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The phase transition and ordering of the d =3 diluted Ising antiferromagnet Co„Zn& „F2has been

studied using two-axis neutron diffraction for the cases (i) where x is close to the percolation thresh-

old, in zero applied magnetic field, and (ii) as a function of applied magnetic field for samples with

x =0.26 and 0.35. The results of the percolation study show complicated behavior, probably due to
concentration gradient problems. Nevertheless, there is strong evidence that the inverse correlation

length decreases to zero at the onset of long-range order. The results of the magnetic field study are

compared with the theoretical predictions for the d =3 Ising model in a random field. It is found

that when the samples are cooled in even the smallest (nonzero) fields the long-range magnetic order

is destroyed and that the structure factor is well described by the Lorentzian plus Lorentzian

squared form. The inverse correlation length is found to have a power-law dependence on the ap-

plied magnetic field at low temperature with exponents vH ——2. 17+0.3 for the x =0.26 sample and

vH ——3.63+0.3 for the x =0.35 sample. This result is not consistent with the current theoretical pre-

dictions for the field dependence of the inverse correlation length in the d =3 Ising model in a ran-

dom field. The measurements also show that the system is frozen at low temperatures and this

freezing may be responsible for the discrepancy between theory and experiment.

I. INTRODUCTION

The effect of a random field on the ordering of Ising
models has been studied theoretically in several recent pa-
pers. Imry and Ma' showed by comparing the random-
field energy to the energy needed to produce a smooth
domain wall that an Ising model is unstable against the
breakup into domains for all dimensionalities less than

d, =2. In contrast, there have been e-expansion ' and su-

persymrnetry arguments which suggest that in the pres-
ence of random fields the behavior of a system is similar
to that of the pure system in two less dimensions. Since
d, =1 for the Ising model this would suggest that d, =3 in
the presence of a random field.

It was the existence of these two results that led us to
begin an experimental study of the effect of a random
field on a three-dimensional Ising model. Fishman and
Aharony first pointed out that a uniform field applied to
a random antiferromagnet produced a randomly directed
staggered field. They initially considered a random bond
antiferromagnet when the random field is proportional to
the ferromagnetic susceptibility and the applied uniform
field. In practice, site random antiferromagnets are more
readily available, and then the random staggered field has
two components: a part proportional to the ferromagnetic

susceptibility as discussed by Fishman and Aharony; and
another part, which is probably dominant in practice due
to the randomness in the dipole moment from site to site.
The strength of this latter term is directly proportional to
the applied field and is independent of temperature. Our
experiments were performed on the antiferromagnet CoFz
diluted with the nonmagnetic material ZnFz. CoF2 is an
antiferromag net with exchange interactions between
nearest and next-nearest neighbors; due to the crystal-field
effects the exchange is very anisotropic. CoF2 and ZnF2
form mixed crystals in which there is no tendency toward
short-range chemical order of the Co and Zn. Both the ex-
citations and the phase transitions of this system have
been measured, so that it is quite well characterized.

When this work was begun we intended to study the
phase transitions and the onset of long-range order close
to the percolation threshold. This was intended to com-
plement earlier work " on the percolation problem, by
providing more reliable measurements of the thermal ex-
ponents for a three-dimensional Ising system and further
information about the ordering of three-dimensional sys-
tems. In three-dimensional systems with close to Heisen-
berg interactions, " the inverse correlation length ~ is not
zero at the onset of long-range order and in a
KMn„Zni „F3 crystal the long-range order was found
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to decrease below 6.0 K. Experiments on a three-
dimensional Ising system would clarify whether these
unexpected features result from unexpected aspects of
three dimensions or are present only in the systems with
nearly Heisenberg-type interactions.

