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antiferromagnets RbFeF4 and KFeF4
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Detailed "Fe Mossbauer studies of the static and dynamic critical behavior of the layered antifer-
romagnets RbFeF4 and KFeF4 are reported. All measurements were performed on single crystals
with the direction of the y rays perpendicular to the magnetic layers. Both systems undergo a
second-order phase transition at the Neel temperature T~——133.57(2) K for RbFeF4 and

TN ——135.79(2) K for KFeF4. Special attention was given to a careful evaluation of reliable values

for the critical indices. In the asymptotic critical region below Tz, the temperature dependence of
the hyperfine field H is well described by the power law H ccrc, where p is the static critical ex-

ponent of the order parameter, and t =1—T/T& is the reduced temperature. The following asymp-
totic values for 13 were found: p=0. 316(3) for RbFeF4 in the range 5X10 '&r &10 ' and

P=0. 151(3) for KFeF4 in the range 3.8X10 &r &5.7X10 '. These results indicate that RbFeF4
shows a three-dimensional critical behavior, in contrast to KFeF4, where the magnetic transition is

essentially two dimensional in nature. The present values for 13 disagree considerably with the

nonasymptotic values previously reported by other groups. Just above T& a characteristic line

broadening b I due to critical spin fluctuations is observed. At the critical point AI diverges as
AI ~

~

t ~, where the exponent w involves, besides two static exponents, the dynamic exponent z.
In the critical region 10 &

~

t
~

& 10, the following values for w and the corresponding values for
z were obtained: m=0. 81(6), z=2. 15(19) for RbFeF4 and m=0. 91(5), z=1.29(9) for KFeF4.
These values are compared to those predicted by the current theory of critical dynamics. At T& the
center shift and the quadrupole splitting show a pronounced anomaly that appears to be associated
with the onset of magnetic ordering.

I. INTRODUCTION

Over the past few years there has been great interest in
experimental work on critical phenomena with special em-

phasis on simple magnetic systems' with effective lattice
dimensionality d =1, 2, and 3. A fundamental question of
interest is to what extent such experiments support
theoretical predictions and how far they may contribute to
a deeper understanding of critical phenomena in simple
systems. However, such experiments demand exceptional
care to guarantee deduction of reliable critical indices. In
order to avoid erroneous results, the following precautions
should be taken into account: (i) The data should be taken
very close to the critical point Tc. (ii) The asymptotic
critical region must be determined experimentally in each
case. (iii) Temperature instabilities, temperature gra-
dients, sample inhomogeneities, and mechanical stress on
the sample should be avoided. Unfortunately, these im-
portant facts have been neglected by many experimental-
ists. For example, a large percentage of the earlier experi-
mental results' are found to be not sufficiently conclusive
to allow a direct comparison with theoretical predictions.

Precise and comprehensive Mossbauer work on critical
phenomena in three-dimensional (3D) Heisenberg fer-
romagnets has been conducted by Hohenemser and his
collaborators (see references). A critical review of mea-
surernents of the critical exponent P in 3D magnetic sys-
tems has been given by Suter and Hohenemser who have

reanalyzed experimental data for various 3D compounds.
As a result they have found that the number of accurate
values of P available in the literature is small. A detailed
Mossbauer study of the static and dynamic critical
behavior in iron has been recently published by Kobeissi.
However, not much Mossbauer work has been done on
critical phenomena in quasi-two-dimensional (2D) mag-
netic systems, especially, on critical spin dynamics, where
only a limited number of experimental results have been
reported.

The static critical behavior of the layered antiferromag-
nets of the form XFeF& (X=Rb,K,Cs) has been studied by
several authors. ' However, none of the reported values
of the critical exponent P is in agreement with theoretical
predictions for either a 2D magnetic system or a 3D mag-
netic system. The reason for this discrepancy, as we will
demonstrate in this paper, is the fact that these values for
P were determined outside the appropriate critical region.

In this work we present detailed ' Fe Mossbauer studies
of the static and dynamic critical behavior of single crys-
tals of RbFeF4 and KFeF4. In contrast to previous re-
s'.~its," we find that RbFeF4 shows a 3D critical
behavior, whereas in KFeF4 the magnetic phase transition
is essentially 2D in nature. Furthermore, in both systems
the center shift and the quadrupole splitting display an
anomalous behavior near the critical temperature that ap-
pears to be induced by the onset of magnetic ordering.

The organization of this paper is as follows. In Sec. II
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we briefly review the principal features of the theory of
critical phenomena, insofar as is relevant to the analysis
and interpretation of our measurements. A general discus-
sion of the magnetic properties of layered magnetic sys-
tems, together with the crystallographic and magnetic
structures of RbFeF4 and KFeF4 is given in Sec. III. Ex-
perimental details and preliminary results such as the in-
terpretation of Mossbauer spectra and the deduced hyper-
fine parameters are presented in Sec. IV. In Sec. V we dis-
cuss the experimental results of the static and dynamic
critical behavior of RbFeF4 and KFeF4, as well as possible
reasons for the critical anomalies in the center shift and
the quadrupole splitting observed near the transition tem-
perature. The conclusions follow in Sec. VI.

II. THEORY OF CRITICAL BEHAVIOR

When the temperature of a magnetic system approaches
the critical temperature Tz, anomalies occur in the static
and dynamic properties. These anomalies have been
characterized in terms of critical exponents. Static prop-
erties are thermodynamic quantities which are determined
by the equilibrium distribution of the spins at a given in-
stant in time. According to the static universality hy-
pothesis, the static exponents of a system with short-
range interaction depend primarily on the lattice dimen-
sionality d and the dimension n of the order parameter,
but not on the details of the interaction. The dynamic
properties, on the other hand, are quantities such as relax-
ation rates and transport coefficients, which are deter-
mined by the equations of motion. The critical dynamics
therefore depend, in addition, on conservation laws which
do not affect the static behavior. '

A. Static behavior (T & T~)

The static critical behavior of the order parameter
(spontaneous magnetization) M ( T) of a magnetic system
is characterized by the critical exponent P which is de-

fined by the asymptotic relation

where rr(t) =M(T)/M(0) is the reduced magnetization, t
is the reduced temperature, i = 1 —T/T~, and 8 is a nu-

merical constant which depends only on lattice symmetry
and spin value. For temperatures not sufficiently close to
Tc, Eq. (I) must be modified with a correction-to-scaling
term" '

(4)

B. Critical dynamics (T & T~)

Far above Tz atomic spins fluctuate with frequencies
which are too high to be observed by a Mossbauer experi-
ment. However, as T approaches T&, clusters of correlat-
ed spins form, and thus the motion of individual spins
slows down. These clusters are defined in space and time
in terms of the correlation length ( and the characteristic
lifetime 7p. At Tz, where the system orders, both quanti-
ties g and ro diverge, and the characteristic frequency of
the spin fluctuations co, goes to zero (critical slowing
down}. This phenomenon may be observed under certain
conditions by a hyperflne-interaction experiment. "' '

In theoretical treatments of critical spin fluctuations
one considers the space-time spin correlation function de-
fined by

G (r, t)=(S (r, t)S (0,0)), a=x,y, z . (5)

A more convenient physical quantity than G (r, t) itself
is the dynamic structure factor S (k, ro), which is the
space-time Fourier transform of G (r, r). In the follow-
ing we adopt the formulation of critical dynamics as
described in detail in the review of Hohenberg and Halpe-
rin. ' In this theory the dynamic correlation function

This means for t~0, P' depends on the nonuniversal
correction-to-scaling amplitude A and on the reduced tem-
perature t. From an experimental point of view, it is im-
portant to note that effective exponents also obey all the
scaling relations (e.g. , a*+2P"+y'=2), except those of
hyperscaling. "' Precise numerical values for P and 6
for 3D systems have been obtained by renormalization-
group methods. ' These values together with the exact re-
sults for the 2D Ising model are summarized in Table I.

