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A continuum interface model is constructed to study the low-temperature properties of domain

walls in the random-field Ising model (RFIM). The width of the domain mall and its surface tension

are computed by three methods: Simple energy accounting, dimensional arguments, and approxi-
mate renormalization-group calculations. All methods yield a surface tension which is positive at
sufficiently low temperature for sma11 random fields, h, provided that the dimensionality d & 2. The
lower critical dimension of the RFIM is thus argued to be 2. %hile effects due to discreteness of a
lattice are argued to alter some of the continuum results quantitatively, they do not change these

central conclusions. For d &2 the ferromagnetic correlation length of the RFIM behaves like

h ' " ash~0
—I

I. INTRODUCTION

In most problems of phase transitions, determination of
the "lower critical dimension" 1, (the dimension below
which the transition cannot occur) is accomplished by ele-

mentary arguments. In "frustrated" systems such as
spin-glasses, however, competing interactions render de-
tailed specification of the ground state extremely difficult;
calculating d, then becomes a formidable task. The fer-
romagnetic Ising model in a random magnetic field
(RFIM) constitutes a particularly irritating example of
this principle: For six years now theoreticians have
disputed whether, for the transition of this model into a
ferromagnetic state, d, is 2 or 3.' Given the existence
of several experimental realizations of the RFIM, notably
random antiferromagnets in uniform magnetic fields' "
and commensurate charge-density-wave systems' with
impurity pinning, determining whether the RFIM can ex-
hibit ferromagnetism in three dimensions (3D) is not
merely an academic exercise. '

The earliest analysis to predict d, =2 was the domain
argument of Imry and Ma. ' We briefly review that
reasoning now: Imagine creating a domain of linear size L
of down spins in a d-dimensional RFIM with exchange
constant J and random field strength h, assumed to be fer-
romagnetically ordered in the up direction. For large L
the surface-energy cost of the domain varies as JL"
while the field-energy gain grows like hL, there being,
statistically, (L )' more down than up spins in the
domain. For d —1yd/2 or d &2, the surface energy
dominates, making it energetically unfavorable to form
large domains of down spins and ensuring that the ground
state of the RFIM is ferromagnetic. For d g 2, on the oth-
er hand, the ferromagnetic ground state is unstable, even
for arbitrarily small h /I, to the formation of down drop-
lets of large size. One concludes that 1,=2. (Note that

the domain argument is inconclusive when d =2, though
it is typically assumed that the ferromagnetic state is mar-
ginally unstable to domain formation, a guess we will veri-

fy in Sec. III A.)

Though the domain argument is appealingly simple and
physical, a formal correspondence, established order by or-
der in perturbation theory, between the Ginzburg-Landau
representations of the RFIM in 1 dimensions and the pure
Ising model in (1—2) dimensions, ' suggests, since 1, for
the pure Ising system is 1, that d, =3 in the RFIM. One
is forced to reevaluate the domain argument in light of
this observation. How could it possibly be wrong? The
most likely potential flaw involves the neglect in the
domain argument of the "roughness"' of the interface be-
tween the up and down spins; the argument implicitly as-
sumes that the interface between domains is well defined
and "smooth, " i.e., that its width w remains finite even as
its length L goes to infinity. This is almost surely false
for d & 3 even at arbitrarily low T in the RFIM, since
the interface wanders (i.e., roughens) to gain random-field
energy. But how rough must the interface be potentially
to invalidate the domain argument'7 Presumably as long
as ut/L~O as L~ oo the interface is effectively smooth
even if to~ DD as L~ oo. Thus the validity of the
domain argument hinges on the ratio m/I. .

This suggests that one try to compute w/L by con-
structing and analyzing a model of a domain wall separat-
ing up Ising spins from down spins in the presence of ran-
dom fields. Such a study has utility beyond merely testing
the credibility of the domain argument: Having produced
a plausible model of the interface one can in principle esti-
mate from it the surface tension o. for the RFIM. Since cr

is, by definition, the difference per unit surface area of the
free energies of two RFIM's, one with periodic, the other
with antiperiodic boundary conditions, its behavior in the
thermodynamic limit distinguishes an ordered (in this case
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ferromagnetic) from a disordered (paramagnetic) phase.
Free energies in the paramagnetic state are independent of
boundary conditions, whereupon cr must be identically
zero; the ferromagnetic state, by contrast is characterized

by positive cr. To the extent that one can compute 0 reli-

ably, therefore, one can decide whether, in a given dimen-

sion, the RFIM can exhibit ferromagnetic order at low

temperature for small h; that is, one can determine d, .
In this paper we implement the program outlined in the

preceding paragraph by considering a "solid-on-solid"
model' for a domain wall in the RFIM. We analyze the
model in the continuum limit where lattice effects are ig-
nored and the interface regarded as an elastic membrane,
with a combination of dimensional arguments, elementary
power counting, and approximate renormalization-group
(RG) calculations. Our results, most of which were first
presented in a short note, follow (many of them were de-
rived independently by J. Villain ).

(1) Let b, = [h ],„, the average square of the random
field, and let J represent the exchange constant of the in-
terface model. For h«J and T«J, w diverges like
6' 'L" ' ' as L~ oo for d &5. Thus the interface is
indeed rough for all d & 5, but

g i/3L (2 —d)/3

so that ur/L ~ 0 as L ~ 0() for all d & 2. The domain ar-
gument is therefore not invalidated by interface roughness
for d &2; its prediction, d, =2, survives the domain-wall
wanderings. Two clarifying comments should accompany
this result: First, the domain argument considers only en-

ergy accounting; entropy effects are ignored. As such it is
valid at T=0 and implies only that for d & 2 the ground
state of the RFIM is ferromagnetic. Second, neglect of
lattice effects in our continuum-interface model almost
surely limits the possible applicability to the true lattice
RFIM of result (1.1). A similar phenomenon has been
elucidated for pure Ising systems, where continuum-
interface models' predict a rough domain wall at all
T&0 whenever d &3. Careful analysis' ' has shown,
however, that the effect of the discrete lattice is to produce
for 2 & d & 3 a transition (the roughening transition) at low
temperatures into a smooth phase characterized by w's

which remain finite as L~ Oo. For d & 2 domain walls in
the pure Ising model are indeed rough for all T&0, in

agreement with continuum theories. Presumably an
analogous situation obtains in the RFIM: On the lattice
there exists a dimension dz &5 such that for dz &d &5
the domain wall is smooth at sufficiently low T and b,
whereas for d & dz and b, & 0 the wall is always rough. At
present the value of di( is unknown. ' Although for
dR &d &5 our continuum result (1.1) is clearly inapplic-
able to the true lattice RFIM in the smooth phase (i.e., at
low 6 and g it provides an upper bound for the true ((). It
follows that u2/L must vanish as L ~ ao for d & 2 in the
lattice RFIM as well, whereupon the domain-argument
prediction d, =2 continues to hold.

