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Previous numerical studies of the Thouless, Anderson, and Palmer (TAP) infinite-range Ising
spin-glass equations have suggested that solutions were difficult to find and ill behaved in tempera-
ture. In order to test whether these results are a consequence of inadequate numerical schemes, we
have devised and applied an improved approach. A search for minima of the TAP and (finite-range)
Bethe-Peierls-Weiss (BPW) free-energy surfaces indicates that, in both cases, the well-behaved field-
cooled minimum evolves with decreasing temperature T into a negative-entropy state. All other at-
tempts to obtain minima led, at best, to piecewise continuous (in 7) physical solutions. The inability
to calculate well-behaved temperature-dependent magnetizations for the finite-size TAP and BPW
theories appears to be a serious drawback for these approaches.

I. INTRODUCTION

The Thouless-Anderson-Palmer’? (TAP) solution of the
infinite-range Ising spin-glass model is more physical than
alternative replica symmetry-breaking® approaches. How-
ever, it requires a considerable amount of numerical
analysis in order to obtain physical results over a range of
temperatures. Previous studies,*~® with the use of simple
iterative techniques, have suggested that minima of the
TAP free energy were difficult to find and, at best, only
piecewise continuous® with changing temperature 7. It is
very possible that these results are a consequence of inade-
quate numerical schemes. Therefore, we have devised an
improved approach to search for solutions of the TAP
equations.

It is the purpose of this paper to apply this scheme in a
more complete search than has previously been attempted
for physical minima of the free-energy functional
F [{m;}]. Here m; is the thermally averaged spin at the
ith site. We use both the TAP and finite-range Bethe-
Peierls-Weiss (BPW)’ Ising models for F. TAP have ar-
gued, on the basis of a convergence criterion,"® that all
physical states on the free-energy surface must be higher-
order stationary points; these are not easily found by nu-
merical techniques. However, it is not likely that this is
always the case for finite-size systems. Furthermore, the
utility of the TAP approach depends on finding numerical
solutions of their equations for finite N. It should be
noted that our numerical scheme, which we will discuss in
more detail below, is applicable over the entire free-energy
surface, especially including the region where the TAP
convergence criterion is satisfied.

It is widely thought®*°~!2 that the free-energy surface of
a spin-glass contains a vast amount of information about
the macroscopic properties of these systems. Recently, at-
tention has focused on the nature of the energy bar-
riers’3~1° in the infinite-range Ising model. Bray and
Moore*!! have numerically searched for quadratic mini-
ma and analytically counted the stationary points of the
TAP free-energy functional. A surprising result of their
numerical calculations was that they were unable to find
any solutions to the TAP equations (at a fixed T) for 90%
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of their bond configurations. While they did not attempt
to follow a given solution with T, Nakanishi® and other in-
vestigators® (using iterative techniques) observed that the
solutions quickly disappeared upon changing temperature.
Furthermore there appeared to be no nearby minimum to
which the system flowed. While Nakanishi attributed his
results to errors associated with applying the TAP scheme
to finite N, it appears likely that such unphysical behavior
might, at least in part, be a consequence of inadequacies in
the numerical schemes used. It can be shown (as will be
discussed below) that simple iterative techniques generate
only a subset of all minima. Frequently minima are “lost”
with changing T due to numerical problems which are ar-
tifacts of the iteration scheme, and are not related to the
disappearance of a solution.

The ultimate test of the TAP theory and other theories
of spin-glasses is whether they lead to reasonable results
for physically measurable properties. Ideally, we would
wish to compute the various history-dependent magnetiza-
tions’ obtained with field-cooled (FC) or zero-field-cooled
(ZFC), or magnetic hysteresis procedures. Results derived
from Monte Carlo simulations'® and, more recently, from
the use of simple mean-field theory!? (in which the reac-
tion term in F[{m;}] is dropped) lead to good qualitative
agreement with experiment. It is important to ascertain
whether the TAP theory yields equally physical results.
Furthermore, it is clearly of interest to study the finite
range or BPW analog of the TAP equations. Unphysical
results that might be found in the infinite-range model
may well be attributed to “pathologies” associated with
this special case. It is generally believed!’ that the FC
minimum of F[{m;}] is the thermodynamic equilibrium
state. The lack of irreversibility® of the state suggests that
it evolves continuously from the (single) high-temperature
paramagnetic minimum. For this reason, we made a sys-
tematic study of this FC state.