Mossbauer spectroscopy is a very sensitive method to
study critical phenomena in magnetic solids. ' Measure-
ments of the hyperfine field H ( T) are used to probe the
spontaneous magnetization (sublattice magnetization)
M(T} in a ferromagnet (antiferromagnet). It is generally
assumed that H(T) is proportional to M(T). This is not a
trivial relation, ' because the reduced magnetization e
may deviate from the reduced hyperfine field
h =H(T}/H(0) well below Tc. However, in our case of
an Fe + ion ( S&~q), this is a rather good approximation.
Thus we may write Eq. (1) as' '

a(r) =Br~[1+Ara+O(r'a)],

where 3 is the correction-to-scaling amplitude and 6 is the
correction-to-scaling exponent. The exponent 6 is univer-
sal, whereas the amplitude 3 depends on the system.
However, recently it has been shown that the ratios among
the correction-to-scaling amplitudes for any two exponents
are universal. ' ' Experimental data which are fitted with

a pure power law rf(t)=B*t~ will yield an effective ex-
ponent P* that is related to the universal P by" '

p'= p+AE ra+0(r'a), lim p* =p .
p

d=2
Ising

d =3
Ising
XY
Heisenberg

'Le Guillou and Zinn-Justin, Ref. 14.

0.125

0.325(1)
0.346(1)
0.365(1)

0.493(7)
0.521(6)
0.550(5)

TABLE I. Critical exponent p and correction-to-scaling ex-
ponent 6 for various static universality classes (d, n).
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S (k, to) is written in the general form

S ~(k, a))=2rr[co, (k)] 'S (k)fkg(a)/to, (k)),
(6)

S (k) =k +&g~ (k(),

tu, (k)=k'0 (kg)=g *0, (kg) .

(7)

(8)

Here g~(kg), 0 (kg), and 0, (kg) are scaling func-

tions, g is the universal static exponent, and z is the
dynamic exponent. The temperature dependence of Eqs.
(6)—(8) stems from that of the correlation length g which
at Tz diverges as

where tu, (k) is the characteristic frequency of the fluc-

tuations with wave vector k, S (k) is the static structure

factor, and fk~(co/to, (k)) is the shape function of the en-

ergy line. According to static and dynamic scaling hy-

potheses, ' S (k) and co, (k) are homogeneous functions
of k and g

In an experiment, m is determined directly by a measure-
ment of ~, for T~Tg, and with the knowledge of the
static exponents g and v, the dynamic exponent z may be
extracted from the measured m. For the present work it is
convenient to express m in terms of other static exponents,
such as P, y, and v. This is easily done by using the static
scaling relations

z =— (tv +2P) =—(w +2P) .
d 1

(13)
y+2P v

According to the current theory, the static exponents are
universal within a class of systems belonging to the same
static universality class (d, n) Th. e dynamic exponent z, on
the other hand, depends, in addition, on conservation laws
satisfied by the Hamiltonian. ' Theoretical values of the
exponents z and m for antiferrornagnetic systems belong-

ing to different dynamic universality classes are listed in
Table II. A discussion of this table follows in Sec. V B.

In a Mossbauer experiment critical spin fluctuations in-

duce corresponding fluctuations in the hyperfine field,
giving rise to a line broadening AI of the Mossbauer line:

I =r,+mr, (14)

r, = —,
' I [G (O, t)/G (0,0)]dt .

This expression is easily written in terms of S (k, to):

r, ~ f d kS (k,co=0),

(10)

where t =T/Tc —1 is the reduced temperature, and v is
the universal static exponent. As a consequence Eqs. (8)

and (9) imply that the characteristic frequency cu, (k) of
the critical fluctuations with wave vector k goes to zero as

to, (k) ~ t for t ~0 (critical slowing down).
In a Mossbauer experiment one measures the spin-

autocorrelation time r, defined by the time integral"

where I and I o are the observed and natural linewidth
[full width at half maximum (FWHM)], respectively. In
order to relate AI to the spin-autocorrelation time ~„an
appropriate relaxation theory is needed. ' Here, we adopt
the theory of Bradford and Marshall who have used per-
turbation theory to calculate the Fe Mossbauer line

shape in the limit of fast electronic relaxation. In the case
of an isotropic hyperfine interaction there is one correla-
tion time r, =r, (a=x,y, z). For a single-crystal absorber
with the principal axis of the uniaxial electric field gra-
dient tensor parallel to y direction (cf. Sec. IVB), the re-
laxation spectrum consists of two asymmetric Lorentzi-
ans

(I o/2)+Cir,
A (co)-—

[co—(b, /2)]'+ [(I o/2)+C, r, ]

(r„/2)+C, r,
+——

3 [a)+(b/2)] +[(I'„/2)+C r, ]
&~ +2—~ —'g

T QC y CC

tU =v(z+2 —d —rt) .

(12a)

(12b) with

where Vk is the Brillouin-zone volume. The evaluation of
this integral is straightforward. Using the scaling form of
S (k,~=O) defined by Eqs. (6)—(8), one finds' '

(15)

TABLE II. Dynamic exponent z and exponent w for antiferromagnetic systems as predicted by current theory [after Hohenberg
and Halperin (Ref. 10)].

Dynamical model'
Static universality

class (d, n) zb u) =v(z+2 —d —q}

(3,1)

(3,1)

(3,1)

(3,3)
(2, 1)

(2, 1)

(2,3)

Conventional theory
Model A (anisotropic)
Model C (anisotropic)
Model 6 (isotropic)
Conventional theory

Model A (anisotropic)
Model G (isotropic)

'The meaning of the models (A, C, G) is explained in Ref. 10.
Numerical values for the 3D static exponents are taken from Ref. 14.

'The exponent z' is defined in Ref. 21.
Reference 21.