(2) For T/J, 5/J «1, the surface tension o for our
model is positive in the thermodynamic limit for d &2.
Since cr &0 is the distinguishing feature of the ferromag-
netic state this implies that for d &2 the ferromagnetic
state at T=O predicted by the domain argument persists

for some range of T & 0. For d &2 we find o~ —((0 as
L~ ao even for arbitrarily small 6 and T. That cr be-
comes negative and actually diverges in the thermodynam-
ic limit is highly unphysical; it is presumably an artifact
of an approximation —the neglect of droplets and
overhangs (to be discussed in Sec. III)—in our interface
model. One expects that in the true RFIM, a=0 for
L = Do, 5 & 0, and all T whenever d & d, . We interpret the
divergence of (r in our model for d & 2 as a signal of the
instability of the RFIM against domain formation and
hence as further support for the conclusion that d, =2.
Our results for a are summarized as follows (oo being the
surface tension of our interface model in the absence of
random fields):

(1.2)

for d, respectively, greater than 2, equal to 2, and less than
2. These results are valid for 5«J, T « J, and L~ ((() .

(3) A simple RG scaling argument applied to the inter-
face model permits calculation of the maximum linear size

ga which a ferromagnetically ordered domain can attain in
the limit of small b, . This length, which naturally serves
as the limiting ferroinagnetic correlation length at small

—(d —d)
T, is simply ga- 5 ' . Since we assert d, =2,

t(
—(2 —d ) (1.3)

In particular, ga-b, ' for d =1, in agreement with exact
calculations on the one-dimensional (1D) RFIM.

(4) It is obviously iinportant to understand the extent to
which these results are representative of interfaces in the
discrete-lattice RFIM and not simply artifacts of the con-
tinuum approximation. To this end we consider a simple
discrete-lattice version of the continuum-interface model.
We argue that the effect of the discreteness is to change
(1.1) and (1.2), respectively, to

g J (2-d)

0 —cTp~ —6, Gf & 2

0 —Op —~~ ) 8&2.2 —d

(1.4)

(1.5a)

(1.5b)

Note that while these results look very different from (1.1)
and (1.2), the powers of L on the right-hand sides of (1.4)
and (1.5b) still change sign at d =2, leaving unaltered the
conclusion d, =2. Equation (1.3) likewise continues to
hold for the discrete model.

It is worth noting that the utility of considering inter-
face models to extract information about Ising systems
near their lower critical dimensionality has been recog-
nized for some years. Wallace and Zia' used such an ap-
proach to derive critical exponents for the pure Ising
model in (I+a) dimensions. Indeed, at least two groups
of authors ' have already constructed and studied inter-
face models in an attempt to describe the RFIM. The
starting point for these models is the Ginzburg-Landau
(P ) representation of the spin- —, RFIM, in contrast to our
discrete-spin approach. Using replica methods and super-
symmetry arguments to handle the random fields in their
respective models, the two groups ultimately achieve
unanimity in concluding d, =3. We comment on these
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calculations and their relation to our work and very dif-
ferent results in Sec. V

The organization of this paper is as follows. In Sec. II
we define the continuum model. Section III is devoted to
the dimensional and RG calculations, a derivation of the
results, a simple interpretation of them in terms of the
domain argument, and a discussion of the discrete model.
In Sec. IV we reconcile these results with perturbation-
theory calculations. Section V contains comments on
competing theories of the RFIM and their relation to our
work.

+ +
/

~ ~ ~ '~ ~ p ~ ~ ~ )( ~ p ~ . ~

+( ~ 'x ~ " + ~ ~
,/
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f(j) ~

II. INTERFACE MODEL

We are interested in the Ising model in d dimensions de-
fined by the Hamiltonian

H= —J g SSJ—gS;h;,
(ij ) i

(2.1)

where (ij ) sums over nearest-neighbor pairs on a cubic
lattice; h; are fixed uncorrelated random fields. Let

[h;],„=0,
[h;hi]„=65'J .

(2.2)

Our major concern is the effect of h; at very low tem-
peratures on the interface separating a region of up spins
from one of down spins. Therefore, we define an interface
model as follows. Let the system be divided into two re-

gions as shown in Fig. 1; S; is +1 if it is in the upper re-

gion and —1 if it is in the lower region. The boundary be-
tween the regions is the interface, whose position and
shape are regarded as the dynamic variables. It is speci-
fied by

+ + + +

—1
~ i ~

~ ( ~ ~ ~

~ ~

'&+1 '-,
i ~ ~ ~ ~ g ~

y=f(i), (2.3)

(f (i))'~ ~L, a)0. (2.4)

For the pure Ising model in the absence of the random
field

where i is the coordinate labeling lattice sites in the
(d —1)-diinensional horizontal space and y is the vertical
coordinate in Fig. 1(a). We set f(i) =0 along the boun-

dary of the interface; f(i) can be called the "interface pro-
file."

Note that this description of an interface differs from
what one would obtain by simply considering the RFIM
with "antiperiodic" boundary conditions. Imposing such
boundary conditions alone would give rise to configura-
tions [such as shown in Fig. 1(b)] which contain "drop-
lets" of the wrong phase within each domain and
"overhangs" of the interface. The former have been elim-
inated from our model by construction, the latter by the
requirement that f(i) be a single-valued function of i The.
hope (thus far unverified) is that neither of these omis-
sions materially affects results for interfacial roughness or
surface tension.

The conventional definition of roughness" is that for
any i, f(i) diverges in the limit of large L, i.e.,

3—d
2

(2.5)

in the rough phase. One must note that a rough interface
does not necessarily imply the disappearance of the inter-
face or the destruction of phase coexistence. In order for
the phase coexistence to be destroyed the surface tension

(c)
FIG. 1. Interface separating domains of + 1 (hatched) and

—1 Ising spins; (a) is on the discrete lattice with interface profile
y= f(i), where i labels columns; (b) on the lattice, shows
"overhang" of interface and "droplets" of wrong sign within
each domain; (c) is in the continuum limit, with profile y= f(x).
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must vanish, or equivalently,

a)1. (2.6)

H=J 4 'x 1+ 7

xgySx, y h x,y

S(x,y) =sgn[y —f(x}],
(h(x,y)h(x', y')) =bb(x —x'N(y —y') .

(2.7)

(2.8)

(2.9)

The first term of (2.7) is simply the total area of the inter-
face multiplied by J. The second is the random-field ener-

gy. Although this is a continuum model, we impose a
short-distance cutoff, a—:A ', to prevent ultraviolet
divergences in perturbation theory.

We can simplify (2.7) by adding a constant,

1 'xdysgn y h x,y

to H and obtain

H=J I d 'x[1+(Vf) ]'i

f(x)
+2 d x dyh xy (2.10)

a more convenient form. We now proceed to study this
model using a RG method similar to Wilson's first ap-
proximate recursion formula.

III. ESTIMATING SURFACE TENSION
AND ROUGHNESS

This means that the interface has to grow as thick as L it-
self in order to be destroyed.

