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Solitons with adjustable charge in a commensurate Peierls insulator
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We consider a one-dimensional electron gas with a half-filled band in which the electrons are cou-

pled to both intersite and intrasite lattice distortions. In the region of parameter space in which both

types of distortion develop nonzero expectation values, a new class of soliton which spontaneously
breaks the charge conjugation symmetry of the model appears as the lowest-lying electronic excita-
tion of the system. The soliton charge is a continuous function of the coupling constants.

I. INTRODUCTION: THE MODEL

The lowest-energy charged excitations in a commensu-
rate, one-dimensional Peierls system appear to be solitons
(domain walls) with fractional charge. ' Originally it was
imagined that the charge on a soliton is always a rational
fraction of the electron charge, Q'=enltrt, where the
fractional charge is related to the order of commensurabil-
ity m. This is because the solitons are domain walls be-
tween equivalent ground states and hence have a winding
number, 60=2m. /m, determined by the degeneracy of the
ground state, which is also m. However, it was pointed
out by Goldstone and Wilcek (and implicitly by Rice
et al. ') that if we admit solitons with arbitrary winding
number 68, then the charge associated with the soliton is
Q'=e 66}/2n., which can take on any value. It was re-

cently shown by Brasovskii, Rice and Mele, and Jackiw
and Semanoff that in a simple model of a diatomic poly-
mer in which there are two degenerate ground states, the
solitons have a winding number, and hence a charge Q",
which depends continuously on the difference in site ener-

gies of the two constituents.
In this paper we explore some effects of competing in-

teractions on the nature of the commensurate Peierls state.
In particular, we will show that for a class of physically
reasonable models of the half-filled Peierls system, there is
a finite region of parameter space in which there are four
degenerate ground states and three different types of soli-
tons (and their corresponding antisolitons) of which two
have a winding number (hence charge) which is a continu-
ous function of the interaction strengths. Since the model
itself is initially charge conjugation symmetric, the irra-
tional charge associated with these solitons appears as a
consequence of a spontaneous breakdown of the charge
conjugation symmetry.

Let us imagine a one-dimensional stack of molecules
(which we will call sites), with one valence orbital per mol-
ecule and a band that is nearly half full. We include the
coupling of the electrons to two lattice degrees of freedom,
an intermolecular mode [ u j, where u„ is the displacement
of the center of mass of the nth molecule along the stack
direction, and an intramolecular mode [v], where v„ is the
magnitude of the distortion of the nth molecule. The re-
striction to one intrarnolecular mode is not a fundamental

limitation since in the generic case there is one most
strongly coupled internal mode. The model can be easily
generalized to include other internal modes, but they will
have no qualitative effect on the results. To simplify the
discussion, we will consider a model Hamiltonian which
includes only harmonic terms in the lattice potential ener-

gy (quadratic in u„and v„) and a linear electron-phonon
coupling (linear in u„and v„). Since some of the effects
we will consider occur in next-to-leading order in the mag-
nitude of the lattice displacements, this approximation is
not formally justified. However, it can be easily shown
that while the inclusion of higher-order terms in the Ham-
iltonian produces (usually small) quantitative corrections,
it leaves the interesting physics qualitatively unchanged
(see Ref. 6). Thus we will consider the Hamiltonian

H= —g g [[to+a(u„u„+,—)](c„,c„+,,+H c )..
n s=l

+pVn nsCns+9 , n, s, n, s j

+ 2 g[Ki(u„—un+i) +K2(vs ) +K3v v +i],

where |is the spin degeneracy, c~ creates an electron of
spin s on site n, p is the chemical potential, 4to is the
bandwidth, and K; are the various bare-lattice stiffness
constants. Because of their different symmetries, the two
lattice modes enter H in quite different ways. The transla-
tional symmetry of the system requires that the model be
invariant under u„~n„+a, and hence H can depend only
on differences between the displacements of different sites.
Because u„—u„+& is the change in the distance between
sites n and n + 1, we expect u„ to affect predominantly the
electron hopping integral (coupling constant a). Since v„
is an intramolecular distortion, we expect it to modulate
the site energy on site n (coupling constant p).