Our experiments were performed using neutron scatter-
ing techniques at the Brookhaven National Laboratory
High Flux Beam Reactor and are described in detail in
Sec. II. The results of the percolation experiments are
described only briefly in the Appendix because they were
not wholly successful. The effect of applying a uniform
field to these samples is described in Sec. III, and these ex-
periments yielded many interesting new results which are
analyzed in Sec. IV; some of these have already been brief-

ly described
Since we first began this experimental work there have

been several theoretical papers on the effect of random
fields on Ising models. Pytte et al. " have extended the
work of Wallace and Zia' on capillary waves to systems
with a random field. The model proposed by Pytte et al.
included in the Hamiltonian the lowest-order analytic
term introduced by the random field and then used the re-
plica technique to perform the averaging over the disor-
der. In this model Pytte et al. found thata, s a result of
the critical dimension for the roughening transition being
shifted from da ——3 to 5 by the random field, the lower
critical dimension for the model was 3 and not 2. A phys-
ical interpretation of this result, given by Binder et al. ,

"
was that the shift in da meant that in d = 3 the width of a
domain wall increased at the same rate as the domain size
and that the interface must be considered as rough on all
length scales. In a recent paper, however, Grinstein and
Ma' have argued that the random field introduces a non-

analytic term into the Hamiltonian, rather than an analyt-
ic one. Their renormalization-group calculations with this
Hamiltonian show that, although dR shifts from 3 to 5,
the variation of the domain wall width in d =3 is not as
fast as the domain size, and as a consequence for large
length scales the domain walls are effectively smooth.
They then argue that d, =2 as given by Imry and Ma.
Similar results have been obtained by Villian. '

An alternative approach was used by Kogen and Wal-
lace. ' They extended the supersymmetry argument of
Parisi and Sourlas and showed within this framework
that capillary waves destroyed the long-range order for
d &d, =3. In a recent paper Cardy' has argued that this
is an exact result for T=O and similar arguments have
been given by Niemi. '

Clearly, in view of this theoretical controversy and ac-
tivity, experiments must be performed to test these
theories. As we shall describe in detail in the conclusion, a
cursory glance at our experimental results suggests that all
these theories are incorrect, but a more circumspect
analysis suggests caution. There is no doubt that although
aspects of these theories are correct, much work needs to
be done before they will provide a complete description of
our results.

Specifically, the theories described above are all for a
ferromagnet with uniform interactions in the presence of a
random field. Our experiments, on the other hand, are for
an antiferromagnet with vacancies in a uniform applied

field. It is believed that near six dimensions' these prob-
lems are equivalent. However, it is not at all obvious that
the vacancies do not become relevant in d =3; certainly
domain walls will preferentially be located near the vacan-
cies and this could affect the scaling of the domain-wall
width with length thus altering d, .

II. EXPERIMENTAL TECHNIQUES

Crystals of Co„Zn, „Fz were grown from very pure
CoF2 and ZnF2 by using the Czochralski method of
growth. The samples had a volume of several em and
consisted of several large single-crystal grains. These crys-
tals were cleaved to obtain single crystals with a volume of
about 1 cm . Several of these crystals with x nominally
0.25 and hence close to the percolation concentration were
studied in detail as a function of temperature in the hope
of elucidating the percolation properties of this three-
dimensional Ising system. The results are reported in the
Appendix.

One of these crystals and another with a nominal con-
centration of x =0.35 were selected for studying in an ap-
plied magnetic field. It is unfortunately very difficult to
determine accurately the concentrations, x, in these sam-
ples. Approximate values of x for these two samples can
be obtained from the measured Neel temperatures of
6.70+0.05 and 13.25+0.01 K, respectively. As a rough
estimate, if we assume that the Neel temperature is pro-
portional to the number of spins in the infinitely connect-
ed network, and that the fraction of spins in the infinitely
connected network is taken from the work of Kirkpa-
trick, then the concentrations x are 0.26 and 0.35,
respectively. The former concentration is very close to the
percolation concentration of 0.24 for a bcc lattice. '

The neutron-diffraction measurements were performed
at the Brookhaven National Laboratory High Flux Beam
Reactor using a two-axis spectrometer. An incident neu-
tron wave vector of,2.67 A ' was obtained by reflec-
tion from the (002) planes of a pyrolitic graphite mono-
chromator. In order to suppress neutrons reflected from
higher-order planes two pyrolitic graphite filters were
used. In the percolation experiments the samples mere
mounted with the [010] axis vertical in a variable tempera-
ture cryostat. The collimation used mas 20' before the
monochromator, 20' between the monochromator and
sample, and 20' between the sample and detector. The
resolution function was then measured at the (100) reflec-
tion to be 0.015 A ' full width at half maximum
(FWHM) parallel to the wave-vector transfer and 0.005
A ' perpendicular to the wave-vector transfer.

