant length gz, while the average
size of a domain of the disordered phase is proportional to

g~. The ratio g~/g~ is proportional to the fraction of the

total volume taken up by the disordered phase so that g~
is proportional to g~. The free energy required for the
formation of an interface across the strip is No, where
ksTo(T, H) can be identified with the surface tension.
The average domain size gz, therefore, should have the
asymptotic behavior '

Nag~-AiNe as N~ oo . (14)

As cr vanishes at the tricritical point, this is consistent
with (12). A result similar to (14), valid below the critical
point of the two-dimensional Ising model, has previously
been presented by Fisher. '

Based on the above reasoning we expect the asymptotic
behavior as N~ ao of the length gz, evaluated on the
transition line, to be as follows:

1 —c, —(]—c )+2 2 A, B,N ' as N~ (g) . (lg)

The first term arises from the regular part of (z and the
second term from the corrections to scaling due to ir-
relevant variables. If the amplitude of the second term is
small, the behavior for moderate N will be dominated by
the rapidly convergent first term. If the second term van-

ishes, the best estimate for T, is the temperature for which
the exponent seen in the range of observed N is constant
and approximately equals —3. It is well known, as point-
ed out in Ref. 24, that for the two-dimensional Ising
model with S=—, and nearest-neighbor interactions the
corrections due to irrelevant variables cancel exactly. This
is, however, a coincidence and cannot be expected to hold
in general. Similar rapid convergence has been observed
in several previous works, ' ' but since the asymptotic re-

gion may not have been reached for the system sizes stud-
ied, the accuracy of the resulting parameter estimates may
be open to question.

If the term due to irrelevant variables does not vanish,
the effective exponent gN

——6 lngz/b lnN for finite N de-

pends on the ratio of the amplitudes of the two correction
terms and on the unknown exponent c, as well as on N. In
most cases, however, c, E [0,1], so that gN E [—3, —1].
Using these bounds on the effective exponent, we can
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determine upper and lower bounds on T, from the slopes
between %=8 and %=10 in the doubly logarithmic plot

of g~ vs N for different T, shown in Fig. 2.

ture T, . It shows a doubly logarithmic plot of the quanti-

ty gg, defined in (17), versus N. If we assume that gx
converges with an exponent approximately equal to —3,
we obtain the estimate k&T, /J=1. 207+0.001 from the

IV. RESULTS

The main numerical results of our investigation are
shown in the figures. In Fig. I are shown the line of criti-
cal points T, (H), the tricritical point (H„T, ), and the line
of first-order phase transitions. The whole line is the set
of solutions of Eq. (5). The results converge rapidly with
N, so that for k&T/J=l, N/(N+2)=8/10 yields the
transition field to a relative accuracy of 10 '. The calcu-
lation with N/(N+2) =6/8 yields the value for the Neel
temperature k+T&/J =3.802, as compared with the result
from high-temperature series expansions, kz Tz/J
=3.809. We therefore have not found it necessary to use
larger strip widths or employ corrections to scaling in or-
der to determine the transition line more accurately.

Figure 2 was used to determine the tricritical tempera-
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FIG. 2. Plot for determination of T„showing the quantity

g g, defined in (16) vs N on a log-log scale for different tempera-
tures. The effective exponent bio between N=8 and 10 for dif-
ferent temperatures is g]o(1.208) = —3.86, g&o(1.207) = —2.79,

gio(1. 206)= —2.06, g&o(1.205)= —1.69, gio(1. 202)= —1.04,
and gio(1.201)=—0.92. If we assume a simple power-law con-
vergence -N ', we thus obtain the estimate k& T, /J
=1.207+0.001. If we assume convergence with an effective ex-

ponent sN E [ —3, —I ], we obtain the more conservative estimate

kg Tr /J = 1.205+0.003.

-3.3
3.S

I

39 H /J 4.0

FIELD H/J

4. I 4.2

gr(&, &)=—(T/N)ln
l

A, ; l
for the three largest eigen-

values A,; for N=8 as functions of field across the first-order
transition at (a) k&T/J =1.1, near the tricritical temperature at
(b) k&T/J=1. 208, and at the second-order transition at (c)
kqT/J=1. 3. The branch for the largest eigenvalue A. i corre-
sponds to Gibbs's free energy per spin.
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FIG. 4. Correlation-length exponent v vs T. For finite sys-

tems v changes continuously from the Ising critical value v= 1 at
the Neel temperature to a tricritical value v, =0.552+0.008 at

T, . The change becomes more abrupt with increasing strip
widths, indicating a discontinuous change for infinite systems.

The line is a guide to the eye, drawn through the points for
X/(%+2)=6/8. Our estimate for v, is consistent with the

Landau and Swendsen result v, =0.556+0.006, which is indicat-

ed by an error bar. The exponents obtained for T & T, have no

physical significance.

FIG. 5. Anomalous dimension exponent g vs T, as obtained
from the conjectured relation t) =N/terr of Ref. 18. For finite
systems g changes continuously from the Ising critical value

g= 4 to a different tricritical value g, . The change becomes

more abrupt with increasing strip widths, indicating a discon-
tinuous change for infinite systems. The line is a guide to the

eye, drawn through the points for X/(%+2)=6/8. We find a
tricritical value g, =0.149+0.002, within the uncertainty of the
Landau and Swendsen result g, =0.14+0.02 (error bar). Below

T, the exponents obtained have no physical significance.

line of smallest curvature in the figure. If we assume that

gt'v converges with an effective exponent (tv E[—3, —1],
we obtain the more conservative estimate kz T, /J
=1.205+0.003. This is within the error bounds of Lan-
dau and Swendsen's result k&T, /J=1.208+0.009. %e
will use the more conservative estimate in the following.
The corresponding value of the field is

H, /J=3. 965+0.001. This is the position of the tricritical
point indicated in Fig. 1.