2 —g = 1.968
2 —q+z' = 1.993'

2+a/v= 2.174
d/2= 1.5

2 —g = 1.75
1.4 —2.2

d/2=—1

0.590
0.606
0.720
0.329
1.5

1.15—1.95
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and

C —
(
—A —AA ——A )I

3~2 4 g 2 g e 4

S(S+1)
C2 ——

3A
( —,A + —,A A, + —,A, ),

III. LAYERED MAGNETIC SYSTEMS

A weakly anisotropic Heisenberg system consisting of
coupled antiferromagnetic layers of localized spins S may
be described by the Hamiltonian

XP z

w= —2J g s, s, —2J' g s, .s, gp, ,g H„'s,',—(-)' '
l

(18)

where J and J' are the intralayer and interlayer exchange
interactions, respectively, and Hz is an internal staggered
anisotropic field which aligns the spins along the z axis.
For a system of quasi-isolated inagnetic layers

~

J'/J
~

&& 1. Mermin and Wagner have proved
rigorously that the ideal 2D isotropic Heisenberg system
cannot be ordered at nonzero temperatures. However,
Stanley and Kaplan have shown that a new kind of
phase transition to a state with infinite magnetic suscepti-
bility, but no long-range order, exists if the spin-
correlation function [Eq. (5)] in two dimensions decreases
with spin separation r more slowly than r . The corre-
sponding transition temperature TsK (Stanley-Kaplan
temperature) is given within a few percent by

where Ag and A, are the hyperfine coupling constants of
the ground state and the excited state, respectively, and 5
is the quadrupole splitting. Note that C& and C2 are
roughly the same for Fe. Equation (15) is only valid if
the following assumptions are made: (i) The fluctuations
are isotropic. (ii) The correlation function G ( r, t) is ex-

ponential. ' (iii) The inequalities r, coL «1, r, h «1,
~,4I «1, and 4I /mL « I hold, where ~L is the nuclear
Larmor frequency. All these inequalities are fulfilled for
the cases investigated in this paper. Furthermore, we as-
sume that the fluctuations are isotropic. This is of course
not a trivial assumption as in our case of a weakly aniso-
tropic Heisenberg system (cf. Sec. II). From Eqs. (12) and
(15), it follows that for t~O the average excess linewidth
b I (FWHM) of the two quadrupole lines diverges as

b, I =(C, +C, )r, =Dt

where D is a numerical constant.
In contrast to neutron scattering, ' ' the Mossbauer ef-

fect probes an integral property of the dynamic structure

factor S (k,O) [Eq. (11)]. As T~Tc, S (k,co) becomes
a sharp peak near k =0. Thus the integrand in Eq. (11) is

mainly weighted by small k values' that are usually only
accessible in a high-resolution neutron scattering experi-
ment. The Mossbauer effect therefore offers an alterna-
tive method to study critical spin dynamics in magnetic
systems in the limit T ~Tc.

TABLE III. Summary of various magnetic parameters for
RbFeF4 and KFeF4. The parameters are defined in the text.

Parameter KFeF4RbFeF4

TN (K)
J/kg (K)

f
J'/J

/

TN /Ts
TN lee~
50

133.57{2)
—11.3(9)'

6.5(5)y 10—'
1p

—3 1p
—2b

1.19
0.51
0.163'

135.79(2)
—13.3(8)'

5.0(5)X 10-"
=10-4b

1.03
0.44
0.167'

where z is the coordination number in the plane.
Experimentally, such quasi-two-dimensional systems

have been found whose long-range ordering occurs at tem-
peratures which agree rather well with the Stanley-Kaplan
temperature TsK. ' In fact, any deviation from the ideal
isotropic 2D system such as a small anisotropy and/or in-
terlayer exchange, or even a finite sample size, favors the
occurrence of long-range order within the magnetic layers
at nonzero temperatures. The transition temperature Tz
of a system of weakly coupled magnetic layers is expected
to be very close to the Stanley-Kaplan temperature TsK if
the anisotropic field Hz and the interlayer exchange field
Hz are much smaller than the intralayer exchange field
Hz. Lines ' has shown that Tc-TsK if both a=H&/HE
and

~

J'/J
~

are of the order 10 to 10 . Thus experi-
mental values of T& are expected to be shifted upwards
with respect to Tsz with increasing anisotropy e and/or
relative coupling strength

~

J'/J ~. Here one should also
note the work of Binder and Landau who have studied
the 2D anisotropic Heisenberg model with a varying from
0.005 to 1 (a =0, Heisenberg; a= 1, Ising) using a Monte
Carlo technique. Whether the order parameter of a sys-
tem of weakly coupled magnetic layers shows a 2D Ising-
type (p= —, ) or a 3D (p= —,) critical behavior depends on
the relative strength of the anisotropy energy gp&H& and
the interlayer exchange J'. If gpqHq »

~

J'~, a 2D
Ising-type critical behavior is expected. However, when
Tc is approached closely enough, the interlayer coupling
J' may be ome important, and thus the phase transition
will be governed by the true 3D properties of the system
(lattice dimensionality crossover). '

In the following section the crystallographic and mag-
netic structures of the two layered antiferromagnets
RbFeF4 and KFeF4 investigated in this paper are dis-
cussed. For comparison, various relevant magnetic pa-
rameters, defined and discussed in the text, are summa-
rized in Table III. X-ray diffraction studies have
shown that the crystal structure of both antiferromagnets
is orthorhombic. The magnetic Fe + (S = —, ) ions are in

the center of slightly tilted and distorted FeF6 octahedra,
forming sheets of magnetic layers that are separated by
nonmagnetic layers of Rb+ and K+ ions, respectively.
The idealized crystallographic structures without distor-
tion and tilting are shown in Fig. 1. It is known from
neutron scattering experiments ' that in the ordered state
the magnetic moments in both systems are aligned along

TsK —5 (2 —1)[2S(S+1)—1]J/k~, S & —, (19)
'From Ref. 7.
From Ref. 1.



HUGO KELLER AND ILIJA M. SAVIC

the c axis. This is in agreement with previous and the
present Mossbauer results. ' The coupling J within
the layers is antiferromagnetic and is roughly the same for
both compounds (Table III). However, there is an essen-
tial difference between the two compounds concerning the
magnetic interaction between the layers. In contrast to
RbFeF4, the adjacent magnetic layers in KFeF4 are shifted
half a lattice constant with respect to each other ' lead-
ing to a "staggered" magnetic structure (Fig. 1). Since the
interaction within the layers is antiferromagnetic this con-
figuration causes a cancellation of the magnetic interac-
tion between neighboring layers. Consequently, the in-
teraction can take place only via the next-nearest planes,
leading to a much weaker interlayer interaction than for
RbFeF4. In fact, the ratio of exchange couplings

~

J'/J
~

is about 10—100 times smaller for KFeF4 than for RbFeF4
(Table III). The interlayer coupling in RbFeF4 is purely
antiferromagnetic, whereas ferromagnetic as well as anti-
ferromagnetic coupling between second-neighbor layers
has been observed in KFeF4 by Heger and Geller. They
conclude that this is most likely due to a magnetic domain
structure present in the sample. An inspection of Table
III shows that the intralayer exchange interactions for
both compounds are only weakly anisotropic, a=5)(10
which is typical for layered antiferromagnets with mag-
netic Fe'+ or Mn'-+ ions ( Sqqq).