In order to perform the random-field experiments the
samples were aligned with the [001] axis vertical and
placed in the variable temperature insert of a supercon-
ducting magnet which produced a vertical magnetic field
of up to 7.5 T. The measurements on the x =0.26 sample
were performed with the same collimations as the zero-
field experiments. However, for the measurements on the
x =0.35 sample the 20' collimators were replaced by 10'
collimators throughout. The resolution function in the
scattering plane was then measured as 0.009 A
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(FWHM) parallel to the wave-vector transfer a dr and 0.0024
A ' perpendicular to the wave-vector transfer.
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As discussed in the Introduction a uniform field applied
to a random antiferromagnet produces a randomly direct-
ed staggered field. %'e have therefore performed experi-

t b a plying a uniform field to the Co„Zni „Fi sys-
tem. In the sample for which x=0.26 x is close o e

1 t' oint and the applied field is relatively large
so that the results are undoubtedly strongly influence y
the proximity of the percolation threshold. Consequently,
we also pe orm ex1 rf ed experiments on a more concentrated
system with x =0.35.

One of the difficulties of working with Ising systems at
low temperatures is the problem of ensuring that the re-

laxation times or ef r the establishment of thermodynamic
equilibrium are always shorter than the time of the experi-
ment. Because of this problem the experiments were

mostly pe orme yrf d b changing the magnetic field while
and then cool-the sample was at a temperature above Tz, and then coo-

ing the sample while keeping the magnetic field fixed. Al-

though there is no guarantee that this procedure gives t e
low-temperature ground state, it is accepted as giving the
best approximation to the ground state in spin-glasses.

ed th cattering in the neighborhood of the
(1,0,0) lattice point for several different magnetic ie s as
shown in Fig. 1 for x =0.26 and in Fig. 2 for x =0.35. In

he (100) latticethe former case the peak intensity at t e &, , a
point monotonically decreased with increasing field as also
shown in more e ai ind t 1 in Fig. 3. This decrease is similar to
that observed for the scattering in the absence of a field as

f tion of temperature (see Fig. 16, sample A suggest-
t 1.0 T.ing that there might be a phase transition at about

The behavior is, however, quite different as can be seen
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FIG. 2. Scattering for wave-vector transfers a ong 10 at
2.0 K rom oo.3s no, 6s ~~ f C Z F The solid lines are fits to the sum of
a Lorentzian and a Lorentzian squared as described in the text.

from inspection of Figs. 1 and 2.2. The width of the
sca erinttering as a function of the wave vector is steadily in-

ofcreasing with increasing magnetic field, unlike the case o
i th of the (2,0,0) nu-decreasing temperature. Since the wi t o e

clear Bragg peak is unchanged on app y' g1 in the field, this
increase in the width means that the long-range antifer-
romagnetic or er asd h s been destroyed for magnetic fields
much less than 1.0 T. The behavior of the width in the
sample with x =0.35 is very similar, as shown in Fig. 2,
although the increase in the width is much smaller for a
given magnetic field strength than in the more dilute sam-

ple. The peak intensity in the x =0.35 sample initially in-
creases as a function of magnetic field; the peak intensity
is a maximum for a field of about 1.5 T, and at larger
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FIG. 1. Scattering for wave-vector transfers along & ~ 1, 10, at
1.85 K from Coo i6Zn074Fi. The lines are fits to the sum of a
Lorentzian and a Lorentzian squared as detailed in the tex ~
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FIG. 4. Scattering for wave-vector transfers Q=(1,$,0) with
H=1.3 T at various temperatures for Co026Zn074F2. The solid
lines are Lorentzian fits to the measurements.