For the analysis in this paper, it is convenient to use a
continuum model. We replace the discrete-lattice sites by
a continuum and regard the interface profile f(x) as a
continuous function of the coordinate x characterizing the
(d —1)-dimensional hyperplane transverse to y [Fig. 1(c)].
The interface is now regarded as an elastic meinbrane. We
simulate the discrete model by the Hamiltonian

HlT=H'lT'

J gd —lxt l+ q t t 2 i/2

f'((x')
+ I d 'x' I dy'h'(x', y'),

T =b-d+&T,

h'(x', y') = bh(bx, by ) .

From (2.9), one obtains a new 5,
b2 —dg

(3.2)

(3.3}

The coupling strength J stays fixed. The free energy per
unit area, i.e., the surface tension, cr(T, B, ), thus obeys the
transformation law

o( T g) b
—d+ lo(b 1 dT b2 —dg)— (3.4)

o'(T, I), )=b + o(b T,b'6)+era(T, A) .
(3.5)

We have ignored any new terms in the Hamiltonian which

may be generated by the elimination of the short-
wavelength degrees of freedom and so just keep the two
variables T and 6 at each stage. The task now is to calcu-
late cro and then repeat the transformation to obtain cr as a
series of contributions from successively longer scales of
interface variation. We shall do this approximately, fol-
lowing the lines of Wilson's original phase-space cell
analysis.

Let us expand f(x) and h (x,y) in terms of an orthonor-
mal set of functions Pi(x),

f(x}=gA(x)ei.

Now, to take into account the change of the short-distance
cutoff a, under the transformation, we need first to in-
crease it from unity to b by calculating the contribution to
o from variables describing short-scale variations of the
interface, i.e., shorter than b This .contribution will be
called ap. After the removal of these short-scale variables
and the scale transformation (3.1), the remaining variables
will again describe variations on scales longer than unity.
The transformation formulas for H and cr are thus

Ld —1

H(T, b )=— , H(T', b, ')+ oo(T,A),

A. RG calculations (3.6)

I Surface tensio. n

The RG procedure, a succession of coarse-graining and
scale transformations, is an efficient way to estimate
how the interface roughens to gain energy from the ran-
dom fields. Note that there is no length scale in the model
(2.10) besides the size of the system L and the short-
distance cutoff a, taken equal to unity in this subsection.
For the moment, let us forget about the cutoff and see
how the Hamiltonian behaves under the scale transforma-
tion

Equation (2.9) can be written as

(u (y)u (y'))=~a Wy —y'}. (3.7)

The Pi(x) are chosen to be "wave packets" with reason-
ably well-defined locations as well as magnitudes of
Vgi.(x) or "momenta. " The details will be discussed as
the calculation proceeds.

Now we write the interface profile and the random field
as

x ~ bx', y~ by', f~ bf', L~ bL' .

Substituting (3.1) in (2.10), one sees that

(3.1) f(x)=f0(x)+fi(x),
h(x,y) =ho(x,y)+hi(x, y),

(3.8)
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where fi(x) and hi(x, y) are the "slowly varying" parts
which are essentially constant over length scales shorter
than b, while fp(x) and hp(x, y) describe the variations of
f and h on scales between 1 (i.e., a) and b

The quantities fp(x) and hp(x, y) can be written as a
sum of wave-packet functions Pi, each of which covers a
region of linear size b or less. The slowly varying quanti-
ties f, and h, are the sum of other Pi's which are more
spread out. By orthogonality, we have

f Oo"(x)O'i' (x)d~ 'x=0, ij =1,2 (3.9)

where O'"—=Ii and 0' '=f. The subscripts 0 and 1 in

(3.9) denote quickly and slowly varying parts.
Now substitute h =ho+ h i and f=fp+f, in the Ham-

iltonian (2.10}. We obtain

tance b show,

f d 'x hp(x, y) = f d 'x fp(x) =0 . (3.12)

It follows that the last term of Eq. {3.11) vanishes, and
that

f d 'x f dyho{x,y)=0.
Equation {3.11) now simplifies to a sum of packet Hamil-
tonians, each of which has the form

Hob(fo fi)= f d 'x —(Vfp)

fi+fo
+ 2 f dyho(x, y)

I

H(f) =H(fp+f i )=H(fi )+Hp(fp f i ),
T

fo+f1

Ho(fo fi)= f d" 'x —(Vfo) +2 f dyho(»y)

(3.10)

fo+fi
+ 2 f dy hi(x, y) . (3.11)

1

We have approximated [1+(Vf) ]' by 1+—,(Vf) [a
simplification which will be justified just below Eq. (3.30)]
and dropped the term J f d 'xVfp Vfi. The task now

is to calculate the contribution to o from Hp(fp, f i) for
fixed fi. We shall calculate the contribution for each
packet independently. Over the region where a certain
packets sits, the slowly varying quantities fi(x) and
h i(x,y} can be considered as constants. The integration of
fp(x) or hp(x, y) over this region is therefore zero as ortho-
gonality [i.e., Eq. (3.9)] and the fact that the packets
comprising h0 are essentially localized over a linear dis-

Hi(q) =JAb q

A= —f d 'x(VP) b
b

(3.15)

A, the average of V over the packet, is roughly indepen-
dent of b, owing to the normalization (3.6) of P. The in-
dex 1L, is suppressed. Note that fp(x) is just qp(x) for this
packet. The second term of (3.14) is more complicated. It
1S

f, +el(~]
Hz(q}=2 f d 'x f dye(x}u(y} .

1

The only thing we know about u (y) is its statistical prop-
erty (3.7), from which we obtain

(3.16)

(3.14)

The x integration is over an area of linear dimension b,
i.e., over the spatial extent of a single small packet. For a
given packet, (3.14} can be written in terms of the coordi-
nate qi defined by (3.6). The first term of (3.14) is

([H2(q)] )=4 f d 'xd 'x'P(x)P(x') f dy f dy'Sly —y')b, =b lq lb' " 8

8 —=8 f dd 'x IP(x) I f d 'x'b ' "~ lg(x') Ie( IP(x')
I

—IP(x)
I

) .

(3.17)

(3.18)

H»=JAb '' —C
I q I

-'"b "+'"
J (3.19}

Note that since P is normalized, its magnitude
I P I

is pro-
portional to b ' " . Hence B, like A, is roughly in-
dependent of b.

In view of {3.15}and (3.17), we write (3.14) as

Ifol- lqlb
' ""-~'"J '"b" ""

b 1 —dE J—1/3g2/3b (2—d j/3
Ob

(3.20)

for C&0, and
I fp I

=Eps 0 for C&0.——The total
ground-state energy per unit area can be obtained by re-
peating the transformation many times to account for in-
terface fluctuations of progressively longer wavelength;
one generates a series

Here C is a function of q, random in both magnitude and
sign, of order unity. It will be different for different pack-
ets. The ground-state energy for a given packet is ob-
tained as the minimum of 00b. %ithout knowing the de-
tails of C as a function of q, we can only estimate the
magnitude of the ground-state energy E0b by minimizing

Hps of (3.19), takliig C as a coilstailt. Settlilg
~Hob/~lq

I
=0

lL

crp=L +'Ep J J'~ g Ki[h——(b —) ]
1=1

(3.21)

where IL =—lnL/lnb. Note that the value of b changes by
b for every transformation [see Eq. (3.3)]. Ki is a
non-negative random number of order unity.