' The experimental tran-
sition temperature T~ for KFeF4 is very close to the cor-
responding Stanley-Kaplan temperature TsK [Eq. (19)],
whereas for RbFeF4 the experimental Tz is about 20%%uo

higher than TsK due to the stronger coupling between

neighboring layers. In addition, TsK may be compared to
the Curie-Weiss temperature'

IV. EXPERIMENTAL DETAILS AND RESULTS

A. Experimental details

All Mossbauer measurements were performed with
single-crystal samples of RbFeF4 and KFeF4 with the y
direction perpendicular to the magnetic layers. Single-
crystal samples were used with typical areas of 20 mm
and rather large effective thickness (about 7 mg Fe/cm ).
The samples were mounted in vacuum-tight Plexiglas
holders surrounded with a thin foil of pure aluminum to
guarantee good temperature stability and homogeneity in
the sample. Measurements above 80 K were taken in a
cold-finger cryostat with a silicon diode temperature sen-
sor (Lake Shore Cryotronics, Inc.). A four-point method,
with an accurate 10-p,A constant-current source and a
high-precision reference voltage, was used to measure and
stabilize the sample temperature. The temperature control
unit was itself temperature stabilized to better than +0.2
K. During the measurements the sample temperature was
recorded constantly on a chart recorder. With this ar-
rangement, a relative long-term temperature stability (24
h) of better than +5 mK was obtained. Below 80 K, the
measurements were performed in a continuous-flow heli-
um cryostat. In this case the sample temperature was sta-
bilized to better than +0. 1 K with the use of the same
type of silicon diode sensor. The absolute temperature ac-
curacy was estimated to be +0.5 K for all measurements.
The spectra were taken with a conventional constant ac-
celeration spectrometer with a 25-mCi CoRh source.
The velocity scale was calibrated with a laser interferome-
ter and standard absorbers. Even after several cooling cy-
cles the same spectra within errors were obtained.

ecw= —', zS(S+ 1)J/ks . (20)

For z =4 and S = —, it follows that TsK /Ocw-0. 42. This
theoretical value is to be compared with the experimental
values Tz/O&w for RbFeF4 and KFeF4 listed in Table
III. All these factors seem to indicate that KFeF& is a
better candidate for a quasi-2D magnetic system than

RbFeF&. Indeed, previous neutron scattering studies of
Heger and Geller show evidence for a 2D nature of mag-
netic ordering in KFeF4 near Tz. The experimental data
presented in this paper strongly corroborate this conjecture
(cf. Sec. V).

~3Rb (B K

Fe

FIG. l. Idealized crystal structures of RbFeF4 and KFeF4.
For clarity only a few FeF6 octahedra are shown, without distor-
tion and tilting.

B. Results

Typical single-crystal spectra of RbFeF4 and KFeF4 at
various temperatures are shown in Figs. 2—4. In all fig-
ures the solid lines correspond to best fits through the data
points. Above the Neel temperature T& the spectra show
pure asymmetric quadrupole lines. In the antiferromag-
netic phase, complex spectra with mixed electric quadru-
pole and magnetic dipole interactions are observed. These
spectra were analyzed using a Hamiltonian fitting pro-
cedure that includes s,.lf-absorption corrections for thick
crystals. The corresponding least-squares fits yield the
following parameters: the hyperfine field H, the quadru-
pole splitting b, , the center shift 5 (relative to metallic
iron), the linewidth I (FWHM), the asymmetry parameter

q of the electric-field-gradient tensor (EFG), the polar an-

gle 0 of 0 in the EFG principal-axis system, and the angle

0& between the wave vector k of the y ray and the princi-
pal axis V of the EFG tensor. The paramagnetic spectra
were analyzed with two Lorentzians taking self-absorption
into account. Parts of our results are already published in
a short form. ' '" Some relevant Mossbauer parameters
obtained for RbFeF4 and KFeF4 are summarized in Table
IV. The hyperfine parameters of the two compounds are
very similar and are essentially in agreement with earlier
measurements. " The angle 9& between the principal
component V of the axially symmetric EFG tensor
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FIG. 2. Mossbauer spectra of single-crystal RbFeF4 taken at

various temperatures below T~.
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FIG. 4.. Mossbauer spectra of single-crystal KFeF4 taken near
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FIG. 3. Mossbauer spectra of single-crystal RbFeF4 taken in

the critical region above T~ ——133.57 K. The reduced tempera-
ture is given as t = T/Tz —1.

(g=0) and the y-ray beam is comparable with the tilting
angle /=15' of the slightly distorted FeF octahedra. "
Furthermore, the apparent relation p-g -g, where g is

e Ia. '

the polar angle between V and the hyperfine field H, im-
plies that in the ordered state the magnetic moments in
both compounds are aligned perpendicular to the layers.
This finding is in accordance with previous neutron

5, 6data ' and can be seen directly in the low-temperature
spectra (Fig. 2) where the lines corresponding to b,m =0
are almost completely suppressed. The orientation of V
with respect to the y-ray direction can also be determined
in the paramagnetic phase from the area ratios of the
asymmetric quadrupole lines (Figs. 3 and 4). The corre-
sponding values for 0& are in agreement with those ob-
tained from the low-temperature spectra (Table IV).
Moreover, V~ is negative because the more intense lines
(b,m =+1)are at lower velocities.

The temperature dependence of the reduced hyperfine
field H(T)/H(0) is shown in Fig. 5. The extrapolated
values for H(0) are 537(4) kG for RbFeF4 and 540(4) kG
for KFeF4. These values are typical for trivalent iron

5(S = —,). In the following we assume that H(T) is propor-
tional to the sublattice magnetization (cf. Sec. II A).
Eibschutz et al. have shown that for T/T~ &0.5 the hy-
perfine field H (T) of both compounds is well described by
a simple noninteracting spin-wave theory. This model
yields rather large values for the zero-point spin deviation
Ao-0. 16 (Table III), which is typical for layered antifer-
romagnets. ' As shown in Fig. 5 the two reduced sublat-
tice magnetization curves are almost identical for
T/T~ &0.5. In the critical region, however, the two
curves behave quite differently (see inset in Fig. 5). At the
magnetic phase transition a characteristic line broadening
bI due to critical spin fluctuations is observed (critical
slowing down). A detailed discussion of the static critical
behavior of the order parameter H(T)/H(0) and of the
critical spin dynamics above Tz is given in Sec. V.

The temperature dependence of the center shift 6 and
the quadrupole splitting 6 are represented in Figs. 6 and 7,
respectively. The experimental values for 6 are typical for
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TABLE IV. Summary of various Mossbauer parameters for RbFeF4 and KFeF4 at three typical temperatures. Parameters are de-
fined in the text.

H (kG)
6 (mm/s)
6 (mm/s)

7l

0 (deg)

8~ (deg)
I (mm/s)'

0 K'

537(4)
—1.70(2)

0.551(5)
0.00(5)
16(1)
15(1)
0.202(2)

RbFeF4
90 K

427(2)
—1.71(2)

0.545(2)
0.00(5)
16.7(5)
15.5(5)
0.203(2)

296 K

—1.676(2)
0.447(2)

17(2)
0.201(2)

0 K'

540(4)
—1.47(2)

0.560(5)
0.00(5)
14(1)
11(1)
0.202(2)

KFeF4
90 K

451(2)
—1.47(2)

0.557(2)
0.00(5)
14.1(5)
11.2(5)
0.204(2)

296 K

—1.444(3)
0.455(2)

13(2)
0. 199(2)

'Extrapolated values to 0 K.
Relative to a-Fe.

'FTHM.

high-spin Fe'+, while the values for 5 are rather large for
trivalent fluorides. Note that both quantities 5 and 6
display an anomalous behavior near the magnetic transi-
tion. Possible reasons for these anomalies are discussed in
Sec. V.