fields the peak intensity falls uniformly as a function of
magnetic field in a similar way to that for x=0.26. We
believe that this "anomalous" increase for small fields can
be explained by considering the effect of extinction. This
crystal, even though it is site disordered, has a sufficiently
small mosaic spread so that in the zero field the intensity
of the (1,0,0) reflection is extinction limited W. hen the
sample is cooled in an applied field the magnetic order
within the mosaic blocks is broken up into domains by the
random-field effect, and as a consequence the Darwin an-

gle of the magnetic domains within the mosaic block will

be increased allowing a greater proportion of the incident
beam to be scattered. The effect of the random field on
the peak intensity is thus manifested in two ways; one
reduces the scattering power of a magnetic domain by the
destruction of long-range order while the other increases
the proportion of the beam that each mosaic block is able
to scatter. The initial effect of a random field might
therefore increase the magnetic peak intensity by lifting
the extinction present in the (1,0,0) reflection. This
behavior makes it very difficult to make precise state-
ments about the small field measurements in this sample.
It should be emphasized that this behavior occurs only for
the magnetic scattering and that the nuclear Bragg peaks
are unaffected.

The behavior of the scattering as a function of tempera-
ture at fixed field is illustrated in Fig. 4 for x =0.26 and
in Fig. 5 for x =0.35. At low temperatures the width of
the scattering is almost independent of temperature but
then increases with increasing temperature, while the in-

tensity generally decreases with increasing temperature.
At the beginning of this section we discussed the diffi-

culty of knowing whether the system is in the thermo-
dynamic equilibrium state at low temperatures. In both
samples the state of the system is frozen at low tempera-
tures below about 4.0 K but in the case of x =0.26 only
for fields below 1.2 T. This is illustrated in Fig. 6 where
we compare the scattering observed when the system is
cooled in zero field, with that resulting from cooling in a
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field of 2.5 T and then reducing the field to zero. In the
latter case the scattering is fairly similar to that observed
when the sample is cooled in a field of 0.8 T. We do not
understand the origin of the small shift in peak position in

Fig. 6, especially as the nuclear Bragg reflections were not
changed. Clearly one expects strong magnetoelastic ef-
fects accompanying the domain wall formation and such
effects presumably account for the distortions evidenced
in Fig. 6. This result demonstrates that at low tempera-
tures and fields the scattering is dependent on the immedi-
ate prior history of the sample. Similar results were ob-
tained even at the largest fields used in the x =0.35 sam-
ple. We cannot therefore be certain that the results ob-
tained by cooling in a field, shown in Figs. 1—5 and dis-
cussed in the rest of this paper, are characteristic of the
thermodynamic equilibrium state at low temperatures.
They are characteristic of the state obtained by cooling in
a field and the scattering is then constant over periods of
several days.

IV. ANALYSIS OF THE RESULTS

The scattering, shown in Figs. 1 and 2, was initially
analyzed by fitting it to a Lorentzian profile, which has
proved to be so successful at describing the scattering ob-
served in many other circumstances. The intensity was
fitted to the form

~(Q)= If(Q) I',
+2+(q 4)2

FIG. 5. Scattering for wave-vector transfers Q=(l, (,0) with

H =3.5 T at various temperatures for Cop 35Znp 65F2. The solid
lines are Lorentzian plus Lorentzian-squared fits to the measure-
ments for temperatures below 11 K and Lorentzian fits for 11 K
and 12.5 K.
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H = 1.2 T and at a temperature of 2.0 K and then steadily
decreases with decreasing field and approaches —1 when

0=0. The exponent is given approximately by
i)= —1+(H/H, ) when H, = l. 1 T, and the amplitude 2
depends at least approximately on the applied field such as
8

Although this form gives a reasonably accurate descrip-
tion of the experimental results, recent theoretical
work' ' suggests that a more appropriate form is

C)o0
LLI
C)

As discussed in the paper on Rb~Co„Mg& „F4, the
Lorentzian-squared term continuously evolves into a
Bragg peak as H~0, provided that 8- (S, ) ~, where
d is the dimensionality of the system. We find that Eq. (3)
does give a very satisfactory description of the results, so
that the results can be described either by Eqs. (2) or (3).
A similar conclusion was found in the two-dimensional

system Rb2Co„Mg& „F4. However, since current theory
strongly favors the Lorentzian plus Lorentzian-squared
form, most of our efforts have concentrated on fitting the
parameters in Eq. (3), A, 8, and a., to the experimental re-
sults.