It is clear from {3.21) that for d & 2 the series will con-
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CTpb = —6 T lnZb
(3.22)

verge; the surface tension is well defined and, for suffi-

ciently small 6, positive, indicating the existence of a fer-
romagnetic state at T=O. For d &2, on the other hand,
ap~ —ao as L~ 00, signaling the instability of the or-
dered ground state to domain formation. We conclude,
consistent with the domain argument, that d, =2, at least
at T=O. Note that for d=2, cd~ —ao as lnL. This
demonstrates the instability of the ferromagnetic ground
state in d =2, the one dimension where the domain argu-
ment provides no information.

For nonzero teinperatures, the surface tension con-
tributed by Hpb [Eq. (3.19)] is

tional to

T2(2 —d)/(d+ 1)g2(d —1)/(d+ 1) (3.27}

Thus for T/Tt, large the surface tension a goes from
5/T' for d just below 3 to l)),

/ for d just above 2.

2. Interface roughness

(3.28)
(b(2 —d)lg)i/3J —2/3b(5 —d)/3

From the results (3.20), we can estimate the interface
roughness by calculating

lL

f= g{()i,e) = gftb',
1 =0

Zb= dqe

From (3.19) one obtains

1-d 2

apy(T, E} b Epy —Tln
n.b

3J
(3.23)

where al is a random number of order unity. Assuming
that the al's are independent one has

1L

(f2) g2/3J —4/3 g b2(5 —d)l/3

l=l

for T«Ta=J ' 6 -Eps, and
t( 2/3J —4/3-(L ) (3.29)

ops(T, t(), )-—b' "Tln(Tb /J} C—b'

(3.24)

for T» Ta', C is a positive random number of order uni-

ty. In arriving at (3.24) we assumed that the average of C
in {3.19) is zero and calculated the C term in (3.22). The
total surface tension cr(T, 13.) is obtained through repetition
of this calculation for wave packets of progressively larger
size,

l,
a(T,E)= g apb(T(, 1( t),

1=1
(3.25)

where [see (3.2) and (3.3)] Tl=b"' 'T, ht=b" '13,.
Since Ta =J '/ 6 /, after 1 iterations T/Ta has become

Tt/T, =b "+')'"(T/T,-) .
I

(3.26)

Even for 6's so small that T/Ta is very large, Tt/Ta, de-

creases quickly with increasing I, becoming less than unity
when I reaches

1, —:3 ln(T/Ta)/(d+1)lnb .

Thus while it is appropriate to use (3.24) for apb in (3.25)
when 1 &l„one must use (3.23) when 1 &1,. One might
have been tempted to conclude d, =3 from the fact that
for d & 3, (3.24) substituted in (3.25) would not give a con-
vergent series for a at large 1. For sufficiently large 1,

however, (3.24) always gives way to the T=0 approxima-
tion (3.23) which, as we saw in (3.21), yields a convergent
series for all d & 2. We conclude that for low but nonzero
T and small t5„a{T, I3. ) is positive and finite as L ~ ao',

ferromagnetism can therefore persist at finite T in the
RFIM so long as d &2. This result is a consequence of
the strong irrelevance of the variable T [Eq. (3.2)] under
RG iteration.

Note that the dominant term in the series (3.25) occurs
for 1=1„where both (3.23) and (3.24) give a result propor-

where g(L)-L ' '/, lnL, and constant for d & 5, d =5,
and d & 5, respectively.

According to the usual definition of roughness, the in-
terface is therefore rough for d & 5. We note that

(f ) w L(2—d)/3

L L
(3.30)

FIG. 2. Section of interface of length b and height w(b).

For d p2, this ratio decreases for large L, so that the in-
terface is still well defined despite the roughness. This
conclusion is consistent with the result of the surface-
tension calculation, namely d, =2.

Note that according to Eq. (3.29) the typical height
w(b) of an interface of linear dimension b (Fig. 2) is
w(b)-13. ' b' ' . That is, Vf -w(b)/b-l(), ' b'
For all d &2, therefore,

~

Vf
~

&&1 even for arbitrarily
large length scales (b~ ao), provided 6 is small. This
justifies, for small random fields, our earlier approxima-
tion of [1+(Vf) ]'/ by 1+(Vf) /2.

It is worth emphasizing that [see Eq. (3.29)] in the pres-
ence of random fields [(f )],„-L ' '/' even at T=O
for d &5. In the pure Ising model, on the other hand,

(f ) -L for T &0 due to thermal fluctuations. Since
2(5 —d )/3 & 3 —d for all d, the field-induced wandering of
the interface always dominates the thermal wandering, re-
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fleetin the strong irrelevance [see Eq. (3.2)] of the tem-

perature in the RFIM.

Ql/Ji2 b2 —d(g/J2) (3.31)

Spins can be ferromagnetically aligned only so long as the
effective random field b, /J is small. The limiting length
b =(a over which such correlations persist is obtained by
setting tI), '/J' —1 in (3.31). The result

( g/J2) —(2—d) (3.32)

valid for 6/J «1, and in agreement with the domain ar-

gument, ' follows immediately. Note that for d = 1,
g-(l) /J ) ', which agrees with exact calculations on the
1D RFIM

For d=2, (3.32) provides no information about ga. It
seems reasonable to assume that the divergence of the
power (2 —d) ' in (3.32) as d~2 signals exponential

behavior, ga-e for some h0 in d =2. This result can
be obtained by writing (3.31) in differential form,
M/Bl =(2—d)h where b=e', and assuming that for
d=2 one has BE/Bi=A, /b, 0. Still higher terms [say of
O(b, )] in the equation for Bb, /Bl would give rise to
power-law corrections, i.e.,

3. Correlation length ga

The lowest-order recursion relation (3.3) for
6'=b "b„can be used to compute the maximum length

ga over which spins can be correlated ferromagnetically
when d &d, =2 in the RFIM for asymptotically small h.
The calculation is trivial. Noting that J does not renor-
malize in our RG scheme we write for the dimensionless
variable 6/J

energy cost is just Jbd —l+Jb w . The field-energy
gain is proportional to the square root of the volume
under theinterface, viz. , (hwb ')'/

T. he total energy is
then

2( 1/2
~ ~

1/2b(d —1)/2

(3.34)

[To compare this expression with (3.19), recall that there
the height of the interface was simply ((t)q), and that (I)

was normalized so that P —b ' " . Substituting
w b-(d ''/2q in (3.34) then reproduces the b, 5, and q
dependence of (3.19) identically. ] Minimization of (3.34)
with respect to w yields, not surprisingly,
w -6' J b" ' or)

t)(1/3J—2/3b (2—d)/3

b
(3.35)

O(J—) /3g2/3b 2(2 —d)/3
) (3.36)

in perfect agreement with (3.20). Again for il, small and
d &2,

~

Vf
~

&&1 even on the longest length scales
(b =L~ 00 ); this justifies the approximation

[I+(Vf)']'"-1+(Vf)'/2 .