V. EXPERIMENTAL CRITICAL BEHAVIOR

asymptotic critical region (usually defined by t &10 ).i6

In addition, the critical region depends on the particular
magnetic system and thus has to be determined experi-
mentally for each case.

In this work a systematic analysis of the data near Tz
was made following the procedure described by
Hohenemser and co-workers ': In this procedure weight-

A. Static critical exponent P (T & T~)

Under the assumption that the hyperfine field H(T) is
proportional to the order parameter cr( T) in the critical re-
gion, the evaluation of the critical exponent P from
hyperfine-field data using Eq. (4) is straightforward (cf.
Sec. II A). However, Eq. (4) only leads to reliable values
for P if the analysis is based on data taken within the
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FIG. 5. Reduced hyperfine field H(T)/H(0) as a function of
the reduced temperature T/T~. The critical region is expanded
in the inset, where the solid and the dashed lines correspond to
fits to the power law given by Eq. (4).
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FIG. 6. Center shift 5 (relative to metallic iron) as a function
of temperature. The solid lines correspond to fits to the Debye
model described in the text. An expansion near T~ is given in
the inset. The dashed line is meant to guide the eye.
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cr( T)= [1—sinh (2J/k~ T)]'~ (21)

Gaussian-distributed errors were generated with a
random-number procedure. These errors were comparable
to the experimental errors of our data presented in this pa-
per. In order to allow a direct comparison with the exper-
imental data a similar temperature range (t;„=2X10 )

and a comparable density of data points were used for the
simulations. The critical temperature was chosen to be
Tc 136 K. At least t——en data points were used in the fit-
ting procedure. The resulting variations of P', T~, and
B' as a function of t,„are shown in Fig. 8. In the case
of a single power law, one can clearly observe the appear-
ance of the asymptotic critical behavior below t=10
where all the effective critical parameters remain constant
and agree within errors with the universal values. In other
words, for temperatures t & 10 a single power law yields
reliable results. For t & 10, however, one must consider
the correction-to-scaling term given by Eq. (2) in the

ed least-squares fits to the power law given by Eq. (4) with
the free parameters B, T~, and p are performed for vari-
ous temperature regions defined by the maximum reduced
temperature t ». Effective values B, T~, and p' are
determined as a function of t,„by successively omitting
data points. This procedure provides an upper limit for
the asymptotic critical region where all three quantities
B', Tt'v, and p' should remain constant.

The self-consistency of this method was tested on
computer-simulated data based on the exact solution of
the reduced magnetization cr(T) for the 2D Ising model

[S= —,
' (Ref. 37)]:

1.20—
g Q'QQQ Q QQ $PQ Q Q Pppo

~7
~yP

Oyy
B=1.222

I I I I I Il I I

10
t max

FIG. 8. Variation of critical parameters P*, Tc, and 8 with
maximum reduced temperature t,„as obtained for computer
simulated data for the 2D Ising model (see text). Solid lines
refer to the true asymptotic values P=0. 125, T&= 136 K, and
B =1.222. Closed circles correspond to fits to a single power
law [Eq. (1)], whereas open circles are obtained from fits to a
power law including a correction-to-scaling term [Eq. (2)]. Note
the appearance of the asymptotic critical region (t,„=10 2),

~here the correction-to-scaling becomes negligibly small.

I I I I I II

10 1

analysis in order to obtain reasonable values for the criti-
cal parameters. Such an analysis for the 2D Ising model
with fixed values Z=1 (Table I) and 3 = —0.2255 is
shown in Fig. 8. Indeed, the improvement of the results is
remarkable as long as correction-to-scaling is appreciable.
In the critical region (t &10 ), however, the correction
term becomes negligibly small, and the results agree,
within errors, with those obtained for the pure power law
(Fig. 8). Note that for reduced temperatures t & 0 effective
exponents p' are obtained that are slightly smaller than
the universal p=0. 125 (solid line in Fig. 8). This differ-
ence is predicted by Eq. (3) which for the 2D Ising model
is given as p'=p —0.2255t+O(t ) The thr.ee indepen-
dent quantities p', Tc, and B' are strongly intercorrelat-
ed, but in the critical region they all converge to the
correct asymptotic values.

The hyperfine-field data for RbFeF4 and KFeF4 were
analyzed using the procedure described above. At least
thirteen data points were used in the analysis for RbFeF4
and eight for KFeF4 The var.iation of the effective criti-
cal parameters with t,„as obtained from the single
power law are shown in Figs. 9 and 10 for RbFeF4 and
KFeF4, respectively. Note that the critical region for
RbFeF4 starts at t=10, whereas for KFeF4 the asymp-
totic region extends up to almost t =10 '. The critical
parameters as obtained from the fiat regions in Figs. 9 and
10 (dashed lines) together with the previous results of oth-
er groups are listed in Table V. A log-log plot of the
hyperfine-field data, as well as the theoretical prediction
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FIG. 9. Variation of the effective critical parameters P, Tg,
and B for RbFeF4 with maximum reduced temperature t,„as
obtained from fits to a single power law [Eq. (4)]. The dashed
lines refer to the asymptotic values of P =P, Tv-T~, and
B =B.

for the 2D Ising model (S = —, ), are illustrated in Fig. 11.
Best fits to the single power law [Eq. (4)] are also shown
in the inset of Fig. 5.

The present value P=0.316(3) for RbFeF4 clearly indi-
cates that at temperatures close to T~ RbFeF4 behaves
more like a 3D magnetic system (p= —,) than a 2D mag-

netic system (p= —,') (Table I). This is because the ratio

~

J'/J
~

in Eq. (18) is not sufficiently small to allow 2D
magnetic ordering within the layers (cf. Sec. III). RbFeF4
has a small anisotropy parameter, a=6.5X10 (Table

10

tmax

FIG. 10. Variation of the effective critical parameters p
Tz, and B for KFeF4 with maximum reduced temperature t,„
as obtained from fits to a single power law [Eq. (4)]. The dashed
lines refer to the asymptotic values of P =P, T&=Tv, and
B*=B.

III), and therefore one would expect a 3D Heisenberg ex-
ponent, p=0.365 (Table I). The experimental value
p=0. 316(3), however, is closer to p=0. 325 predicted for
the 3D Ising model (Table I). Note that a quite similar ex-
ponent p=0.316(8), 6X 10 & t & 5 X 10, has been
found for the highly isotropic 3D Heisenberg antifer-
romagnet RbMnF3 (a=5 X 10 ).

For KFeF4, on the other hand, a critical exponent

TABLE V. Static critical parameters for RbFeF4 and KFeF4.

RbFeF4 0.245(5)
0.265(5)
0.249(2)
0.316(3)

Tp (K)

133.40(5)
133.8
133.08(6)
133.568(5)

1.18(1)
?

1.05{5)
1.31(6)

Range of t

10 &t &6X10
? &t &6X10

10 &t &6X10
5X10 &t &10

Reference

Eibschutz et a1.'
Rush et al. b

This work'
This work'

KFeF4 0.182(2)
0.209(8)
0.185(5)
0.185{4)
0.161(3)
0.151{3)

141.40{2)
141.51(5)
137.2(1)
136.3(1)
135.82(2)
135.786(6)

1.00
1.12
0.99(1)
1.00(1)
0.93(2)
0.91(2)

2X10 &t &3.6X10
2X10-'& t &4X10-'
10 &t &2.8X10
10 &t &2.7X10

2.4 X 10 & t & 1.2 X 10
3.8X10 "&t &5.7X10

Heger and Ge/lerd

Heger and Geller"
Eibschutz et al. '
This work
This work'
This work

'Reference 4.
Reference 8.