As shown in Figs. 1, 2, 4, and 5, Eq. (3) gives a good
description of our experimental results. The results for
the temperature dependence of the inverse correlation
length a for various different fields are shown in Fig. 7 for
x =0.26 and in Fig. 8 for x =0.35. In both cases, on cool-
ing from high temperatures ~ sharply decreases with de-
creasing temperature and is then constant or even slightly
increases on further cooling.

As noted previously, the random staggered field con-
tains both a direct Zeeman contribution due to the ran-
domness in the moment and an induced contribution due
to the randomness in the interaction. The former, which
is dominant, is temperature independent whereas the latter
peaks near Tz. These two fields both are generated by the
dilution and further they oppose each other locally. The
diminution of the bond-randomness term with decreasing
temperature below T~ may account for the observed de-
crease in the correlation length as T~O.

In Fig. 9 we show the low-temperature behavior of 8/a
and A as a function of field for the two samples. For
x =0.35 8/a. is nearly constant except at the lowest fields
where the effect of the extinction is to reduce its value.
For x =0.26 B/v decreases to zero at about 1.2 T. The

amplitude of the Lorentzian A is almost constant for fields
above 1.2 T in the x =0.26 sample and decreases as the
field is reduced. In the x =0.35 sample the amplitude A

increases with increasing field in a similar way to the
x =0.26 sample, but does not become constant even at the
highest fields. These results are, we believe, characteristic
of both high- and low-field behavior respectively. At low
fields A ~0 and the scattering is almost purely Lorentzian
squared with B/~ a constant. The scattering then
develops smoothly into a Bragg peak as ~~0. At relative-
ly large fields the amplitude af the Lorentzian squared de-

.26 0.74 2

0
MAGNE TIC FIELD (T )

FIG. 9. Amplitude of the Lorentzian A and Lorentzian
squared 8 divided by ~ deduced for Cop 26Znp 74F2 at 1.85 K and

Cop 35Znp 65F2 at 2.0 K.

creases and the system becomes a normal paramagnet.
The behavior of 8/ir is very similar to that of the

square of an order parameter. In Fig. 10 we shaw its
behavior as a function of temperature for various fields
and the data collapses, at least approximately, to a single
curve which is very similar to that of the Bragg peak in-
tensity (see Fig. 16, sample A). The behavior is more com-
plex in the x =0.26 sample because the amplitude of the
Lorentzian-squared term is nonzero only within a circle
described approximately by

H
'

+

where T, =6.7 K and H, =1.2 T. In Fig. 11 we have
therefore shown 8/a plotted against R. Although the er-
rors are considerable the behavior is not inconsistent with
that of the order parameter (see Fig. 16, sample A). This
behavior is thus consistent with our heuristic prediction
that 8- (S, ) a in three dimensions.

As described in the Introduction there is considerable
interest in the behavior of the three-dimensional Ising
model in small random fields and at low temperatures.
Our results show that the scattering is broader than a
Bragg peak and evolves smoothly into a Bragg peak as the
field is reduced. Although we cannot determine ~ with
any accuracy at the smallest fields, there is a marked in-

crease in the intensity of the wings of the Bragg peak for
fields as small as 0.17 T for x=0.26 and 0.8 T for
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FIG. 11. Amplitude of the Lorentzian squared 8/~ plotted

against R = [(T/T, ) +(H/H, )']' ' for Coo i6Zno 74Fi.

x =0.35. These fields correspond to temperatures

gp&H/ks of 0.48 and 2.3 K, respectively, which are much
smaller than the transition temperatures of 6.7 and 13.7 K
and of the energy needed to turn one Co + ion in the pres-
ence of only one of its antiferromagnet neighbors: 11.1
K. ' These results show that cooling the samples in these
fields which are considerably smaller than the other fields
in the system results in the crystals being in a magnetic
state with no long-range order at low temperatures. If
d, =3 then it would be expected' ' that at low tempera-
tures lr cc exp[ —(Hp/H) ], where Hp is some constant. In
Fig. 12 we show Iim plotted against 1/H for the x =0.35
sample, and the results clearly do not give a straight line.
We also test a power-law description in Fig. 13 and this
gives a much better description of the results apart from
the result at lowest fields which may be influenced by the
extinction problem discussed above. A least-squares fit
omitting this point gives