Moreover, for small l) and d &2 the ratio w/b of the
thickness of the interface to its length is small, vanishing
as b becomes large. The domain argument therefore
predicts that interface roughness is negligible for d &2;
this justifies using the argument in the first place, thereby
establishing the self-consistency of its central result,
d, =2. As a further test of consistency one can compute
o=E /b ' from (3.34),

For small 6, o remains positive even on the longest length
scales, provided only d &2; this supports the notion that,
at least at T=O, ferromagnetism exists for all d y2 at
small A. The extension of this conclusion to finite T and
the statement that there can be no ferromagnetism even at
T=O for d =2 requires the approximate RG analysis of
the preceding section. It should be clear from the discus-
sion above that that analysis is simply the application of
the domain argument to an interface on every length scale.
This allo~s the domain argument to predict its own self-
consistency by accounting for the hitherto neglected
roughness of domain walls and providing an estimate of
surface tension. Its power and credibility are therefore
considerably enhanced.

g —x 0 (3.33)

for some exponent x, to the exponential.

B. Interpretation in terms of the domain argument

The crucial result (3.19), central to all our conclusions,
has a simple interpretation in terms of the domain argu-
ment reviewed in Sec. I. Imagine trying to estimate the
height w (b) of an interface of linear dimension b (Fig. 2),
using this argument. Let us first approximate the ex-

change energy cost J f d 'x[1+(Vf) ]'/ of the inter-

face [Eq. (2.10)] by J f d 'x[1+(Vf) /2] For the in-.
terface of Fig. 2,

~

Vf ~

-w/b, whereupon the exchange-

C. Derivation from dimensional arguments

Simple scaling arguments and dimensional analysis lead, for d &3, to an alternate derivation of the results of the
preceding subsections. To see this, consider the replicated version of the interface Hamiltonian (2.10),

n n—= f d' 'x (J/T) g [I+(Vf.)']'"—(~/T') g g@f.fp)min(If
I I(fpl )

a=1 a=1 P=1
(3.37)

Here 0(x) —= 1, —,,0 for x & 0, x =0, and x &0, respectively, the number of replicas n is to be set to zero at the end of any

calculations, and the random fields at each site have been assumed distributed according to a Gaussian distribution of
width (b, )'/ . Defining a rescaled field f =(J/T)'/ f one obtains
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r

n n

T
——f dd 'x g[ —,'(Vf )' ,'—(—T/J)(Vf, )'+O((TIJ)'(V f, )')] (—~/T'"J'") g g 8(f.f)3)min( Ifa I, Ifp I

)

a a=lP=1

(3.38)

In the low-temperature limit, the terms ( Vf),( Vf},. . . in this Hamiltonian can be neglected, since their coefficients are
at least of O(T/J). Since H/T is dimensionless, f, T/J, and 6/T / J'/ have physical dimensions L' d)/2, Ld ', and
L 'd+ "/, respectively. Now imagine computing (f ( x ) ) perturbatively as a power series in 6!T'IJ'/ . The inverse
lengths a '—:A and L ' serve, respectively, as ultraviolet and infrared cutoffs in each term of this expansion. On di-

mensional grounds alone one infers that (f ~( x ) }can be written

(f (x ) ) L 3 dk(g—L dl+))I 2/ T3/2J 1/2 /L ) (3.39}

for some function k.
To proceed further we must argue about the perturbation expansion for (f ~( x ) ) in powers of (b, /T' ). It is not even

immediately obvious how to generate this series from (3.38), which is nonanalytic in the field f . Noting, however, that
for any real number x,

~

x
~

=x8(x) —x 8( —x), where

8(x)= f e''2"/(q i e)—~9' i x

27Tl

(e is a positive infinitesimal), we write (3.38) as

dqdq' »n 9' ~+ q —q p-" (2iri )' (q ie)(—q' i E)— (3.40)

a form which readily facilitates the generation of graphi-
cal perturbation expansions. The graphs of model (3.40)
are complicated since the sinusoidal interaction comprises
arbitrarily high powers of the field f and hence produces
vertices of arbitrarily high order. This is not a complica-
tion of principle, however; the familiar sine-Gordon
theory [to which (3.40) bears an obvious similarity]
possesses the same feature, for example. Moreover, (3.40)
resembles any other theory of a single scalar field in that
the most ultraviolet-divergent element of any graph is the
single closed loop (Fig. 3) corresponding to the analytic
expression f d 'p/p in d dimensions. For d &3 this

loop is ultraviolet convergent and so, therefore, is any dia-

gram contributing to (f } (or any other correlation func-
tion). Thus (f~} has a finite limit as a~p. Equation
(3.39) then implies that for all d & 3,

w2( T p) 2) 2/3L 2(5 —d)/3 (3.42)

This is just result (3.29). Note that the foregoing demon-
stration involves the implicit assumption that

lim lim k(x,y)= lim lim k(x,y) .
X~ooy~O y~oz~oo

Strictly speaking one wants to compute w in the limit
T~ 0 for fixed a and L with a/L && 1, that is, one should
calculate lim„olim, „k(x,y). In deriving (3.42) we
have in fact calculated lim„ limz ok(x,y). It seems
plausible that the limits are indeed interchangeable though
we cannot prove it.

The application of dimensional arguments similar to the
above also provides a check of the consistency of results
(3.21}and (3.27). Specifically, for T/J «1 one has

k( 2) L(d +))2//T3 2/Jl /2p)

is finite, whereupon, for fixed a,

w =—(T/J)(f } TJ 'L k(&L' +" /T J' 0)

(3.41)

as L~ oo. From the fact that w must have a finite limit
as T~ 0 for L large but finite we infer that k(x, p)-x /

as x~0, whence

0 =J—TL (d 1)o(gy (d+1)/2/T3/2Jl/2 0/L),
(3.43}

FIG. 3. Most ultraviolet-divergent element of any Feynman
graph generated from (3.4Q). Solid line represents the propaga-
tor 1/p .