As noted above, an exhaustive search for the minima of
a free-energy functional of N variables requires a more
powerful method than the iterative techniques which have
previously been applied. The obvious choice, Newton’s
method, is unsuitable for the analysis of large systems, be-
cause of the inordinate amount of matrix algebra involved.
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Therefore, we have devised a technique that combines an
iterative search with an acceptable amount of matrix alge-
bra. This method is guaranteed to converge to all qua-
dratic minima, provided one makes a reasonable first
guess for the solution. This scheme will not converge to
higher-order stationary points. (Unless otherwise indicat-
ed, the word minimum will henceforth refer only to a qua-
dratic minimum.) While we use more powerful methods
than the simple iterative techniques used previously, we
are, as a result, restricted to the treatment of somewhat
smaller systems.

The results we obtain are rather discouraging. We dis-
cuss them here for the TAP case but they apply also to the
finite-range model as well. The well-behaved high-
temperature FC state is found to evolve continuously
(with decreasing 7) into a state of negative entropy S. The
calculated FC magnetization has a maximum at roughly
the temperature at which S becomes negative. Solutions
of the TAP equations can be readily generated at T=0,
since these are equivalent to solutions of simple mean-field
theory. However, we have been unable to heat these mini-
ma up beyond very low temperatures; at some point they
may become higher-order stationary points which cannot
be studied numerically. Alternatively, they may disappear
altogether. Random searches, along the lines pursued by
Bray and Moore,* did not reveal many minima. In gen-
eral, the system found its way back to the unphysical FC
state. After the main body of this work was completed, it
was pointed out!® that Monte Carlo simulations occasion-
ally generated TAP solutions. However, upon closer ex-
amination, we found that these also had unphysical prop-
erties. The picture of the TAP free-energy surface that
emerges is that if there are physical minima of F, they are
mostly, if not all, higher-order stationary points. So far,
no physical numerical solution has been found which can
be followed over the entire range of temperatures. While
these results are not inconsistent with the TAP conver-
gence criterion (derived in the thermodynamic limit), it is
nevertheless unexpected that for finite-size systems, the
only physical states are higher-order minima. Since the
TAP equations require numerical solutions (except at spe-
cial temperatures) it now appears unlikely that one can ex-
tract many physical results from this theory.

II. CONVERGENCE AND STABILITY
OF ITERATIONS

Both the TAP equations and the BPW equations [de-
rived from (3F /dm;)=0] constitute a set of coupled, non-
linear, algebraic equations for which no closed-form solu-
tion exists. In the simplest iterative method of solution,
an initial set of spin variables, {m;}, is used to calculate a
set of effective local fields, {A;}, from which a new set of
spin variables, {m;/ }, are generated"’:

hAP = [H+ > Jiim; ] —Bm; 3JF(1—m}), (2.1)
J MF J
hPY = [H+ 2 Jym; ]
j MF
—1 1|88 U g,
~+ ? lB tanh 2(m, —gumj) um] ’ (2.2)

gij =tanh(BJy;) , (2.3a)
ry=[(1—g})—4g;(m; —g;m;)(m; —g;m;)1'?

(2.3b)
m; =tanh(Bh;) . (2.4)

Here, H is the applied magnetic field and Jj; is the ex-
change interaction between spins on the ith and jth sites.
The exchange interactions are distributed according to the
probability distribution,
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P(J;;)= exp | ———=
2J

- 2 ’ (2.5)
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where Z is the number of interacting neighbors, and Jisa
typical exchange interaction. In the TAP case, Z=N, and
the sum over sites in Eq. (2.1) includes all sites. In the
BPW case, the sum over sites in Eq. (2.2) includes only the
Z nearest neighbors of the ith site. Equation (2.4) is iterat-
ed many times, until convergence is obtained and
m; =tanh(Bh;) is satisfied to the desired degree of accura-
cy. The terms in ( )yqp in Egs. (2.1) and (2.2) correspond to
naive mean-field theory, while the remainder is called the
“reaction field”. The effective local field can be expressed
generally as

h;= —% étanh_l(m,») ,
which allows [from Eq. (2.4)] the iteration scheme to be
written directly in terms of the free energy

(2.6a)

tanh='(m; )— tanh—"(m;)= —B-2L-[{m;}]. (2.6b)
am;

A set of spin variables {m;} is a fixed point of this itera-

tion scheme if, and only if, it is also a stationary point of

the free energy.