K=KpH
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with vH ——3.63+0.12, Kp=0.000069+0.000012, and X is
2.62, where a is in reciprocal-lattice units and the rnagnet-
ic fields in tesla. A similar analysis has been performed
on the results for the x =0.25 sample and gives
vH ——2.17+0.16 while ~p ——0.0047+0.0004, while X is
1.12; the fit is shown in Fig. 14. It is not too surprising

0.0001 I I I I

0.00 0.10 0.20 0.30 0.40 0.50
THE SQUARE OF THE RECIPROCAL FIELD

FIG. 12. Logarithm of ~ at 2.0 K plotted against 1/H'. A
straight line is to be expected if the lower critical dimension is 3.
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that the results for vH for the two concentrations are dif-
ferent because all the results are in the Lorentzian-squared
quasiordered phase for the x=0.35 sample whereas for
x =0.26 the fit was performed over the whole range of H.
It is more likely therefore that vH ——3.63 is the appropriate
"random-field exponent" for this system. There is also a
very large difference in the values of ac by nearly 2 orders
of magnitude. Such a large change cannot be accounted
for by statistical factors such as x or 1 —x. The effect of
the random field must increase very rapidly as the per-
colation point is approached. As discussed by Fahnle,
this probably reflects the highly ramified and hence
quasi-one-dimensional nature of the infinite network near
percolation.

Finally in Fig. 15 we show the low-temperature struc-

ture factor I(1,0,0}; that is, the intensity for Q=(1,0,0}
corrected for the finite experimental resolution as a func-
tion of magnetic field for both systems. The results for
x =0.35 are approximately linear apart from the point at
the lowest fields. When this is omitted a least-squares fit
to the form

O.OOOI
I.O

I I I I

2.0 3.0 4.0 5.0
I=IpH

MAGNETIC FIELD H (T)

FIG. 13. x at 2.0 K plotted against the applied field for
Co035Zn065Fz. The straight line is a fit which gives the ex-

ponent.

gives yH ——10.9+0.6. In the case of x=0.26 the three
points at the largest fields clearly are not part of the same
straight line and omitting these points gives yH ——8.0+0.6.

V. DISCUSSION AND CONCLUSIONS
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The main conclusion of the experiment is that the appli-
cation of a magnetic field whose energy is much smaller
than the exchange energy or kT& has a drastic effect upon
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FIG. 14. ~ at 1.85 K for Ccoi6Zn07P'q plotted against H.
The straight line is a fit to the results.

FIG. 15. Scattering for wave vector Q=(1,0,0) corrected for
the resolution as a function of the magnetic field.
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the phase transition and ordering of Co„Zni „F2. When
the system is cooled in a uniform magnetic field, the state
reached at low temperatures is not one of long-range anti-
ferromagnetic order. The scattering at low fields is dom-
inated by a Lorentzian squared with a width which in-
creases with increasing field. This Lorentzian-squared
term represents, we believe, a quasiordered random-field
state. Firstly, this is because the intensity of the scattering
at low fields is the same as that of the Bragg reflection
describing the long-range order in the absence of a mag-
netic field. This result holds not only at low temperatures
but at all temperatures below T~. Secondly, at large
fields, 1.2 T when x =0.26, the intensity of the
Lorentzian-squared term decreases and the system be-
comes a normal paramagnet. This critical field corre-
sponds to a single-site field energy of only about —,

'
Tx or

0.31 of the nearest-neighbor exchange energy.
The detailed behavior of the inverse correlation length

as a function of field is undoubtedly complex. In the
x=0.35 sample ~~0" with v& ——3.63+0.12, at low
temperatures. A different power 2. 17+0.16 was obtained
for the x =0.26 sample, but this latter result is dominated
by the results in the high-field paramagnetic region,
H & 1.2 T, and the results at low fields were of insufficient
accuracy to determine the limiting low-field behavior.