'See also Refs. 17 and 35.
"Reference 6.
'Reference 5.
See also Ref. 35.
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FIG. 11. Plot of the reduced hyperfine f&eld H(T)/H(0) as a

function of the reduced temperature t =1—T/T&. The slopes
of the straight lines determine the critical exponents P=0.316(3)
and P=0. 151(3) for RbFeF, and KFeF4, respectively. For com-

parison, the exact solution for the 2D Ising model (p=0. 125) is

also shown.

p=0. 151(3) was found which is close to the exact value
p=0. 125 for the 2D Ising model (Table I). Thus, in con-
trast to RbFeF4, the antiferromagnetic phase transition in

KFeF4 is truly 2D in nature as expected from the argu-
ments made in Sec. III. In fact, the experimental p for
KFeF4 is similar to those found for other anisotropic 2D
Heisenberg antiferromagnets such as K2NiF4
[P=0.138(4)], KqMnF~ [P=0.15(1)], and RbzMnF4
[P=0.16(1)], or for the 2D XY antiferromagnet
(CH3NH3)2FeC14 [p=0. 146(5)], to give only a few ex-
amples. '

The discrepancy between the present values for p and
the previous values listed in Table V is striking. This is
because the latter ones are nonasymptotic values deter-
mined outside the appropriate critical region and are
therefore inconclusive. Similar results have been reported
for various 3D magnetic systems and for the 2D antifer-
romagnet (CH3NH3)2FeC14. In general, it is more diffi-
cult to measure p for a 2D system where the order param-
eter near T& is a much steeper function than for a 3D sys-
tern (see inset, Fig. 5). Thus great care should be taken in

evaluating critical indices in 2D systems. Note that for
temperatures outside the critical region the present data
yield nonasymptotic values for p that are in agreement
with those reported previously (Table V), except for the
values of Heger and Geller for KFeF4.

Another point of interest is that all effective critical pa-
rameters p', T~, and 8' for KFeF4 decrease as t,„goes
to zero (Fig. 10), in contrast to RbFeF4 (Fig. 9) and the

computer simulations for the 2D Ising model (Fig. 8). In
addition, the normalization factor 8 =0.91(2) for KFeF4
is considerably smaller than 8=1.22 for the 2D Ising
model. Values for 8 & 1 have been found for a number of
"quasi"-2D magnetic systems. ' ' The reason for this
unusual behavior of the critical parameters is evident in
Fig. 11. At low temperatures, T/Tv &0.5, the magnetiza-
tion curves for RbFeF4 and KFeF4 are very similar (see
also Fig. 5). A probable explanation is that at low tem-
peratures the fluctuations of the order parameter are too
small to destroy the correlations between the layers, even
in the case of KFeF4 where the interlayer coupling J' is
much smaller than for RbFeF4 (cf. Sec. III). With in-
creasing temperature, however, the fluctuations become
increasingly more important in KFeF4. Finally, close to
Tz the 3D correlations are weak enough so that the oc-
currence of the phase transition is mainly caused by the
2D properties of the system (Fig. 11). This explanation is
consistent with the neutron scattering results of Heger and
Geller. In other words, the order parameter in KFeF4
shows a crossover from 3D to 2D, in contrast to RbFeF4
which exhibits a 3D critical behavior due to the much
stronger coupling between the layers. A similar crossover
effect has been observed in the single-layer structure
(CH3NH3)2FeC14, and even more clearly in the double-
layer structure K3Mn2F7, but no explicit explanation has
been given. This crossover phenomenon is most likely the
reason for the unusual behavior of the effective critical pa-
rameters observed in Fig. 10. Moreover, the fact that for
a large number of "quasi"-2D magnetic systems, ' KFeF4
included, the "critical region" extends up to t=10 ' is
probably just a consequence of this effect. Note that in
contrast to this observation the critical region for the 2D
Ising model starts at about t=10 (see Fig. 8). However,
in order to get a more quantitative picture of this
phenomenon, an adequate theory would be needed. To
our knowledge there is currently no theory for such an ef-
fect.

B. Critical spin fluctuations (T & T~)

Just above Tz a characteristic line broadening AI of
the quadrupole lines due to critical spin fluctuations is ob-
served. Typical Mossbauer spectra of RbFeF4 taken in the
critical region above Tz are shown in Fig. 3. The excess
linewidth ht was derived by subtracting I o from the ex-
perimental linewidth I [Eq. (14)], where I o is the average
linewidth as obtained from several spectra well above Tz.
The values I O=0.201(2) mm/s for RbFeF4 and
I n ——0. 197(2) mm/s for KFeF& are comparable to the
source linewidfh I 0 ——0. 198 mm/s. Near Tq the critical
line broadening AI is well described by the power law
given in Eq. (17). The linewidth data of RbFeF4 and
KFeF4 were fitted to this power law with D, Tv, and w as
free parameters. The corresponding results are summa-
rized in Table VI, and a log-log plot of the data near Tz is
shown in Fig. 12. With the use of Eqs. (16) and (17), the
excess linewidth is related to the spin auto-correlation time

r, (s)=2X 10 ' AI (mm/s) (see right-hand scale of Fig.
12). The experimental value for the exponent w =0.81(6)
in RbFeF& is somewhat larger than those obtained for
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RbFeF4
KFeF4

0.81(6)'
0.91{5)"

133.577(5)'
135.797(6)

2. 15(19}
1.34(16)'
1.24(6)

TABLE VI. Dynamic critical parameters for RbFeF4 and KFeF4.

Z Tp;(K) D {mm/s}

(8, 3+3.2) x 10
{4.7+1.2) y10-'

Range of t

10 &t &10
10 &t &10

'See also Ref. 35.
Equation (13) with v=0. 67(5).

'Equation (13) with v=0.9(1}.
Equation (13) with y+2P=1.95(5}.

various 3D Heisenberg ferromagnets [w=0.6—0.7 (Ref.
20)] and for the 3D uniaxial antiferromagnet FeFq
[w =0.67(2)]. On the other hand, the value w =0.91(5)
for KFeF4 is in agreement with w =0.91(46) obtained for
the 2D XY antiferromagnet (CH3NH3)2FeClq' , the latter
value, however, has a quite large error. "

It is of interest to relate the exponent m to the dynamic
exponent z. According to Eqs. (12) and (13), this relation
involves two static exponents in addition to m. Aside
from the present values of P (Table V}, to our knowledge
no other static exponents have yet been determined. Re-
liable values for other static exponents such as v and }
would be desirable. Nevertheless, a quantitative estima-
tion of z is possible. A reasonable value for the critical ex-
ponent v in 3D systems is v=0. 67(5), based on experimen-
tal' and theoretical work. ' Experimentally, values of
v=0. 9 (v=1 for 2D Ising model) have been found for
various anisotropic 2D Heisenberg anti ferromagnets.
We therefore assume that v=0.9(1) is also a good value
for KFeF4. Another experimental fact is that the scaling