Because the iteration scheme in Eq. (2.6b) is expressed
in terms of F, the conditions for the stability of the fixed
points (stationary points) under iteration can also be
phrased in terms of the free energy. We will show below
that in order for the iteration scheme in Eq. (2.6b) to con-
verge to a fixed point, the fixed point must be a quadratic
minimum of the free energy, as opposed to a quadratic
maximum or saddle point, or a higher-order stationary
point. Furthermore, the straightforward iteration scheme
will not converge to all minima, only to a restricted subset.
This makes it likely that solutions to the TAP equations
have been missed or lost in previous numerical studies,
and provides the motivation for formulating a more ela-
borate scheme.

In the remainder of this section, an improved iteration
scheme is introduced, and its convergence and stability
properties analyzed. We phrase the problem in rather gen-
eral terms, and begin with a free-energy functional whose
minima we seek. Consider an iterative scheme of the form

OF[{m;}]
a——_ami +

m{ =g |— g 'my) |, 2.7

where g(x) is a one-to-one monotonically increasing func-
tion of its argument, and « is a constant. The straightfor-
ward iteration scheme discussed above corresponds to
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g(x)=tanh(Bx) and a=1. More generally, the parameter
a controls how much of the previous iteration is retained,
and will be chosen so as to expedite convergence. Equa-
tion (2.7) may be rewritten as

oF

g\ m{)—g \m))=—a=——[{m;}]1,

2.8
3y (2.8)

which shows that a fixed point of the iteration scheme is a
stationary point of the free energy, and vice versa.

We may relate the stability of this iterative scheme to
the properties of the curvature matrix (32F /0m; dm;).
Consider an initial spin configuration m; =m; +8m; in-
finitesimally close to the fixed point {m/}, so that after
one iteration,

m; =m! +8m| . (2.9)
It follows from Eq. (2.7) that
dm; om;
i J J

where d=[g’'(g ~'(m}))]'/? and Q({m*}) is a real sym-
metric matrix whose matrix elements are

[Q((m* )]y =8, —adr SELUM™1] 4o

2.11

In order for repeated iteration of Eq. (2.10) to converge
to the fixed point, the eigenvalues of Q (which are real)
must all be less than one in magnitude (Q,,, <1 and
Omin>—1). In terms of the positive-definite diagonal
matrix, D;=8§,;d;, and the Hessian or curvature matrix
for the free energy,

FF[{m*}]

am,amj

Il

A"j F)
we may write Q=1—aD4D. The condition that the
maximum eigenvalue of Q be less than 1 implies

a(Qég)min>o ’ (212)

where (D 4 D), denotes the minimum eigenvalue of the
matrix D 4 D. For a >0, Eq. (2.12) will be satisfied if the
Hessian is positive definite, i.e., the fixed point is a
minimum of the free energy. (If @ was taken to be nega-
tive, Qnax <1 would be satisfied for maxima of the free
energy.) It follows from this that the straightforward
iteration scheme discussed earlier and applied else-
where*>!? (¢=1) can only converge to minima. This
point was made by Bray and Moore* for the TAP case,
and is more generally valid for any free-energy functional.
The requirement that the minimum eigenvalue of Q be
greater than — 1 implies

a(DAD)pax<2, (2.13)

where (D 4 D). denotes the largest eigenvalue of the
matrix D A D. It is this criterion that the straightforward
iteration scheme (a=1) may fail to satisfy when the Hes-
sian matrix becomes too large (corresponding to a
minimum of the free energy that is too “deep”).

For a given minimum of the free energy, the choice of a
that leads to the most rapid convergence is the value for
which Qmax= — Pnin>

2
a . = :
optimal (D4 D)yax+(D A D)pin

(2.14)

Although @gptima is not known until the fixed point is
found, one can follow a solution by taking small steps in T
and H, and beginning the search for the new solution with
the value of @gpima for the old solution. In Secs. IIT and
IV this approach [with g(x)=tanh(Bx) and a chosen as
above] is applied to the TAP and BPW cases, respectively.

For the special case of naive mean-field theory solved
by straightforward iteration'? (@ =1), we make the follow-
ing observations. It is not only true that when conver-
gence occurs the extremum is a minimum, but also that
failure of convergence is connected to the disappearance of
the minimum. This follows from an empirical observation
that the minimum and maximum eigenvalues of Q are
equal and opposite to within 1%, so that Egs. (2.12) and
(2.13) are violated simultaneously. Therefore, when solv-
ing for the minima of the naive mean-field free energy, the
straightforward iteration scheme is adequate.