—ld —I )=(g (d + 1)/2/T3/2J 1/2) (3.44)

for some function cr. Suppose we now assume that 0. is
finite in the limit L~ oo', this is certainly true for suffi-
ciently large d, and yields, from (3.43),
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for some 0.. If a. is to have a finite, nonzero limit as

T~ 0 then o(x)-x as x~ oo, whereupon

(4—2d)/3g2/3 (3.45)

for some function X. The assumption that, for d &2
X(x)~ const as x ~ 0 then yields

L (4—2d)/3g3/2

consistent with Eq. (3.21) and the result d, =2.
At finite T we can invoke, for d &3, the ultraviolet fi-

niteness of the theory established earlier in this subsection

to conlude that cr(x) -x ' "/I +"as x ~ 0. The result

T2(2 —d)/(d+1)g2(d —1)/(d +1)

in agreement with (3.27), follows immediately from (3.44).

in agreement with (3.21). Note that, as expected, this for-
mula exhibits no interesting behavior at d=3. Only at
d =2, where the power of a [(3.45)] reverses sign and the
small-a limit of (cr —J) changes from ao to 0, does it show
any qualitative change at all. This is consistent with the
result d, =2: For d & 2 our assumption of the finiteness of
o. in the L ~ (x) limit has broken down. Indeed, since for
finite L and a, o must be finite as T~O, one obtains,
from (3.43),

0 J L (4—2d)/3g2/3y(& /L )

Jb d —1 +Jg d —2
W —5 1 /2

W
1 /2g ( d —1 ) /2

N (3.47)

Minimization with respect to w yields w-bb and a
corresponding surface tension o -J—hb . These are
just the results quoted in (1.4) and (1.5). While they look
different in detail froin the results (1.1) and (1.2) for (2. 10),
the crucial features indicating d, =2, viz. , that w (b) —b
for d =2 and that o is finite as b~ oo for d & 2 continue
to hold.

IV. PERTURBATION CALCULATIONS

The general analysis of the preceding section has shown
that perturbation series in powers of the random field will
not converge [see, e.g. , (3.21)]. On the other hand, calcula-
tions to lowest order in 6 are so simple that they can re-
veal some important details inaccessible to the foregoing
general analysis. In this section we calculate the surface
tension of the interface to first order in b in the
continuum-interface model (2.10).

mate the height w(b) of an interface of linear dimension b .
The exchange-energy cost from (3.46) should be well ap-
proximated by J(b '+b w). The field-energy gain
remains proportional to (b,wL ')'; the total energy is
then [cf. (3.34)]

D. Discreteness of the lattice A. Interfacial tension to 0(6 )

The analysis of the preceding subsections is useful only
to the extent that the continuum model (2.10) accurately
represents an interface in the true lattice RFIM. It is easy
to convince oneself that the Hamiltonian appropriate to
the lattice-interface model whose profile is described by
(2.3) is simply

From (2.1) we calculate the surface tension 0 to lowest
nonvanishing order in h;, viz. , O(h; ). The total free ener-

gy F, prior to impurity averaging, is F=Fo+F2, where Fo
is the free energy of the pure system, and to O(h; ),

F2 ———g h; h/X;//2 .

HD —JL +(J/2) y ~f(i) f(i )
~

(i,i')

f (&')

+gsgnf(i) g h(i, y) . (3.46)

Here

X;, =—((S,S, ),—(S;),(S, ),) .
1

/J (4.1)

y =sgnf (i)

Here i and i label lattice sites in the (d —1)-dimensional
horizontal space, y is the vertical coordinate in Fig. 1(a),
and g&,, , ) denotes a sum over nearest-neighbor columns i
and i' The first tw. o terms of (3.46) give the (standard)
exchange-energy cost of the solid-on-solid model' ': J
times the total number of bonds cut by the interface. The
final term is simply the discrete version of the random-
field-energy term in (2.10). The exchange energy consti-
tutes the most obvious difference between (3.46) and
(2.10). The continuum generalization of the exchange
terms of (3.46) would be

J d 'x 1+ V' x

rather than the J f [1+(Vf) ]'/ of (2.10). We now ar-

gue that this difference has no consequences of signifi-
cance.

The discussion is simplest in the "domain" picture of
Sec. III B. Following the argument in that section we esti-

To obtain 0 we subtract the [F2],„computed with period-
ic boundary conditions (i.e., with no interface) from that
computed with antiperiodic boundary conditions (i.e., with
the interface),

&o=(b/2L ) g (X"—I—") (4.2)

Here the prime indicates the presence of the interface. As
expected, F2 is directly related to the susceptibility 7;; of
the pure system. 7,'; —7;; should vanish if the location i is
far from the interface. Therefore the summation over i is
dominated by those spins located near the interface. At
low temperatures (S;)o is nearly 1, and so is ((S;)o) ex-
cept for i near the interface. Previous calculations on pure
systems' ' indicate that

The subscript 0 denotes the pure system. Averaging over
the random fields with (2.2) one obtains

[F2],„=—6 gX;;/2 .
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(S; )o ——m(y;/w ), (4.3)

where the function m(rt) approaches (S;)o for r) »1 and
—(S; )o for r) « —1. Here w is the "width" of the inter-
face and y; is the distance of the spin S; from the center of
the interface. Equation (4.3) applies for w and y; large
compared to the lattice spacing. F2 of (4.1) is proportion-
al to w. From (4.2) follows

For d &3 it has been argued' ' that w is finite in the
limit L~ oo, for d (3 there is a roughening transition
temperature Tti such that w~ oo for T& TR and w is

finite for T & Tz. More precisely, w -L ' ' or
(lnL )' for d & 3 or d =3, respectively, if T & Tz, Tti ——0
for d &2. Naively, then, it would seem from (4.4) that for
T & Tq where w is finite the random-field corrections to
Op are small so long as 6 is small. As we pointed out ear-
lier, however, this conclusion is almost surely an artifact
of the perturbation theory. That is, the w that appears in

(4.4) is the w appropriate to the pure system and is there-
fore finite at sufficiently low T for all d &2. Our strong
belief ' is that for any dimension of physical interest (i.e.,
d & 3) the random fields roughen the domain walls so that
w diverges even at T=O. Since this roughening of the
wall is invisible to the perturbation calculation, con-
clusions derived from (4.4) in the smooth phase (i.e., where
w is finite) can be extremely misleading. It therefore
makes sense to apply (4.4) only in the rough phase where
w~ oo as L~ oo, in which case

o —cro- hL " ', ——6(lnL )' (4.5)

for d &3, d=3, respectively. For d &3 the pure system
has no rough phase whereupon

0 —Op (4.6)

i.e., cr remains finite to O(h) as L ~ oo. The perturbative
results (4.5) and (4.6) are in perfect accord with the more
detailed conclusion (3.27): For d &3 the leading small
—dL correction to cr —o.

p is proportional to 6 ' " ' +".
The exponent 2(d —1)/(d +1) is less than unity for d & 3,
whereupon any attempt to expand cr —crp in integral
powers of 5 will give rise to divergent coefficients as in
(4.5). For d & 3 this exponent is greater than unity
whereupon the coefficient of the term proportional to 5 in
the perturbation expansion is finite, just as in (4.6). In the
marginal case d=3, the coefficient is very weakly (i.e.,
logarithmically) divergent.

To O(h) the response of each spin to the random field
is independent of all other spins. As the discussion of Sec.
III shows, however, the responses are not independent.
The long-wavelength parts of the random field induce col-
lective responses which are much weaker than (4.2) indi-
cates. That is, (4.3) [or (4.4)] is an overestimate of the ef-
fect of the random field.

For d=3, the result (4.4) is, nevertheless, not useless
since (InL)' is not a large quantity for any system of in-

0' —o'o-(6/T) f dy[m (y/w) m(—oo )]— Ch—w/T,
(4.4)

—C= f drl[m (rt) —m (~)] .