Physically, the coupling constant a (a &0) reflects the
fact that the hopping integral between two sites increases
in magnitude as they are brought closer together. p re-
flects the fact that the energy of an electron on a molecule
is changed (increased if p& 0) as the size (v„) is decreased.
It is necessary to include the term proportional to EC3 in
Eq. (1) so that the internal phonon mode has a finite band-

28 2653 1983 The American Physical Society



2654 S. KIVELSON 28

width (dispersion). We expect that K3 will usually be pos-
itive, hence favoring out-of-phase distortions on neighbor-
ing molecules. There could also be terms coupling u„and
U„. However, these terms lead to unimportant complica-
tions without affecting the final results qualitatively.

There are, however, three qualitatively important sim-

plifications inherent in this model. Most notably, we as-

sume that the ionic masses are sufficiently large that the
ion kinetic energy can be ignored (M~ &n limit). Thus we

always consider static lattice configurations. We also ig-
nore all direct electron-electron interactions, and all inter-
chain or three-dimensional interactions.

II. GROUND-STATE PROPERTIES

2tov
ET(6,0)= —[1+(A~) ]' E(1—z )

(2)

The ground-state lattice configuration of 0 is the
dimerized state u„=(—1)"u, v„=(—1)"v —v. Since the
dimerized lattice involves only two atoms per unit cell, the
electronic energy and wave functions can be obtained by
diagonalized a 2)&2 matrix. The result for the total ener-

gy of the dimerized system is

where

z =(++6,)/(1+hz), b,
&

——2au/to= I 5 cos(0),

b, 2
——Pv/(2to) —=

~

6
~

sin(9), e =Pv/(2to)

=2va /(rrK)to), Ap 2v——13 [rrto(K. —K3)),

A, = 2vP'/[rrt, (K, +K, )],
and E(x) is the complete elliptic integral of the second
kind. We have defined the angle 0 for later convenience to
allow us to express the two competing real order parame-
ters 6& and A2 in terms of a single order parameter
b, =

~

b,
~

e' . 5& represents the magnitude of the bond al-

teration (the dimerization of the intersite separations) and
Aq the site alternation (the site energy dimerization); e is a
measure of the uniform distortion of all the molecules.
Since it is proportiona1 to the amplitude of a k =0 optical
mode, while 6] and 62 are optical modes with
k =2k+ ——m. /a, e is in a sense irrelevant to the interesting
physics. Thus in much of the discussion that follows we
will take A, =O. We will return to discuss the affect of
A,&0 in Sec. IV. In the case of the half-filled band, the
chemical potential lies at the band center, hence

p = —2tpe, and hence (if the lattice is held rigid) the elec-
tronic excitation spectrum has particle-hole or charge con-
jugation symmetry. The energy needed to add to the sys-
tem an electron or hole with wave number k is

ek ——2to[cos (ka)+(5, ) sir' (ka)+(5, )']'~'-,

where a is the lattice constant. The minimum energy to
create a fermion, the electronic gap or "mass, " is 2to

~

b, '

,

.
The ground-state value of the order parameter is ob-

tained by minimizing Ez with respect to 6 and 0. The re-
sulting phase diagram is shown in Fig. 1.

Region I is characterized by pure bond alternation, 0=0
or vr, and

0.750 5=4e [1+K&(b')],

where Region III is characterized by pure site alternation,
0=-+sr/2, and

0.375

S[

0 0,5 1.0

FIG. 1. Phase diagram: Region II is the coexistence region.
The dashed line is a path through parameter space described in

the text.
FIG. 2. Circle of constant

~

5
~

in the (A„b,;) plane.
Ground-state configurations are indicated by the solid circles.
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Er(
f
a f, 8)= 4

~ 1+ ln
7T 2

1—+-
A

hz& 0 fo 4+ &(&') .+ ~'U(8), (4)
16m

(b)

Q) (Q
&p

0
hz &0

where A '= —,(A +A@ —1) is the average coupling
parameter, and

U(8)=d cos(28)+. —,
' [cos (28) ——,]+6'(b, ),

where d =(8D/6 ZA —') and D= —, [Ap —(I+A~ )]
is the distance in parameter space from the line
A &

' ——(1+A ' ). It is easy to see by minimizing Er with
respect to

~

b,
~

and 8 that coexistence occurs only if

(2A '+1))8D)
i
b,

i
(2A ' —1),

that is,
~

d
~

& 1 where, in the coexistence region, the
ground-state value of the order parameter is

i
6

i
=4exp(1 —A ')

and

8o——cos 'I [—,
'