While the discussion thus far relates only to Ising spins,
we have also considered the vector spin case. In this case,
we find that straightforward iteration will converge only
to minima provided that the matrix M,,=(3m/}')/(3h})
(where u,v are Cartesian coordinate labels, and 4; is the
Weiss field at site i) has eigenvalues whose magnitudes are
less than 1.0. We have found that in “naive” mean-field
theory this holds for any n-vector model, with or without
anisotropy.'®

III. NUMERICAL RESULTS FOR THE TAP MODEL

In this section we present the results of a numerical
search for solutions to the infinite-range TAP equations.
Two types of numerical calculations were performed. In
the first, the TAP equations were solved for a small exter-
nal magnetic field at a temperature considerably above the
spin-glass transition temperature T,. The solution at the
highest T was obtained using the iteration scheme
described in Sec. II, with the known high-temperature ex-
pansion providing an initial guess for the iteration pro-
cedure. This high-temperature solution was then followed
as the temperature was lowered in small decrements to a
value well below T,. We refer to this as the field-cooled
(FC) minimum. In the second type of calculation an ini-
tial spin configuration was generated at random, and used
to start the iterative search for minima of F in a small
magnetic field for temperatures below T,. We refer to
this as the random-search calculation. Both studies were
performed for sample systems of 25, 30, 40, 50, 60, and 75
spins  each. Convergence was assumed when
>im{—m;*/ S . mf <1070,

For all the sample systems considered,”® the results of
the FC calculations were qualitatively similar. The results
for the FC state at N=75 are representative, and are
shown in Fig. 1. In this figure, the magnetization
M=N""'3.m; and the Edwards-Anderson (EA) order
parameter g =N ~! > m} are plotted as functions of the
reduced temperature 7' /7T, for an external magnetic field
H =0.05T,;. Both M and g have maxima near the transi-
tion temperature, indicating that the inverse susceptibility
has a minimum in the vicinity of T= T,. The inverse sus-
ceptibility does not vanish, however, and the high-
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FIG. 1. The field-cooled (FC) TAP magnetization M (left
axis, solid curve) and EA order parameter g (right axis, dashed
curve) vs reduced temperature T /T, for a number of spins
N =75 in magnetic field H =0.05T,.

temperature state remains stable down to zero tempera-
ture, where M and g vanish as T and T2, respectively.
This field-cooled state has negative entropy, and is there-
fore clearly unphysical, for T <0.6T,; both the entropy
and the free-energy approach minus infinity as the tem-
perature goes to zero. This solution is the continuation to
finite H of the trivial solution to the TAP equations in
zero field: {m;} =0, for all T. However, this state (which
we call the nonmagnetic state) evolves continuously from
the physical high-temperature state, and is not unstable at
any intermediate temperature. This absence of instability
at all T can occur only for finite systems, since the curva-
ture or Hessian matrix is given by

A ij = 8‘]

1+8° 2-’5( —BJj »
k

and has, in the infinite-system limit, the minimum eigen-
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T=T, =J. Presumably, in the thermodynamic limit, the
high-temperature state will evolve continuously into a
physical low-temperature state, yielding a well-behaved
FC magnetization. For finite-size systems, this apparently
occurs in naive mean-field theory,'? but not in the TAP
case. For finite N it is presumed that a new physical solu-
tion to the TAP equations is to be found near the nonmag-
netic state, before it becomes unphysical, and that the sys-
tem undergoes a discontinuous, or first-order, jump to this
new state.

In an attempt to locate the expected nearby state, we
undertook random-search calculations in which new spin
configurations were generated at random with a uniform
sampling of phase space. Once the new spin configuration
was generated, the iteration scheme of Sec. II was applied
with the iterations begun with o= gyima for the nonmag-
netic state. The value of a was updated to the local op-
timal value periodically throughout the iteration pro-
cedure. The iterations were continued until convergence
was obtained; and then a new random starting configura-
tion was generated and the procedure was repeated. Some
twenty to thirty random initial configurations were con-
sidered at T=0.1T,, T=0.5T,, and T=0.8Ty, for each
of the sample systems for which the field-cooled calcula-
tions were done. In every case, the iteration scheme even-
tually converged to the state obtained by cooling—no oth-
er solution to the TAP equations was ever found. Owing
to the constraints of matrix algebra, the systems we con-
sidered were necessarily somewhat smaller than those con-
sidered by Bray and Moore,* who found an occasional
solution (in 10% of their bond configurations.) The
present approach, however, represents a considerably more
thorough search for each bond configuration than has
been done previously.