These results appear to be inconsistent with current
theories of the d =3 Ising model in a random field. Those
theories for which d, =2 predict long-range order at low
temperatures while the theories which give d, =3 suggest
that v-exp[ (Ho/H) ].—Our results, if simply interpret-
ed, would suggest that d, & 3.

There may be several reasons for the discrepancy other
than errors in the theories or the experiments. As men-
tioned in the Introduction, it may be that a uniform field
applied to a random antiferromagnet does not give the
same behavior as a random field applied to a uniform fer-
romagnet. The physics of random-field systems has been
found to be unexpectedly subtle and the effect of the ran-
dom exchange interactions and, specifically, vacancies
which provide a soft path for the domain walls may be
more severe than currently thought.

Another difficulty may arise because of the difficulty of
establishing the thermodynamic ground state at low tem-
peratures. We know that this system is frozen at 2.0 K
and so, if long-range order is the equilibrium state only for
temperatures somewhat below the freezing temperature,
then this state could not be sampled in the experiment.
The theories might then be correct but, so far as experi-
mental work is concerned, they are irrelevant to the
behavior in real experiments.

Birefringence measurements show a sharp peak at low
fields for these three-dimensional antiferromag nets.
Indeed the peak in d(hn)ldT, which is proportional to
the heat capacity, appears to be sharper in a field than for
H =0, reflecting a crossover in the heat-capacity exponent
a from —0.09 to -0.0. In addition, the temperature of
the peak as a function of field follows the theoretically
predicted changes in TN (b, T&-H r) quite well. In
Fe„Zn& „F2 a comparison of the neutron scattering re-
sults with the birefringence results shows that the peak
occurs at a temperature just above that at which ~ reaches

its minimum value. Our results indicate that the peak is
not associated with the development of true long-range an-
tiferromagnetic order. Current theories describe the break-
up of long-range order in a random field as due to the
presence of domains walls. Most likely these walls are suf-
ficiently far apart in the region probed by the
birefringence measurements that the ordering within the
antiferromagnetic domains gives a peak in the heat capaci-
ty with negligible rounding. The change in a suggests
that new critical behavior is being observed but, presum-
ably, this critical behavior is cut off by entry into the
domain-wall state. Extension of the birefringence mea-
surements to higher fields, especially in more dilute sam-
ples, would test this latter idea.

Clearly these experiments show that random fields
drastically change the properties of systems close to phase
transitions and prevent the establishment of long-range or-
der. The random fields may have an energy which is very
much less than kT& and yet produce a very large effect.
Since impurities in crystals can frequently produce ran-
dom fields, their effects may be more important than hith-
erto considered.

Finally, these experiments present a challenge to theory.
The theory should be extended to include the effect of
temperature when our experiments show unambiguously
that large effects occur close to T~ for the d=3 Ising
model. The theory should then be extended to consider
the establishment of the thermodynamic equilibrium state
at lower temperatures. Random fields produce large and
dramatic effects on the ordering and phase transitions of
d =3 Ising models and we hope this paper will lead to fur-
ther experimental and theoretical work on this difficult
problem.
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APPENDIX: PERCOLATION IN Co„Zn~ «F2

1. Experimental results

The neutron scattering from the magnetic fluctuations
in Co„Zni „F2 was studied for six samples with x nomi-
nally equal to 0.25. In two of these samples the magnetic
scattering observed for wave vectors close to the (1,0,0)
lattice point was weak and only slowly varying with the
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wave vector even at 1.2 K. This presumably meant that
the concentrations of these samples were so much less

than the percolation threshold that all the magnetic spins
were in relatively small independent clusters.

In each of the other four samples the results were quali-
tatively similar although different in detail and so we

describe the results for only two of the samples labeled A

and B. In each of these samples there was intense magnet-
ic scattering at the (1,0,0) reciprocal-lattice point at low

temperatures, the width of which was determined by the
experimental resolution. This scattering is indicative of
long-range order at low temperatures and its temperature
dependence is shown in Fig. 16. The intensity of the
scattering is closely proportional to T~ —T for each sam-

ple except that close to T~, where there is evidence of
rounding, presumably due to concentration fluctuations.
The onset of long-range order occurred at a similar tem-

perature between 5.5 and 7.0 K in each sample.
The diffuse scattering observed for a wave-vector

transfer Q=(1,0, —0.008) is shown in Fig. 17 for samples
A and B. It increases rapidly as the phase transition is ap-
proached and has a maximum at a temperature somewhat
below the onset of long-range order. On further cooling
the amplitude of the critical scattering decreases slightly
for sample A but at temperatures below 2.5 K increases
again. This increase in the critical scattering intensity at
low temperatures is unexpected. It also occurs in the
x =0.35 sample in the applied magnetic field. This sug-

gests that the low-temperature behavior for sample A may
arise from random fields possibly arising from impurities
or from dipolar interactions.