(1—d)]'
FIG. 3. (a) Schematic representation of the four possible

ground states in the coexistence region. The bond alternation is
represented by short double bonds (u„—u„+» 0) and long single
bonds (u„—u„+I &0) while the site alternation is represented by
stretched sites (v„g 0) and compressed sites (U„&..0). Note that 3
and C phases are related by an overall translation by one lattice
site, as are 8 and D phases. (b) Schematic representation of the
two types of irrationally charged solitons. Notice that the
domain wall between A and 8 phases (S&) is equivalent to the
boundary between C and D phases, Similarly, an S~ soliton is
the boundary either between 8 and C or between D and A. By
connecting the two illustrated segments together, we see that
2(SI+S.) is a topologically trivial combination of solitons (see
discussion in the text).

6 =4e ~[1+6(b2)] .

Region II is characterized by coexistence of site and bond
alternation, so there is a ground state with 0=00, where
0 &0O & vr/2. Since the energy is an even function of both
b, t and 62, there are necessarily energetically equivalent
ground states with 0= —0o 00+m, and ~—00 as indicated

by the solid circles in Fig. 2. The corresponding patterns
of lattice distortions are shown schematically in Fig. 3(a).

The presence of a coexistence region is an intrinsically
strong coupling effect, as can be seen from the Fig. 1.
When 6 is small, the coexistence region has width of order

about the line critical A p
' ——A ~

' + 1. The reason for
this is that along this line, the energy is independent of 0
to lowest order in A. Hence the ground-state values of 0
are determined by higher-order terms. To make this expli-
cit, we can express the total energy in the coexistence re-

gion as the sum of a 0-dependent and a 0-independent
part:

For systems in the vicinity of the coexistence region it is
convenient to use the coupling constants A and d, rather
A and A p. By the "vicinity" of the coexistence region,
we mean the narrow strip of the phase diagram in which d
is of order 1 ~

III. THE SOLITONS: GENERAL
TOPOLOGICAL CONSIDERATIONS

The solitons (kinks) which appear in the model are
domain walls between regions of different possible ground
states of the system. The intrinsic charge Q' associated
with a soliton is determined by its topology (that is, by the
nature of the two ground states on either side of the soli-
ton). In addition, if there is one or more localized elec-
tronic state associated with the soliton, it can exist in one
of several charge states with charge Q, which differs from
Q* by an integral multiple of e, depending on the occu-
pancy of these states. It is easily seen (see Refs. 1 and 2
and the next section) that in all the cases we will consider
here, there is exactly one localized state in the band gap
associated with each soliton. (There can also, in general,
be a localized state beyond the band edge, but it plays no
role in any interesting physical process. ) Thus there are v
possible charge states of the soliton depending on the oc-
cupancy vo (v&vo&v) of the gap state. The charge and
spin of the soliton can be determined simply by any of a
number of simple counting arguments. ' We begin by
classifying the solitons in the three regions of the phase di-
agram. Then we will give a simple intuitive version of the
counting argument due to Schrieffer' to motivate the
charge assignments.

In regions I and III there are only two ground states and
so there can be only one type of soliton (and its corre-
sponding antisoliton). The soliton is thus a region of finite
extent over which the order parameter changes sign (8
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changes by n.}. These solitons are well known' to have
charge Q =e/2(v —2vp) and spin —,

'
vp(v —vp}.

In the coexistence region (III) there are three possible
solitons (Si, Si, and Si) and their corresponding antisoli-
tons (Si, S2, and Si) as shown schematically in Figs. 2
and 3(b). Si is the boundary between the state with
8= —Op and 8= +Op, S2 is the boundary between 8=8p
and H=m —Hp, and Si is the boundary between Hp and

Hp+ ir. The spin of all the solitons is, as before,
—,
'

vp(v —vp). Si is topologically equivalent to the solitons

in regions I and III and so its charge is the same as those
solitons. The strange charges on Si and Sz derive from
the fact that the change in the phase of the order parame-
ter across the soliton, 68, is a function of the coupling
constant d. The charge on the soliton is