00

sg~ 6 9 e le
Kl q +g

(4.7)

reduces this calculation to a trivial Gaussian integral. The
results

y/m
(S(x,y) )o——m(y/w) =(2/ir)' J d7) e

(4.g)

where

d"-'k lw—:(f (x))o———JJ (2~)d k2
(4.9)

follow at once. As anticipated, w is finite only for d &3
[the k integral has an upper (ultraviolet) cutoff of course].
Finally then, (4.4) becomes

0 cro —
Ahd

—(L )/T'— (4.10)

where hd(L)-LI' '~, (InL)'~, and const for d &3,
d =3, and d & 3, respectively.

Note the divergence of (4.10) in the limit T~0. This
divergence would not have appeared had we evaluated
0 —oo with either (2.1) or the discrete interface model de-
fined near Eq. (2.3). It is easy to argue about the results of
doing the discrete calculation; at low T roughly speaking,

cr —ao — phd(L)e——J/T (4.11)

where hd(L)-L' and constant for d=2 and d&2,
respectively. Thus the discrete models have 0 —cro finite
as L~ oo for all d & 2 at sufficiently low T; the width w

also vanishes exponentially as T~ 0. We have already ar-
gued several times that these results are artifacts of pertur-
bation theory and do not give a reasonable picture of the
physics of the RFIM.

terest in the laboratory. The collective effect is not too
important.

In the remainder of this section we compute the form of
m (rt) and the temperature dependence of w. It is extreme-

ly difficult to calculate these quantities directly for the Is-
ing model (2.1); the utility of such a calculation is dubious
anyhow, given our cautionary remarks about the reliability
of perturbative calculations which predict that the system
is in the smooth phase. A more realistic picture is ob-
tained by evaluating (4.4) in the continuum-interface
model (2.10) which correctly ( we believe) predicts that the
system is rough at least for d (3.

To do this calculation we simplify the first term of
(2. 10) to

H =(J/2) f d 'x(Vf)

It follows from (4.1) and (4.2) that to evaluate cr oo—to
0 ( b ) we need only compute

(S(x y»o =—(sgn[y —f(x)])o

in the ensemble characterized by Hp. The identity
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V. CONCLUSIONS

A. RFIM for d=2+e

Our assertion that d, =2 for the RFIM suggests that
one might construct from the interface model (2.10) a sys-
tematic expansion for the critical exponents characterizing
the paramagnetic-ferromagnetic transition in (2+a) di-

mensions. Such an expansion would serve as the analog in
our theory of the (3+@)expansions of Refs. 3 and 4 and
the (I+a) expansion of Ref. 17 for the pure Ising model.
We have been unable to produce such an expansion, the
reason being that in contrast to the situation in Refs. 3
and 4, the RG equations for 6 and T are nonanalytic
functions of T at T=O beyond lowest order. This diffi-
culty manifests itself in the lowest nontrivial order of per-
turbation theory In. Eq. (4.10) for cr, e.g., the term pro-
portional to 5 diverges as T~O. Higher terms in the
series exhibit similar singular behavior.

B. Relation to previous work

In this section we comment briefly on the several exist-

ing papers which argue that d, =3. These calculations
start, without exception, from the Ginzburg-Landau-
Wilson (or {(l ) representation of the RFIM whereas we

have used discrete Ising spins. While it is conceivable,
given the complexity of the RFIM, that these two dif-
ferent representations belong to two universality classes so
disparate as to have different critical dimensionalities, this
possibility strikes us as extremely remote. We believe that
our arguments for d, =2 are quite compelling, but our
analysis is far from exact. We cannot assert categorically
that d, =2. It is therefore crucial to consider the rigor of
the conflicting theories: If they are correct our calcula-
tions must be in error. The point of view elaborated in

this section is that none of the arguments for d, = 3 is

completely convincing. We attempt to identify the ap-
proximations in each argument which are potentially
dangerous, trying wherever possible to make contact with
our own work. This discussion is suggestive rather than
definitive; the various approaches are so varied formally
as to obstruct direct comparison.

The original arguments suggesting d, =3 were due to
Aharony et al. ,

' who considered the Ginzburg-Landau-
Wilson representation,

H~= f [—2(VP) +(r/2){() +uP h(x)P(x)]d"x,—

(5.1)

of the RFIM. They argued that a class of diagrams of
(5.1)—the "tree-approximation" class containing no closed
loops —is [once the averaging over the random field h (x)
is performed] the most-infrared singular class and there-
fore controls the critical behavior of the theory. In d di-

mensions, moreover, these diagrams were argued to be
equivalent to those describing the critical properties of the
corresponding pure system [h(x) =0 in (5.1)] in (d —2) di-
mensions; the critical exponents of these two theories were
thereby claimed equivalent. The inference that d, =3 for
the RFIM then follows from the fact that d, =l for the

pure Ising model.
How could this argument fail? The only approximation

is the neglect of the "nontree" diagrams of (5.1). The va-
lidity of this omission is conveniently considered in the
framework of the RG. It is useful' to express the fully
averaged RFIM in terms of the variables u and w=ub, ,
where b, —= [h ],„. Elementary power counting shows that
in a standard momentum-shell recursion-relation calcula-
tion,

w'=b {w +
u'=b (u+ ),

(5.2a)

(5.2b)

—V' {()(x)+rP(x)+4ug'(x) —h(x) =0 . (5.3)

Through this representation the generating functional can
be neatly expressed in terms of a superfield, whence the
d~ (d —2) correspondence follows directly. This deriva-
tion, starting as it does from the tree approximation, in-
volves the same uncertainties for values of d significantly
below 6 as the original Aharony et al. argument.

Recently, Cardy has used the supersymmet6c formula-
tion to argue about the three-dimensional (3D) RFIM at
low temperatures. His idea is to treat the parameter r in

where b is the usual RG scale factor. Six is, from (5.2a),
the upper critical dimension for the RFIM. Since graphs
of {5.1) with closed loops are proportional to at least one

power of u when expressed in terms of u and w, they do
not contribute at the fixed point (u', w') if u'=0. Thus
the tree approximation for the RFIM and the ensuing
equivalence to the pure Ising model in two fewer dimen-
sions seem entirely reasonable provided u'=0. For d just
slightly below 6, where m* is small, the neglected higher-
order terms in (5.2b) are small compared to the single term
shown, the fixed point with u' =0 is stable, and the
d ~ (d —2) equivalence is on firm footing. As d decreases
and m* increases these higher-order terms might, in prin-
ciple, become large enough to make the u' =0 fixed point
unstable and invalidate the tree approximation. It has,
however, been shown' that (5.2b), linearized about the
(nontrivial) fixed point with u' =0, w'&0, is simply
u'=b u to all orders in perturbation theory in e—=6—d.
Thus in perturbation theory the u* =0 fixed point is stable
for all d, suggesting the validity of the d ~ (d —2)
equivalence. However, the possibility that nonperturbative
effects destroy this result below some dimension, say d,
less than 6, remains. The most natural candidate for a
value of d is 4, the dimension below which naive power
counting predicts that the P operator in (5.1) is a relevant
operator, but this is pure speculation. These observations
do not, of course, prove the failure of the d~ (d —2) anal-

ogy for any particular range of d, but rather indicate that
the connection has only been established order by order in
perturbation theory in e.

