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Mechanism of symmetry breaking in the spherical limit:
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The appearance of symmetry breaking in the thermodynamic limit is studied from a dynamical

point of view. We solved the time-dependent Landau-Ginzburg model in the spherical limit and
show that the finite-size system develops a phase-coherence phenomeoon analogous to that appear-

ing in lasers. Below the critical point of the infinite system the orientational diffusion of the mag-

netization becomes the slowest mode and its time scale is well separated from all the other relaxa-

tional mechanisms. As expected, this phase diffusion freezes in completely in the thermodynamic
limit.

I. INTRODUCTION

Symmetry breaking in statistical physical systems is

usually understood as the separation of the phase space
into equivalent regions. The system moves from one re-

gion to the other in a time much greater than the typical
observation times, and so the ensemble averages are mean-

ingful only if they are restricted to one of the equivalent
regions. As a consequence, some averages which would
vanish by symmetry requirements might assume nonzero
values and this is referred to as symmetry breaking. '
Within such a broad definition symmetry breaking takes
place not only in systems with infinite degrees of freedom

displaying phase transitions, but also in systems in which
an instability phenomenon is connected with only a finite
number of degrees of freedom. In the case of phase transi-

tions, the concept of symmetry breaking becomes unambi-

guous once the thermodynamic limit is taken, because in

that limit the transition time between the different regions
of the phase space is infinite.

This general picture can be easily understood in the case
of Ising-type ferromagnetic models by thinking of some
effective free energy as a function of the magnetization
(M). Above the transition point (To), the free energy has
a single minimum at M =0. Going below Tp, two symme-
trically positioned minima develop which are separated by
a barrier, the height of which is proportional to some
power of the volume of the system ' so once the system
finds itself around one of these minima it will stay there
forever in the infinite-volume limit ( V~ oo ).

The free-energy barrier explanation does not work when
a continuous symmetry is broken. In such a case the ef-
fective free energy depends on the absolute value of the
magnetization vector M=

~

M and as for Ising fer-
romagnets, below Tp a minimum appears at some macro-
scopic value Mp. There is no barrier, however, between
states which differ only by the orientation of the magneti-
zation. This continuous degeneracy and absence of barrier
is well known and has been exploited to establish general
results as the Goldstone theorem ' and the absence of
homogeneous ordering in low-dimensional systems. In

order to understand the mechanism of symmetry breaking
in this case, one must explain how the diffusion of the

phase of M slows down as the thermodynamic limit is ap-
proached.

There is at least one simple system where the diffusion
of phase is understood. We are referring to the single-
mode laser whose time evolution is effectively described

by a particle undergoing an overdamped motion under the
action of a stochastic force in the potential shown in Fig.
1. The two degrees of freedom describe the slowly varying
part of the electric field, the distance from the origin being
the square root of the intensity of the radiation, awhile the
angle y denotes the phase of the electric field. Above the
threshold the intensity becomes macroscopic and the
asymptotic motion is described by the free diffusion of the
particle along the potential valley. Now, the slowing
down of the phase is a simple consequence of the fact that
the particle moves under the influence of a microscopic
noise along a circle whose radius is macroscopic. The re-

sulting phenomenon of very slow change of the phase is
known as phase coherence.

:Eg

FIG. 1. Potential F as a function of the two components E, ,
E2 of the slowly varying electric field for a single-mode laser. y
is the phase of the field.
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The phase transition in the isotropic n-component
Ginzburg-Landau model for n )2 can also be viewed as a
phase coherence phenomenon since below the critical
point the orientational motion of the magnetization
freezes in as the infinite-volume limit is taken. We argue
that the freezing in is a direct consequence of the estab-
lishment of the macroscopic value of the length of the
magnetization vector, similar to the case of the laser
which can be related to the Landau-Ginzburg model with
n =2. Our argument is based on the results we obtained in
the spherical limit (n~oo), where the laser picture is
shown to be still valid.