QJ e( v A——HJ. /2' vp),—

where for Si, b,Hi ——28p, and for S2, 582 fr ——28p —[Th.e
charge of the corresponding antisoliton is obtained by let-

ting b HJ ~—b, HJ and vp~(v —vp).] If we imagine chang-
ing d, the fractional charge associated with Si goes mono-
tonically from Qi ———,'ev on the d =+1 side of the coex-

istence region to QJ'=0 on the d =—1 side, while Q2 goes
from 0 to —,

' ev.
To obtain an intuitive feeling for the origin of these

charges, imagine the following construction: We start
with a chain in one of its uniform ground states, the A

phase, for example. We then introduce a series of two Si-
and S2-type solitons in the manner shown in Fig. 3(b), al-
lowing there to be a sufficient region of uniform ground
state between each soliton so that they can be treated as
independent and noninteracting. Since the net effect of
the introduction of these four solitons is to shift the
Peierls condensate one wavelength to the right (without
altering the boundary conditions} the total charge associat-
ed with the solitons is +ev. Since the two S~-type soli-
tons are equivalent to each other, they must have the same
charge, as must the two Sz's, so Qi +Q2 ——ev/2. In re-
gion I the amplitude of the site-diagonal distortions is zero
(h2 ——0},so the Si-type soliton illustrated is a mathemati-
cal construct with no physical manifestation, and hence

Qi ——0 and Q2
——ev/2. Similarly, in region III, S2 exists

only in the mind of the illustrator, and hence Qi ——ev/2
and Q2 ——0. However, as the coexistence region is
traversed from region I toward region III, the magnitude
of hi decreases from hi ——b, to bi ——0, and b, q increases
correspondingly. Hence, the charges Qi and Q2 necessari-

ly interpolate continuously between their values in regions
I and III. Since from a topological point of view

S3 ——S, +S2, in all regions Q3 ——Q i +Q2 ——ev/2.

IV. SOLITON ENERGIES

Having established the quantum numbers of the solitons
it remains only to determine the lattice configurations
which minimize the total adiabatic energy for each charge
and spin state of the system, and hence to calculate the ap-
propriate soliton shapes and creation energies. This can be
done quite simply for H in Eq (1) by f.inding the
minimum of the adiabatic potential energy by direct nu-

merica1 calculation. However, in the weak coupling limit,
6«1 (A &1), analytic results can be obtained as well.
For the present we will ignore coupling to the k =0 in-
tramolecular phonon. (We set A, =0.)

Let us first consider the lowest-energy charge excita-
tions in the coexistence region, which are the solitons of
types 1 and 2 with vp ——0. As we shall see, these are phase
solitons with width large compared to the electron correla-
tion length,

gp=A'vp/
[
6

~
=2tp«

~

~ [

where UF is the Fermi velocity. Because of their large
width, we can derive their pro erties by considering an ef-
fective phase Hamiltonian, H' (8), obtained by expanding
the adiabatic potential energy in powers of VH(x). The re-
sult is

Heff(8) p dx
~

/hi
~ (8}

2m a 8

+
I

~
I

'

where v(8) is defined in Eq. (5}. The optimal Si-type soli-
ton is obtained by minimizing H' with respect to 8(x)
subject to the boundary condition 8(x)—++Hp as x ~+ ao.
The result is

X —Xp
8(x)=tan ' tan(Hp)tanh

I

where l =2v 2gpib, (1—d )'~ is the soliton width and the
soliton creation energy is

E,=
~

b
~

I28p[1 —2cos (Hp)]+sin(28p)J .
21r

(10)

Notice that the soliton creation energy is of order
~

b, ~,
and hence much smaller than the electron creation energy
which is 2tp

~

6 ~. This is due to the large width of the
soliton compared to the electronic correlation length,
1/gp-

~

iL
~

'. Also, because of this large width, the emp-
ty localized gap state has energy at the edge of the gap,
just below the conduction-band edge. E, has its largest
value at the lower ed e of the coexistence region, d & + 1,
where E, =tp

~
6

~
2, and drops monotonically as d de-

creases, until, for d & —1,

E, =(2tp [ 6 i
/3)(1 —

i
d

i
)

Near the edges of the coexistence region, the characteristic
exponential length I diverges with exponent
—,
' [l-(1—d )

'~ ). For d near 1, the soliton is no longer
exponentially localized,

8(x)=tan '[tan(Hp)(x —xp}/1]