IV. NUMERICAL RESULTS FOR THE BPW MODEL

Calculations analogous to those described in the previ-
ous section were carried out for the Bethe-Peierls-Weiss

value (1—pBJ)%, which vanishes quadratically at  free-energy functional,”?!
|
14+m; 14+m; 1—m; 1—m;
Fppw[{m;}1=B""3% [ 2 : ) ' ) In ) l ]—HZ'n,-
i i

—p-! m;tanh !
x‘zj ' 2(m; —giym;

where g;; and r; are defined in Egs. (2.3). In this section,
we present the results of these calculations and compare
them to the results for the TAP case. As in Sec. III, two
types of studies were performed; field-cooled and
random-search calculations. Because many more itera-
tions were required to reach convergence than in the TAP
case, the investigation of the BPW free-energy surface
presented here is of a more limited nature than that
presented in the preceding section. Five sample BPW spin
glasses were studied: four different sample systems of
two- dimensional (2D) spin-glasses (consisting of a 5X5
array of spins), and one 3D sample BPW spin-glass (con-
sisting of a 5X 55 array of spins).

1—gi—r; J—i—iln lrij+l+gi§—2gijmimj
) 4

(4.1)

It

The results for the FC state are quite sensitive to the
external field. Figure 2 shows the FC magnetization and
EA order parameter as functions of the reduced tempera-
ture for a characteristic 2D BPW system at two different
values of the external field: H=0.04T; and 0.087,.
These field-cooled solutions are fully reversible (as in the
TAP case) for a fixed magnetic field. The lower-field re-
sults [Fig. 2(a)] are similar to those found for the TAP
case: Both M and g have maxima in the vicinity of the
glass temperature, and extrapolate to unphysically small
values at low 7. The lower-field state could be followed
only down to T'=0.75T because of the large number of
iterations ( ~8000) required for convergence; in this same

2(1—g})
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FIG. 2. The FC 2D BPW magnetization M (solid curve) and
EA order parameter g (dashed curve) vs T /T, for N =25 with
(a) H=0.04T, and (b) H =0.08T,.

range, the entropy of the lower-field state became nega-
tive. The higher-field state [Fig. 2(b)] could be followed
all the way down to zero temperature, where, in contrast
to the results obtained in Sec. III, M and g behave as ex-
pected on physical grounds: g— 1 for T— 0, and M is
relatively constant for T < T,. The zero-temperature limit
of the higher-field FC solution satisfies the mean-field
condition,

m;=sgn (H+ X J;m; |, (4.2)
j

and thus constitutes a simple mean-field ground state.
(This is not necessarily the only zero-temperature solution
of the BPW equations, as shown in the Appendix.) Unlike
in the mean-field case, the BPW expression for the entro-
py becomes negative in the higher-field FC state for low-
enough temperature. Thus, as in the TAP and low-field
BPW cases, the FC state becomes unphysical at low tem-
peratures.

Random-search calculations were performed for the 2D
BPW system at the temperatures 7'=0.51T,, T=0.67T,,
and H=0.08T,. The calculations carried out at the
higher temperature resulted, for all 30 attempts, in recon-
vergence to the field-cooled state. At the lower tempera-
ture, this procedure resulted, for all 36 attempts, in con-
vergence to a new state, distinct from the FC state. The
new state has lower entropy and free energy, and is much

less magnetized than the field-cooled state. (Both states
have negative entropy at this temperature.) Attempts to
follow this new state to either higher or lower tempera-
tures were not successful, despite the use of temperature
increments as small as AT =0.0057,.

The results of the three-dimensional FC calculation are
shown in Fig. 3 for H=0.03T,. The magnetization and
the EA order parameter are plotted as functions of re-
duced temperature. These results are qualitatively similar
to those found for the 2D model at H=0.04T,. The mag-
netization and EA order parameter have maxima for tem-
peratures near T,, where they take on unphysically small
values. The extraordinarily large number of iterations and
small temperature increments required for convergence
prevented us from following the field-cooled solution all
the way down to T=0. Random-search calculations were
performed for the 3D BPW system at 7=0.55T,. In
each of the six random-search calculations performed, the
result was reconvergence to the field-cooled solution. No
other solution to the 3D BPW equations was found.