The difficulty of investigating the freezing-in lies in the
treatment of the dynamics of a finite-volume system and
in the following of the changes in the relaxational proper-
ties as V~ oo. We choose to study the purely relaxational
time-dependent Ginzburg-Landau (TDGL) model in the
n ~ op limit because it has long been recognized that the
resulting time-dependent spherical model has relatively
simple relaxational properties. ' As it turns out, this
feature of the model is maintained in the finite-volume
case as well.

In order to have as close analogy as possible with the
laser case, first we treat the TDGL model by decoupling
the homogeneous mode of the system. This is then an n-
component generalization of the laser model and describes
systems where the decoupling is physically possible, such
as in some autocatalytic systems" where n might take ar-
bitrary values. The generalization has some pedagogical
appeal too, since the volume dependence of its relaxational
properties are transparent (Sec. II). It should be noted,
however, that in this model all the fluctuations disappear
as V~ac, so its time evolution becomes deterministic.
For that reason one might question the validity of even
the qua1itative conclusions about the freezing in of the
phase diffusion. As it turns out, however, the inclusion of
all the modes of the system (Sec. III) does not alter the
picture obtained from the simple model. As usual, the
fluctuations only shift the instability point and make the
effect completely disappear below certain spatial dimen-
sion which is two in this case.

S&(q, t)= —[(q +rQ)SJ(q, t)]
n

+up, g S, (q', t)S, (q", t)
p2

&Sj(q —q' —q", t)+r)j(q, t) .

(2)

S&( x, t) = —ge' ~
' "Sj( q, t),J 0 y

q

(3)

where q—:Iq, a= 1, . . . , nj and q =2rrk IL with k tak-
ing integer values.

The random force rt; is Gaussian-Markoffian,

(rj;(q, t)rj, (q', t') ) =eV5,5;,5(t t'), — (4)

with @=2k&T, T being the temperature. There is a variety
of models which reduce to Eq. (2) in the continuum limit.
The parameters ro and u are related to the original param-
eters and usually depend on the temperature. Here we
shall adopt the view that ro and e are two independent
control parameters and we choose u to be u = 1/n.

Assuming that the amplitude of the q =0 mode is mac-
roscopic,

S;(q=0,t)= Vo;, (5)

and that it decouples from all the other modes, Eq. (2)
yields

1
0'( = — rQ+ g 0't 0'j +7)Jn.i=1

(6)

where the strength of the noise is now inversely propor-
tional to the volume

( 'g ' ( t )i)j ( t '
) }=EQ5~j 5( t —t ' ), eQ =

Here S&(q, t) is the Fourier transform of the jth com-
ponent of an n-component field S(x,t)—:[SJ(x,t),
j=l, . . . , nI

II. SPHERICAL LIMIT OF THE LASER
INSTABILITY

The transient radiation phenomenon in the single-mode
laser is usually understood in terms of the following
Langevin equation which describes the time-evolution of
the slowly varying part of the electrical field in the laser
cavity:

Ej bEJ (a E') +rjj, —— —

where Ej(j =1,2) is the suitably scaled electric field, and
the parameters a, b and the strength of the noise term can
be expressed through the parameters of the laser. '

In order to relate Eq. (1) to the n =2 case of the TDGL
model, let us write down the Langevin equation defining
the latter in a finte volume (V =L~) with periodic boun-
dary conditions

n

rItl ro+( —gv; r+1'=( tr)=r
i=1

and of the magnetization

m(t)=(o, ) .

(9)

(10)

The averages are, as usual, over the initial conditions and

As can be seen, for n =2 Eq. (6) is just the laser equation
[Eq. (1)].

The study of the properties of Eq (6) is si.mplified in
the spherical limit (n~ao ) because in that limit the fluc-
tuations of the modulus squared of [o; ] normalized by n

I =- —go;2=1" 2

n.i=1

disappear. ' So I can be replaced by its time-dependent
average value and one can easily write down the equations
governing the time evolution of the inverse susceptibility



2584 F. de PASQUALE, Z. RACZ, AND P. TARTAGLIA 28

t'e 1

2(ro+ 2eo)'
(14)

which becomes small in both the "ordered"
[rp « —(eo)' ] and in the "disordered" [rp »(eo)' ] re-
gion as shown in Fig. 3.