=tan '[i/2~ 6
~
(x —xp)/gp] .
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However, as seen in the second equality, it is still algebrai-

cally localized in a region of width -gp/
~

5
~

. For d near
—1,

9(x)=Optanh[(x —xp)/I],

and the soliton creation energy is

E, =(v/m. )
i

b,
i

. (1 lb)

so that as d ~—1, the magnitude of the kink vanishes in

the same fashion as its width diverges. The type-2 kinks
are the same as type 1 with m —00 replacing 00. It should
be noted that a single S3-type soliton with vo ——0 is un-

stable with respect to the process S3~S)+S2.
A second interesting class of excitations is comprised of

those that involve a change in the occupancy of the gap
state associated with the soliton. A soliton in which the

gap state is full (v-fold) occupied (or an antisoliton in
which is unoccupied) is always unstable,

SJ ( vp =v )~SJ ( vp =0 ) +2S i ( vp =v ) +2S2 ( vp =v )

(1 la)

l

However, for v=2, it is possible to have a soliton with a
singly occupied gap state, vo ——1. For instance, the
lowest-energy triplet excitation is a widely separated
soliton-antisoliton pair, each of which has vp ——1. The sol-

iton creation energy for vp
——I can clearly be reduced by

lowering the energy of the localized gap state. This can be
done only by making the soliton width or order gp(l-gp).
Thus the soliton shape cannot be derived from the phase
Hamiltonian in Eq. (7). It can, however, be obtained by
considering the continuum limit of the full Hamiltonian in

Eq. (1) and ignoring terms of order b, . We will do so
below. The results of this continuum theory are valid in
the weak coupling limit (a/gp «1). The result is the fol-
lowing: The soliton profile is given by the expression

h(x) =
~

b,
~

e 'tanh(x —xp/(p)

The electronic spectrum in the presence of this type of sol-
iton is charge conjugation symmetric, so the localized
state lies at exactly midgap. The lowest triplet excitation
is thus an S3Si pair, each with charge Q'=0 and spin —,'.

Finally, we note that although irrationally charged soli-
tons only appear in the coexistence region, the presence of
the two competing order parameters is also felt in regions
I and III in the vicinity of the coexistence regime. To ex-
plore these effects, let us consider the nature of the soli-
tons as a function of the coupling constant over the entire
parameter space. H' (8) in Eq. (8) provides an adequate

description of the system only in the vicinity of the coex-
istence region (

~

d
~

not much greater than 1) and only
when the characteristic length scales, such as the charged
soliton width I-gp/~ b, ~, are much greater than the
correlation length gp. Far from the coexistence region,
where the gradient expansion in H' breaks down, the
weak coupling system can be described by a different sort
of continuum model. This is possible because when

~

d
~ && ~ 1, the higher-order 8-dependent terms in the en-

ergy 6'(b, ), which play a central role in region II, can be
ignored. Thus we begin our discussion by describing the
continuum limit of the model in Eq. (1). (We use the tech-
nique described in Ref. 8. See also Refs. 3 and 9.) For the
sake of completeness, we will at the same time discuss the
qualitative effects of the heretofore neglected coupling to
the k =0 intramolecular optical phonon A, &0. The re-
sulting Hamiltonian is

+&i(x)a~+&2(x)o~+e(x) g, (x)+f dx hi(x) 62(x) [e(x) e]2
kill

(12)

where 1(,(x) is the creation operator of a spinor field with
components corresponding to left and right moving elec-
tron branches, cr, are the Pauli matrices in the branch in-

dex, A'UF =2tpa is the Fermi velocity, e(x) is the local am-
plitude of the long-wavelength optical phonon measured
relative to its equilibrium value, e=Pu/(2tp) [in the con-
tinuum model with cutoff energy 8'-2to,
e=vW(2A, /n. )], and, E„;„ is the lattice kinetic energy.
Note that in deriving the continuum model we have ig-
nored not only higher-order terms in b, [d'(5 )] but also
some terms of order 5 . Thus the continuum model is
only valid (in detail) in the extreme weak coupling limit
when terms of order 6 can be ignored relative to terms of
order b,2/A.