The diffuse scattering was measured in detail using
scans with wave vectors along the direction [(00] and

[00'] through the (1,0,0) lattice point. The diffuse
scattering was then analyzed assuming that it could be
described by a Lorentzian profile, Eq. (1). The results are
displayed in Figs. 18 and 19. The inverse correlation
length decreased as the temperature was reduced from 10
K and would appear to be heading towards zero at Tz.
Somewhat above Tz the inverse correlation length ceases
to decrease and is then almost independent of temperature
until possibly at low temperatures, below 2 K, when it de-
creases again. The amplitude A decreases with decreasing
temperature.

2. Discussion of results

As mentioned in the Introduction the initial objective of
these experiments was to perform a detailed study of the
percolation in a three-dimensional Ising system similar to
that performed for other systems. Unfortunately, the
crystal-growth problems made a detailed study impossible.
The results described above and shown in Figs. 16—19 are
in some respects unexpected but can probably be under-
stood if there is a considerable spread in T~ in different
parts of the crystal. Indeed, in an Ising system it is ex-
pected that the transition temperature increases very rap-
idly with concentration close to the percolation point, be-
cause the temperature is determined by the one-
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FIG. 16. Integrated Bragg intensity of the (100) magnetic lat-

tice point for two samples of Co„Znl „F2 with x =0.26.
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FIG. 17. Scattering observed for a wave-vector transfer of
Q=(1,0, —0.008) from two samples of Co, Zn& „Fz. The
wave-vector transfer was chosen to be close to the (1,0,0)
reciprocal-lattice point but not so close that the scattering was

contaminated by the Bragg reflection.
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perature for two samples of Co„Znl „Fq with x =0.26.

dimensional weak links which order as exp( Jlk~T). —
Specifically then Tv -ln(c —cz) so that a small spread in

concentration will produce a very broad distribution of
Neel temperatures; it is interesting to note that because of
the singular dependence of T~ on concentrations the peak
in the Tz distribution will come near the temperature ap-
propriate to the large concentration limit. This may ex-

plain why all samples which ordered had similar apparent
Neel temperatures. For a system with a distribution of
Neel temperatures it is known that an analysis of the criti-
cal scattering, such as that described above, gives a
nonzero value of a at Tz as we indeed observe. The
mean-field-like behavior of the intensity at the (1,0,0) re-

flection has two possible origins. First, the spread in Neel
temperatures tends to linearize the behavior near the mean

LIJ
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FIG. 19. Amplitude A of the Lorentzian critical scattering
for Co, Zn&, F& with x =0.26.

Tz. Second, for systems near the percolation threshold
the infinite network is highly ramified with many dan-

gling ends connected by one-dimensional links. These
dangling ends will come into registry with the backbone
only gradually with decreasing temperature. This could
produce the observed linear behavior. As shown in Fig.
18, between 10 and 7 K the inverse correlation length ex-
hibits behavior consistent with that expected for a
three-dimensional Ising model. We have argued above
that a. does not go to zero at ( T~ ) -6.4 K because of the
distribution of Neel temperatures. The diffuse scattering
below ( Tz) presumably arises from scattering from each
of finite clusters, dangling ends on the infinite network,
and critical fluctuations in regions with a reduced T~.

In conclusion, we believe that these results strongly sug-
gest that the inverse correlation length would decrease to
zero at Tz in a homogeneous Ising system, unlike the
behavior found in three-dimensional Heisenberg systems. "
We believe that the unusual results found in the Heisen-

berg systems are a consequence of the importance of dipo-
lar forces in these systems.
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