V. OTHER SEARCH TECHNIQUES

In addition to the field-cooling and random-search tech-
niques, we have also explored two other methods for gen-
erating solutions to the TAP equation. We have heated
T=0 solutions, obtained from naive mean-field theory
(which is equivalent to TAP in this limit). In addition,
following a proposal by Dasgupta and Sompolinsky!®
which was made after the body of this work was complet-
ed, we have used Monte Carlo methods to find TAP solu-
tions. Like the methods discussed in Secs. III and IV,
these approaches lead to unphysical results.

We derived solutions to the 7=0 TAP equations by
field cooling within naive mean-field theory. This pro-
cedure always generates low-energy solutions, which are
comparable in energy to those obtained in Monte Carlo
simulations. Once the =0 TAP solution is obtained, the
reaction term is included and the temperature slowly
raised. At temperatures in the range of 0.2T, the solution
becomes unstable; that is, the curvature vanishes in at least
one direction, and the free-energy minimum disappears.
We were therefore unable to heat such solutions above
roughly 0.27.

0.05 0.010
Z=6 N=125
H=003T,
9
M g
0.025— 0.005
0.0 0.0
0 2

T/Tq

FIG. 3. The FC 3D BPW magnetization M (left axis) and EA
order parameter g (right axis) vs T /T, for N=125 and
H =0.03T,.
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Recently, Dasgupta and Sompolinsky'® have shown that
that careful Monte Carlo annealing of the Sherrington-
Kirkpatrick (SK) model (beginning at temperatures well
above T, and cooling to T=0.5T;) may sometimes be
useful in obtaining solutions to the TAP equations. The
set of spin averages {(o; )} resulting from this technique
is used as the starting configuration {m;} in a search for a
TAP solution. A root-finding method (asymptotically
equivalent to Newton’s method) is then applied to locate
the TAP minimum. Dasgupta and Sompolinsky carefully
‘screened their bond configurations to insure faithful repre-
sentation of the infinite-system bond statistics, yet found
convergence to a TAP solution for only 40% of the bond
configurations.

We have heated and cooled TAP solutions generated
from Monte Carlo using our numerical scheme. Our
analysis of a representative set'® of these TAP solutions
indicates that they become unphysical upon cooling; the
entropy becomes negative or anomalously small and the
minimum disappears for 7T~0.4T,. Moreover, the
Edwards-Anderson g exhibits an unphysical maximum for
T=~0.45—0.5T,. Upon heating, the solutions persist up
to temperatures ranging from 0.87, to 1.2T, (depending
on the bonds) at which point the minimum disappears
with g~0.15—0.35. We conclude, therefore, that there is
a sizable first-order jump into a high-temperature state.
Presumably the first-order jump is a finite-size effect. The
temperature dependence of g just prior to this disappear-
ance of the minimum is nonanalytic, and is hence incon-
sistent with the linear temperature dependence expected
from analysis valid in the thermodynamic limit."? In
summary there is, at best, a narrow window in tempera-
ture, extending roughly from 0.57, to 0.75T,, in which
these Monte Carlo—generated solutions to the TAP equa-
tions can be physical. It is interesting to note that, since
Monte Carlo simulations do not lead to these unphysical
results, the TAP solutions cannot correspond to those ob-
tained using Monte Carlo methods, except in a narrow
range of temperatures. Presumably the discrepancy be-
tween the two approaches is due to the fact that the TAP
equations are only approximate for finite N.

VI. CONCLUSIONS

Bray and Moore!! and DeDominicis et al.'® have ar-
gued that there are a large number of solutions to the TAP
equations at low T (of order e®2" for T=0). In view of
our numerical results, and those of others,*> we are forced
to conclude that these solutions do not correspond to qua-
dratic minima of the free energy, but must be quadratic
maxima or saddle points, or higher-order stationary
points. This view is consistent with the claim of! TAP
that all physical states are higher-order saddle points; it is
also somewhat stronger, for it addresses the global proper-
ties of the free-energy surface. There are very few positive
entropy (quadratic) minima on the surface, even for
finite-size systems. Moreover, these appear to be at best,
piecewise continuous with varying temperature.