We can immediately deduce several important con-
clusions concerning the effect of the third field e(x) on the
properties of the model. Since e(x) couples to the local
charge density p, (x)1I,(x), the same considerations apply
throughout the phase diagram, even in the coexistence re-

gion (II). It is clear that in region II, where the charged
soliton widths are very large and the charge densities cor-
respondingly small, the effect of the coupling to e(x) is
small (so long as A, is not too large). Thus in this regime
we were justified in considering the model with A, =O.
Moreover, in all regions of the phase diagram, the proper-
ties of the neutral sohton (i.e., an S3-type soliton for v=2
and vp ——1) are totally unaffected by the presence of e(x).
This is a consequence of the fact that the soliton is not
only globally neutral, but locally neutral as well. ' How-
ever, far from the coexistence region, where as we will see,
the soliton widths are of order gp, the presence of e(x) has
a significant effect on the charged soliton shape and
creation energy. Specifically, e(x) tends to cause a reduc-
tion in both the soliton width and creation energy relative
to the values of these quantities when A, =0. Having thus
determined the effect of A,&0, let us once again take
A, =0 to simplify the discussion.

%e now are in a position to discuss the qualitative na-
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ture of the soliton solutions along the dashed curve in Fig.
1. At the edges of the phase diagram, where Ap ——0, or
A =0 Eq. (12) becomes equivalent to the well-known

(TLM) model of polyacetylene. The minimum energy sol-
iton is thus a pure amplitude soliton with a field configu-
ration and creation energy the same as that given in Eq.
(3), regardless of its charge state. In the case of normal
electrons (v=2), the degeneracy between the neutral and
charged solitons is lifted as we move into the interior of
the phase diagram. The neutral soliton has the same
shape and creation energy anywhere along this curve (and
for any value of A, ). However, the charged soliton be-

comes monotonically more phaselike, more spread out,
and its creation energy decreases as we approach the coex-
istence region. Finally, at the border of the coexistence re-
gion (

~

d
~

=1) the minimum energy charged soliton can
be found from 8' (8) to be a pure phase soliton with

8(x) =tan '[v 2
~

b
~

(x —xo)/4o]

and with creation energy E, =v b
~

/~2. Thus in the vi-

cinity of the coexistence region we expect the conductivity
activation energy to be a factor of

~

6
~

smaller than at the
edges of the phase diagram.

V. EXPERIMENTAL PROSPECTS
AND CONCLUSIONS

We conclude with a few brief remarks. Any
commensurability-2 system with both intermolecular and
intramolecular phonon modes has the possibility, in prin-
ciple, of having a phase diagram of the sort in Fig. 1. A
possible way to change the relative magnitudes of 3 and

3& is to apply pressure to the material. Since 3 depends
exponentially on the intermolecular spacing, while A~ is
probably not very sensitive to pressure, we expect that
pressure will tend to drive the system in the direction of

increasing A . For example, it appears that in
(MNP)o s(Phen)o 5 tetracyanoquinodimethane at ambient
pressure, can be thought of" as a half-filled band with
spinless electrons (v= 1) and A~ greater than A, . By ap-
plying pressure to this system, it may be possible to drive
it into the coexistence region. This has the possibility of
being a rather clean experiment. The difficulty is in find-
ing the very narrow coexistence region.

In contrast, there are serious worries concerning the
prospects of seeing fractionally charged solitons in a dia-
tomic polymer, as suggested in Refs. 3 —5. These models
envisage a rigid uniform background field, analogous to
b,z in Eq. (12), which is due to the presence of alternating
A and B atoms along the polymer chain. The irrationally
charged solitons in that model are analogous to our Sz-
type solitons, as they are domain walls between different
senses of the band alternation. However, defects in the
perfect alternating structure of the AB alloy appear in the
model as static (possibly charged) local defects associated
with deformations of Az. If the defect is topological in
character, it is analogous to a trapped S~-type soliton,
while if it is substitutional it is analgous to a trapped S~S ~

pair or, in other words, to a polaron. In either case, these
defects interact strongly with the mobile Sq solitons and
either bind them or tend to confine them to the region be-
tween two such defects depending on the sign of the in-
teraction with the particular defect. In either case it will
make the observation of properties associated with the
fractional charge very difficult unless the polymer is re-
markably defect free.

Finally, we note that we have ignored all quantum-
mechanical effects associated with the lattice. However,
as the soliton width increases, we expect quantum effects
to become increasingly important. Thus we expect quan-
tum effects to be largest in the coexistence region, exactly
where the irrationally charged solitons occur.
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