I I I I 1 I I
[

-lO i

( 1 I I I I I I

Io

T/T~-I

FIG. 12. Plot of the line broadening AI (FWHM) and corre-
sponding spin-autocorrelation time v, {right-hand scale} as a
function of the reduced temperature t = T/T~ —1 (critical slow-

ing down). The slopes of the straight lines determine the critical
exponents w =0.81(6) and w =0.91(5) for RbFeF4 and KFeF4,
respectively.

relation y+2P=2 —a = 1.95(5) holds within error for dif-
ferent 2D magnetic systems. Adopting Eq. (13) and tak-

ing the assumptions made above into account, the values
of z listed in Table VI are obtained. As expected there is a
significant difference between the critical indices z for the
two compounds. Thus the critical dynamics also reflect
the different nature of the critical behavior of the two
magnetic systems. One must compare the experimental
values of w and z with those predicted by theory, given in

Table II.
The value of z =2. 15(19) for RbFeF4 compares well

with z=2 predicted for 3D anisotropic antiferromagnets
(models A and C}, but differs considerably from z =1.5
for an isotropic system (model G). This finding is con-
sistent with the Ising-type static exponent P=0.316
(d =3, n = 1) discussed in Sec. V A. An anisotropic
Heisenberg antiferromagnet which belongs to the static
universality class (d =3, n =1) is expected to have the
same dynamic critical properties as model C (Ref. 10).
Indeed, our experimental values for w and z show best
agreement with the theoretical predictions for model C
(Tables II and VI). Although the present value of z is only

slightly larger than the conventional value z =2—g, our
results seem to indicate a deviation from conventional

theory. ' However, the accuracy of z is insufficient at
present to draw definite conclusions.

The two values of z obtained for KFeF4 differ slightly
from one another (Table VI). This is because the two re-

sults are based on different assumptions for the static ex-

ponents. For the following discussion we take the average
value z =1.29(9) as a reasonable estimation of z for
KFeF4. This value lies between the conventional value
z =1.75 and z=1 predicted for a 2D isotropic antifer-
romagnet (Table II). A similar value z =1.21(10) was ob-

tained for the 2D Ising-type antiferromagnet R12CoF4 by
means of ultrasonic attenuation studies. However, re-
cent high-resolution inelastic neutron scattering investiga-
tions of Rb2CoF4 yield z =1.69(5) which is close to the
conventional value z =1.75 (Table II). The reason for
the different values of z is not clear. One should note,
however, that in contrast to the neutron measurements,
crucial assumptions were made to deduce z from the ul-

trasonic data. ' ' Recently, Mazenko and Valls ' have
pointed out that all the current theoretical methods for
determining z for model A [n =1, d =2 (Ref. 10}]are in-

conclusive, although a particular model gives reliable stat-
ic exponents. As a consequence, the values of z available
in the literature ' vary over a wide range between 1.4 and
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2.2 (Table II). According to these authors, this discrepan-

cy seems to be associated with the existence of a dynamic
critical region much narrower than the static critical re-

gion. An evaluation of z in this narrow dynamic critical
region is problematic, but outside the asymptotic region
one expects dynamic scaling with a conventional value of
z. ' Here the question arises: Is there a "crossover" in the
exponent w (and corresponding z) for KFeF4 as T goes to
lz? A detailed investigation of this question is in pro-
gress. In addition, it is interesting to note that a quite
similar value of z =1.22(47) is also obtained for the 2D
planar antiferromagnet (CH, NH3)2FeC14 with

tc =0.91(46), /=0. 146(5), and y=1.67(3). ' Further
experimental and theoretical work is still required to get a
deeper understanding on critical dynamics in 2D magnetic
systems.

C. Center shift and quadrupole splitting

The temperature dependence of the center shift 5 is
shown in Fig. 6. At the magnetic phase transition a no-

ticeable anomaly in 5 is observed for both compounds. A
quite similar observation has been reported previously for
KFeF4 by Heger and Geller, but no explanation has been
given.

The center shift 5 is a sum of two different contribu-
tions:

5(T}=5is(T)+5soD(T) . (22)

The isomer shift 5~s is proportional to the difference of the
total electron charge density at the Mossbauer nucleus be-
tween source and absorber and is in general only weakly
temperature dependent. A weak temperature dependence
of 5is may arise through the effect of thermal expansion
on the electron density at the nucleus. At a magnetic
phase transition, however, 5~s may change considerably
when the transition is associated with a rearrangement of
the electron charge distribution. The second-order
Doppler shift 5soD, on the other hand, is a relativistic ef-
fect that is due to the thermal motion of the Mossbauer
nucleus in the lattice. In the Debye model approximation
5sQD (in velocity units) is simply given by

SD/T
5soD( T) = —(9k&SD/16mc) 1+8( T/SD ) x (e"—1) 'dx

0
(23)

According to the theory of Bashkirov and Selyutin, the
Debye temperature 8D of a magnetically ordered solid de-

pends on the state of magnetization,

Sg)(T)=SD[l+B roc(T)) 0&BO & 1 (24)

where 8D is the paramagnetic Debye temperature, Bo is a
numerical coefficient, and cr(T) is the reduced (sublattice)
magnetization. In the critical region just below Tz one
may write for Sn [cf. Eq. (1)]

SD(t)=8@(1+C()t )', 0&CO &2.5
0

(25)

where Co is a numerical constant, t =1—T/T~ is the re-
duced temperature, and P is the critical exponent of the
order parameter. Thus at Tlv the thermal shift 5soD may
display an anomalous behavior which according to Eq.
(25) should in principle be more pronounced for a 2D
magnetic system (P= —,') than for a 3D magnetic system

(P= —, ). Whether such an anomaly is observable or not de-

pends crucially on the ratio 8D /Tz. In the high-
temperature limit (Ttt &SD) 5soD is almost independent
of SD, and therefore the effect is in general too small to be
measured. This has been confirmed in the case of metallic
iron (8D/Tc-0. 4)." For T~ & SD, however, the effect is
observable, because in this temperature region 5soD is very
sensitive to 8D. Experimentally, a weak indication of this
effect has been found in FeF3 (Sn/TQ 1.4). To illus-
trate this effect, a theoretical calculation of 5soD based on
Eqs. (23) and (24) for SD ——450 K and T~ ——135 K is
represented in Fig. 13. For comparison the 2D Ising
model (S = —,) and the mean-field approximation (MFA)
(S = —, ) were used for the reduced sublattice magnetization
o(T). Note that for the 2D Ising model there is a remark-
able anomaly in 5sQD at T&, even for Bo——0. 1, while for

i

the MFA model only a kink in 5sQD is observed. This is
due to fact that close to the transition temperature 8D
varies more rapidly for the 2D Ising model (P= —,

'
} than

for the mean-field approximation (P= —,} as shown in Fig.
13. In an experiment one measures the total energy shift
5, and in most cases a separation of 5is and 5soD is diffi-
cult. That means an anomaly in 5 implies either a change
in 5qs or in 5soD, or even a combination of both. Assum-
ing that the effect is only due to 5soD, and that 5is is tem-
perature independent, one may try to use the
magnetization-dependent Debye model to describe this

B;-

B;—

B;-0.