Our studies can shed some light on the effect of the
range of the interaction on the free-energy surface. The
fact that the TAP model yields unphysical results cannot
be ascribed to mathematical pathologies associated with
infinite-range interactions. We find the finite-range BPW

case and that of TAP to be generally very similar. The
main difference lies in the nature of the mean-field ground
states [Eq. (4.2)]. At T'=0 the mean-field equations are
satisfied by the TAP and by some BPW ground states. In
the latter case such states may be generated by field cool-
ing at high fields, but not in the former. More important-
ly the BPW mean-field ground states found in this way
have negative entropy S. In the TAP case (and presum-
ably in the BPW case) there are mean-field ground states
with S >0, which evidently cannot be found by cooling at
constant field.

In addition to providing information about the unphysi-
cal FC states, the present calculations present a scenario
for the behavior of the physical field-cooled magnetization
MFC which has not yet been found numerically for the
TAP and BPW theories. This magnetization is thought!’
to correspond to that obtained using thermodynamic argu-
ments. According to Parisi,® M¥C is relatively constant at
low T for the infinite-range Ising model. It is also reversi-
ble with respect to heating and cooling. These features
have also been verified by Monte Carlo simulations on
finite-size systems,'® and appear to be true in naive mean-
field theory'? and experiment.?? It is interesting to note
that, in the TAP or BPW cases, the physical FC magneti-
zation must necessarily exhibit a first-order jump at T,
where the paramagnetic state becomes unphysical. This
jump is not seen in naive mean-field theory, or in the limit
N — «, because in these cases the paramagnetic state has
a divergent susceptibility that allows the system to move
continuously from one state to another as the temperature
is lowered. In our studies of the TAP and BPW cases, we
have not been able to find the physical low-temperature
state to which the system jumps discontinuously. Presum-
ably, it corresponds to a higher-order stationary point to
which our iteration procedure cannot converge.

It is discouraging to observe that the success which
Soukoulis e al.'? had (using naive mean-field theory) in
reproducing the measured field and temperature depen-
dence of the various history-dependent magnetizations
cannot be duplicated in the (presumably better) TAP and
BPW theories. The “problem” clearly lies with the reac-
tion term in F, whose presence leads to (unphysical) nega-
tive entropy solutions. This situation is quite different
from the case of nondisordered ferromagnets, for which
the corrections to naive mean-field theory improve the ac-
curacy of the solution.?? There are, however, similarities
between this aspect of the spin-glass problem and the
problem of the electronic structure of disordered systems,
where apparently reasonable corrections to mean-field
theory (the coherent-potential approximation) yield nega-
tive state densities.”* Substantial progress has been made
recently in an effort to structure the corrections to the
coherent-potential approximation so as to guarantee
positive-definite state densities.”> It may be speculated
that to obtain physical results in the spin-glass case, the
corrections to naive mean-field theory must be grouped in
a manner that preserves the positivity of the entropy and
generally leads to well-behaved thermodynamic properties.

It is quite probable that the TAP theory simply is inade-
quate when applied to finite size systems. That is, that
physical results will be found only in the thermodynamic
limit. The inapplicability of iterative techniques in solv-
ing the TAP equations necessitates the use of some matrix
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analysis and, therefore, reduces the size of the systems
which can be considered. At these small N the TAP equa-
tions are evidently significantly in error and correction
terms appear to be important. Nakanishi® has demon-
strated how complex these corrections are. Furthermore,
he finds only a partial improvement in his numerical re-
sults when these higher-order terms are included. Presum-
ably a large number of “cluster corrections” are needed in
order to get well-behaved solutions to the TAP equations
at finite N. In summary, it appears to be extremely diffi-
cult to generate a theory for the free energy F[{m;}]
which goes beyond naive mean-field theory and which also
leads to physical numerical results for finite-size systems.
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APPENDIX: BPW GROUND STATES

The self-consistent Bethe-Peierls-Weiss equations [Egs.
(2.2)—(2.4)] become indeterminate as T— O when written
in terms of the spin variables {m;}. If, however, they are
written in terms of the local fields, {A;}, the zero-
temperature limits can be extracted as follows:

m=H+ 3 hy, (A1

j [=nn(i)]
where
(A2a)
(A2b)

(A2¢c)
(A2d)

(A2e)

I

though Egs. (A1) and (A2) are not equivalent to the zero-
temperature mean-field equation [Eq. (4.2)], it should be
noted that in all cases where the field-cooled BPW solu-
tions could be followed down to very low temperatures,
the spin configuration {m;} was also found to satisfy Eq.
(4.2).
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