An alternate derivation of the d~ (d —2) connection,
due to Parisi and Sourlas, ' exploits the fact that the gen-
erating functional for the tree approximation for any
Ginzburg-Landau-Wilson Hamiltonian can be expressed
in terms of the solution of the classical (Ginzburg-Landau)
equation for that Hamiltonian; in the case of (5.1) that
equation is
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(5.1) as fixed and negative, independent of temperature,
and introduce the temperature by considering the partition—H /k~T
function Tre ~ . In this formulation each closed

loop in a diagram gives rise to a factor of T; in the T~ 0
limit in any dimension, therefore, one need only worry
about the tree diagrams in each order of perturbation
theory in u. As before, the trees lead, through (5.3), to the
supersymmetric representation, from which follows
d —~ (d —2); this correspondence is claimed to be exact for
the ground state, T=O, of the RFIM, which is then ar-

gued to be disordered by analogy to the pure 1D Ising
chain at finite T. However, for r &0, (5.3) has three solu-

tions even for h(x) =0. To arrive at the supersymmetric
representation it is necessary to average over all solutions
of (5.3). It is therefore unclear that the result d, =3 re-

flects a property of the true ground-state (i.e., lowest-

energy) solution of (5.3) rather than of a weighted average
of all solutions, some of which are presumably local maxi-

ma,. others metastable minima. It seems to us reasonable
that the inclusion of these extraneous extrema is respon-
sible for the result d, =3. The actual ground state may be
considerably more ordered than any superposition of ex-
trema.

It remains to consider the two field theoretic interface
models which have been used to argue d, =3. One, due to
Kogon and Wallace, starts from the tree approximation
to the generating functional for (5.1) and so is accom-
panied by the uncertainties discussed above. The other,
due to Pytte, Imry, and Mukamel, utilizes the replica
method to handle the random fields. The starting point is
the replicated version,

n

Hn= d x ~ V ~ +7 ~+20(
a=1

(5.4)

of (5.1), the random fields having been assumed distribut-
ed according to a Gaussian distribution of width b, . The
number of replicas n is as always, to be taken to zero. For
r &0 (where the system ought to order ferromagnetically if
it does at all) one constructs an interface model by inini-

mizing H„with respect to the field P~(x), subject to the
boundary conditions that P (z)~ +

~

r
~

l4u as z~ + oo, z

being the direction perpendicular to the interface. Denot-
ing by P*(z) the function which minimizes H„ tg~], one
obtains the desired interface Hamiltonian, at least in prin-

ciple, by substituting

z —f (x)
P,(z) =P*,

[1+(Vf )2]1/2
(5.5)

in (5.4) and expanding the result in terms of the interface
height variable f~ and its derivatives. If one assumes, as
do Pytte et al. , that the replica symmetry remains unbro-

ken, then the term b,P~P& of (5.4) does not contribute to
the equation for P in the n ~ 0 limit, whereupon H„ is
minimized by the field which minimizes the energy of the
corresponding pure problem,

P'(z) =Pz(z)—:(
~

r
~

/4u )'~ tanh[( —,
'

~

r
~

)'~ z] .

This result is puzzling. Obviously the interface will

wander in the presence of random fields to gain field ener-

gy; the function Pz cannot possibly minimize the energy
of the random problem. There are, however, no other
replica-symmetric minima of H„. ' This is suggestive
that for a proper description of the physics of the RFIM
one should study the possibility of broken replica sym-

metry, by analogy with spin-glasses, but at the moment
the usefulness of this idea is unclear.

Suppose one ignores this possibility and simply uses

(5.5) to write H„as a power series in f (x). Pytte et al.
do not, strictly speaking, follow this laborious procedure
but rather from ingenious symmetry considerations infer
that the resulting Hamiltonian must take the form

H„If ]
—f d x g [I+(Vf, )']' '+T ' g g [1+(Vf.)']'"g

a=& , p i [I+(Vf ) ]'
(5.6)

Had one the strength to carry through the calculation we
have outlined one could, via (5.5), compute the function

g(y) in (5.6) as an explicit power series in y . For purposes
of analyzing (5.6) with the RG, however, it is necessary
only to assume such a power series exists, not to know the
coefficients. The crucial observation is that the critical di-
mension d, of H„[f ] is determined by elementary power
counting on the most relevant (lowest-order) term,

(f ftt), of this expan—sion. The coefficient of this term
grows and shrinks, respectively, under RG iteration for
d (3 and d & 3; i.e., naive power counting suggests d, =3.
Thus in the calculation of Pytte et al. , d, =3 results from
the analyticity of g(y) at y =0. This fact lies at the heart
of the disparity between their results and ours.

To elaborate upon this point, we note that Mukamel

has argued that for largey, g(y) ought to behave like ~y ~.
If one puts g(y)- ~y ~

for all y in (5.6), thereby overturn-
ing the assumption that g(y) is analytic near y =0, one ob-
tains an H„[f ] identical to our interface model (3.37) for
which d, =2. Setting g(y)-y for all y, on the other
hand, produces a Hamiltonian similar in structure and
identical in its power counting properties and critical di-
mension (viz. , d, =3) to the interface representation of the
"random-rod" model —a RFIM in which the random
fields are correlated along straight lines in one direction.
Since the Imry-Ma domain argument' also predicts d, =3
for the random-rod model, it seems possible that the
choice g(y)-y in (5.6) produces a model whose physics is
essentially that of random rods rather than site-random
fields. [Since the symmetry properties of the random-rod
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model, which is, unlike (5.6), clearly spatially anisotropic,
are not identical to those of (5.6), however, this idea is

highly speculative. ) Suppose now one chooses a function

g(y) (such as g-lncoshy) which behaves likey and ~y ~

at small and large y, respectively. Should d, be deter-

mined by the large-y or small-y behavior of g? We are
biased in favor of the former; our prejudice is that d,
should be determined by the behavior of H„near the true
ground state of the system, i.e., at large values of f~.
[There is no dispute over the fact that f~ is very large in
the vicinity of the ground state. Indeed, Pytte et al. argue
that even at T=O, (f~(x)) diverges in the thermo-
dynamic limit for all d & 5. This is consistent with our as-
sertion that for a typical collection of random fields the
true lowest-energy interfacial profile of the random system
lies far from the pure system profile f~(x=0.] On the
other hand, it is not trivial to see how a RG calculation
starting from (5.6) with g(y)-ln coshy would support our
prejudice, which requires that the renormalized function

g(y) end up looking like ~y ~
rather than y after many

RG iterations. Hopefully further study will clarify these
intriguing questions.
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