510

4g0 Bo 0'2

m 470
B.-01

1
i r «012

---- MFA(S='/, )
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—0.14

E
—0.15—E
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FIG. 13. Theoretical calculation of the thermal shift 5soD,
based on the magnetization-dependent Debye model described in
the text. The calculations were made for T~ ——135 K, 8D ——450
K and different values of Bo. For the reduced sublattice mag-
netization the 2D Ising model (solid lines) and the mean-field ap-
proximation (dashed line) were used. The corresponding tem-

perature variations of the Debye temperature 8D are shown in

the inset.
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phenomenon. However, an attempt to fit the experimental
data with this simple model failed. The best fits (exclud-

iny data points near T~) were obtained for 80 ——0 and
8D=495(50) K for RbFeFg and 8D ——470(50) K for
KFeF4 (solid curves in Fig. 6). Therefore, we may con-
clude that the magnetization-dependent Debye model is
insufficient to explain the critical anomaly in 5.

It is known that in magnetic systems with strong
magnon-phonon coupling critical spin fluctuations below

Tc may considerably affect the phonon spectrum. As a
consequence a softening of the phonon spectrum at Tc
occurs which may have an influence on the recoil-free
fraction f and the thermal shift 5soD. In the magneto-
strictive ferromagnet DyFe2 Shechter et al. have ob-
served large dips in the f factor and the center shift 5 near

Tc, probably arising from this effect, Some evidence for
such a phenomenon is also found in the present work, al-

though the effect is much smaller. The onset of the
anomalous behavior in 5 (Fig. 6) appears to be associated
with the observed line broadening due to critical fluctua-
tions below Tz, indicating a correlation between these two
phenomena. On the other hand, the anomaly in 6 could be
due as well to a magnetically induced change in the isomer
shift 6is as mentioned above.

The temperature dependence of the quadrupole splitting
6 is represented in Fig. 7. Note that 5 for KFeF4 in the
ordered phase is slightly larger than in the paramagnetic
state, in contrast to RbFeF4 where 5 remains constant
through the magnetic transition within experimental error
(anomalous behavior near Tz excluded). The small
discontinuity in 5 observed in KFeF4 is probably induced
magnetically. In addition to the anomaly in the center
shift 5, the quadrupole splitting 5 shows a quite similar
irregular behavior near Tq as indicated in Fig. 7. More-
over, the overlap of the temperature regions where the
anomalies in 6 and 6 occur suggests that both effects are
correlated (see Figs. 6 and 7). These anomalies are obvi-

ously related to the magnetic ordering and are most likely
induced by the critical fluctuations. The true mechanism
of these phenomena, however, is not understood yet. Fur-
ther experiments like ultrasonic attenuation studies, neu-

tron scattering experiments, and precise measurements of
the recoil-free fraction would be required to test this inter-
pretation.

VI. CONCLUSIONS

%e have used the Mossbauer technique to study the
static and dynamic critical behavior of the layered antifer-
romagnets RbFeF4 and KFeF4. The main results can be
summarized as follows.

Both RbFeF4 and KFeF4 show a second-order phase
transition at T~=133.57(2) K and Tv=135.79(2) K,
respectively. Special attention was paid to a careful
evaluation of the critical exponent P of the order parame-
ter by determining the appropriate asymptotic critical re-
gion. The self-consistency of our method was tested on
computer-simulated data based on the 2D Ising model.
The asymptotic values of P as obtained from a single
power law are P=0.316(3) for RbFeF4 and @=0.151(3)
for KFeF4, indicating that RbFeF4 shows a 3D critical

behavior, whereas in KFeF4 the transition is essentially
2D in character. This result is consistent with the fact
that in KFeF4 the coupling between adjacent layers is can-
celed due to symmetry arguments leading to a much weak-
er interlayer coupling than in RbFeF4. In addition, the ex-
perimental transition temperature T~ of KFeF4 compares
well with the Stanley-Kaplan temperature Ts~
(Tz/Ts&-1. 03). Below T~, both systems are ordered in
three dimensions because of the residual interaction be-
tween the layers. %hen approaching T~, however, the 3D
correlations in KFeF4 become sufficiently weak so that
the phase transition is mainly governed by the 2D proper-
ties of the system. Similar crossover effects have also been
observed in the single-layer structure (CH3NH3)zFeC14
(Refs. 40 and 45) and in the double-layer structure
K3MnzF7. The present values of P differ considerably
from those found by other groups. This is because the
latter values were determined outside the asymptotic criti-
cal region. For temperatures not sufficiently close to T&
our data yield similar nonasymptotic results.

Just above Tz a characteristic line broadening hl due
to critical fluctuations is observed. According to the
idealized relaxation theory of Bradford and Marshall,
AI is proportional to the spin-autocorrelation time r,
which at T~ diverges with a critical exponent w (critical
slowing down). We find that w =0.81(6) for RbFeF4 and
w =0.91(5) for KFeF, . From these values we have es-
timated values for the dynamic critical exponent z using
the static scaling relations. The present value z =2.15(19)
for RbFeF4 compares well with z=2. 17 predicted by
dynamic scaling theory for a 3D anisotropic antiferromag-
net [model C (Ref. 10)] and seems to indicate a deviation
from the conventional value z =2—g. This result is also
compatible with the Ising-type static exponent
/ =0.316(3). For the 2D system KFeF4 a value
z =1.29(9) is found, which is significantly smaller than
the conventional value z = 1.75. A similar nonconvention-
al value z =1.21(10) has been reported for the 2D Ising-
type antiferromagnet Rb2CoF4. However, a theoretical
interpretation of our experimental results is difficult at
present, since current theory does not provide a reliable
value of z for the dynamic universality class (n =1,
d =—2)." More theoretical and experimental work must be
done in order to get a better insight into critical dynamics
in 2D magnetic systems. To further improve the present
values of z, precise measurements of static exponents other
than P or even a direct measurement of z would be re-
quired. In addition, it would be more appropriate to make
use of a relaxation theory of the Mossbauer line shape
which takes into account anisotropic spin fluctuations,
most likely present in such weakly anisotropic Heisenberg
systems near T .' '

The values for Tz as deduced from best fits to the
power laws defined by Eqs. (4) and (17) agree within error
with the experimental values T~=133.58(2) for RbFeFq
and T~ =135.80(2) for KFeF4 as obtained from the
characteristic peak of the linewidth (cf. Tables V and VI).
This result further supports the self-consistency of the
data analysis applied in this work.

The center shift 6 and quadrupole splitting 5 display an
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anomalous behavior at Tz that appears to be associated
with the onset of magnetic ordering. The magnetization-
dependent Debye model does not explain the anomaly in
the center shift 5. Whether the anomalous behavior of 5 is
due to the isomer shift or due to the second-order Doppler
shift, or even due to a combination of both, remains un-
clear. The mechanism responsible for the pronounced
dips in the quadrupole splitting 5 observed at T~ is also
not yet understood. However, the anomalies in 5 and 5
appear to be correlated with the critical line broadening
below T~ and are therefore most likely induced by the
critical fluctuations.

It is hoped that our results will encourage experimental-
ists to do supplementary measurements on the critical
behavior of these interesting magnetic systems with other

techniques. Detailed neutron scattering studies would
especially be desirable.
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