Figure 3 shows the change of g;(T,H)= —(T/N)
Xln

~

A.; ~

for the three eigenvalues of T which are largest
in absolute value, as H is varied through the transition at
(a) ks T/J = 1.1, at (b) kit T/J = 1.208, and at (c)
k&T/J=1. 3. The data are for N=8. The Gibbs's free
energy per spin is g, (T,H), corresponding to the largest
eigenvalue A, &. The transition field obtained from (5) is
also indicated in the figure. The rapid change in the slope
of gi(T, H) in the first-order case (a) corresponds to the
discontinuity in the magnetization seen in Fig. 6.

In Fig. 4 is shown the correlation-length exponent
v=yr ', as obtained from Eq. (10), versus T. For an infi-
nite system v is expected to change discontinuously from
its critical Ising value v=1, to a different value v, at T, .
For the finite systems studied here, v changes continuous-
ly from unity to v, =0.552+0.008. The uncertainty arises
from the variation of yT with the direction of differentia-
tion in {10),and from the uncertainty in T, . This result is
consistent with that of Landau and Swendsen,
v, =0.556+0.006, and with the conjecture v, = —„.' The
change in v with T is seen to become more abrupt as the
stripwidth N increases, indicating a discontinuous change
as N~ oo. The values of v obtained for T & T, have no
physical significance, as can be seen by applying (10j to
(14).

In Fig. 5 is shown the exponent g, as obtained from the
conjectured relation between g and the amplitude of the
correlation length, ' rl=N/tr(N. For an infinite system
one again expects a discontinuous change from the critical
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FIG. 7. Phase diagram, magnetization vs temperature at the
transition field value. The coexistence gap is determined from
plots like Fig. 6. Above T, is shown M(H, ) vs T. The accuracy
close to T, is poor, as indicated by the error bars, but well below

T, there is good agreement with Monte Carlo simulations. The
disordered phase is paramagnetic (PM), the ordered phase is an-

tiferromagnetic (AFM).

FIG. 6. Magnetization vs field across the first-order transi-
tion at k&T/J=1. 1 The change across the transition is seen to
become steeper with increasing strip width, approaching a
discontinuity for infinite systems. Extrapolations to infinite
strip widths are also shown. The magnetization is obtained by
differentiation of Gibbs's free energy per spin.

Ising value g= 4, to a different value g, at T, . For the
finite systems studied here we see a continuous change
from q= 4 to q, =0.149+0.002. This is within the un-

certainty in the value found by Landau and Swendsen,

q, =0.14+0.02, and in agreement with the conjectured re-
sult g, =0.15. ' The small uncertainty in our estimate for
q, arises because the correlation length is very accurately
determined. The main uncertainty in g, comes from the
uncertainty in the estimate for T, . As in the case of v, the
change in g is continuous, but steepens as X increases. It
is noteworthy that the conjecture appears to be valid at the
tricritical point, as well as at critical points, for which it
was originally proposed. The values of q obtained for
T & T, have no physical significance.

The magnetization has been computed from the Gibbs's
free energy per spin as M= —r)g~(T, H)IBH. In Fig. 6 is
shown the magnetization versus field at k&T/J=1. 1, i.e.,
below T, . The change across the transition is gradual for
small strip widths, but becomes steeper for larger systems,
asymptotically approaching a discontinuity for infinite
systems. It is, however, difficult to estimate the size of
the discontinuity accurately. We have estimated the mag-
netization for an infinite system from plots of M vs X
for fixed H. We also have tried to fit our data to the scal-
ing law

M+-Z (+hX"), (19)

~here h =1—H/H„, „, and d is the spatial dimensionality,
as has been suggested by Fisher and Berker. ' However,
we do not have enough data in the scaling region close to
the transition point to test this suggestion.

In Fig. 7 is shown the phase diagram M vs T at the
transition field. Below T, the coexistence gap is deter-
mined from plots 1ike Fig. 6. Above T, is shown M(H, )

vs T. Close to T, the convergence with strip width is
slow, so the phase diagram is not very accurately deter-
mined, as indicated by the error bars. The "hook" on the
magnetization curve just above T, may be a numerical ar-
tifact. Well below T, we find good agreement with
Landau's Monte Carlo simulation results. '

V. CONCLUSION

The purpose of this work has been to study the accuracy
and effectiveness of the finite-size-scaling method when

applied to a system with a tricritical point. For the sys-
tem studied here the phase diagram is known from Monte
Carlo studies, ' and the critical and tricritical properties
from exact results, renormalization-group calculations,
and conjectures. ' We have extended the method to
determine the tricritical point, and tested a recently con-
jectured relation between the critical index g and the
correlation-length amplitude. This conjecture seems to
hold even at the tricritical point. We find that the finite-
size-scaling method thus extended provides a single calcu-
lational scheme which yields results fully consistent with
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the previous calculations. The accuracy is comparable
with that of the previous numerical studies. ' " As a tool
for comprehensive studies of lattice-gas models with com-
plicated phase diagrams the method seems to promise con-
siderable computational savings compared to the use of a
combination of other methods, The convergence with sys-
tem size observed in finite-size-scaling studies is too rapid
to be explained by corrections to scaling due to irrelevant
variables, as has recently been pointed out by Privman and
Fisher. However, the apparent high accuracy and con-
sistency of our results suggest that our extrapolations
based on this rapid convergence are nevertheless valid.
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