For t &r„,the relaxation of m is determined by r and
from Eq. (11)

&oc f'o

(15)

FIG. 2. Stationary value of the susceptibility r, as a function
of rp for cp=10 and ep ——0 for the homogeneous mode (right
curves) and @=10 and a=0 with all the modes included (left
curves).

the noise, though one should note that the time evolution
of I (t) is deterministic, ' so its average is taken only over
the initial conditions. The equations are as follows:

m= —rm,

r = —2r(r —rp )+Co . (12)

The stationary properties of this "reduced" spherical
model defined by Eqs. (11) and (12) are simple; the mag-
netization vanishes and the stationary value of susceptibil-
ity is given by

r. =
2 [ro+(ro+2~o) (13)

100

In Fig. 2 r, is drawn for ep
——0 and ep ——10 . As can be

seen, in the V~ao limit (op=0) the system undergoes an
instability at rp ——0 and the ordering consists of changing
the stationary value of I, =r, ro fro—m I, =0 for rp &0 to
I, =

~
ro

~

for ro &0. This instability gets smeared out by
the presence of the noise (finite volume) but the main
feature remains: Around rp 0 there is a steep change in
the behavior of I, from being proportional to the noise
(I, =ep/ro for ro &0) to being independent of it (I,=

~

rp
~

for rp & 0). The change takes place in a region

~
pro

~

&(eo)'
The change in I, affects the relaxational properties of

the system drastically. As one can see by solving Eq. (12),
the relaxation of r (t) [and consequently of 1(t)] is

governed by a single relaxation time

In the ordered region —which will be our concern in the
following —the two time scales are well separated (Fig. 3)
with

2fr o/

e ' 2[r (16)

and writing Eq. (12) in the form

r (t) —rp Eodt'r(t') = —,
'

ln
r(0) ro —2 o r(t') ro—(1S)

we arrive at the following result:
1 /2r (t) rp-

m(t)=m(0)
r (0) rp— &0 t

~ dt
2 "p r(t') ro—exp

This expression can be made more transparent by using
the fact that r (t) relaxes in a time v;,

' 1/2
r (t) ro-

m (t) =m (0)
r 0 —ro

&o ' dt'
exp

2 o r(t') rp—

The sudden increase of r is a direct consequence of the
increase of I, . To understand this, imagine the field to be
freely diffusing on an n-dimensional sphere of radius
R=v nl, . The initial phase coherence is then lost (i.e.,
the magnetization will be relaxed to zero) when the aver-
age square displacement is of the order R =nl, . This im-
plies that by this time every component has an average
displacement I, . Since in the ordered region I, =

~
rp ~, the

result for r [Eq. (16)] is consistent with this picture of
diffusion with the strength of the stochastic force Ep giv-
ing the diffusion coefficient.

It is also easy to discuss the initial-time behavior of the
magnetization. From Eq. (11)we have

m (t) = rn (0)exp —J dt'r(t ') (17)

ep(t —r, )
&(exp

2(r, —ro)
(20)

50

t'p

I

0.4

FIG. 3. Relaxation times of the susceptibility ~„and the mag-
netization ~ as a function of rp for the homogeneous case.

The long-time decay of m (t) is given by the second ex-
ponential and since r «

~
rp ~, it corresponds to the dif-

fusive behavior discussed above. The initial relaxation of
rn (t) can be very different according to the initial value of
r(t) It is remarkable. , however, that if r(0) is not very far
from its equilibrium value, i.e., r(0) «

~
ro ~, then m(t)

approaches a value that depends only on m(0)/1(0),
which can be considered to be the cosine of the initial
"phase" of the field
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r in the magnetization forFIG. 4. Metastabilitylike behavior in

The lowest curve refers to an initial statevarious initial values. e owes
close to the unstable point.

III. DYNAMICS OF THE SPHERICAL MODEL
IN A FINITE VOLUME

(22)

t the =0 term is

equation in a form closer to the in mite-vo um
introduce

We extend now our treatment to t ee case where all the
modes are coupled, q.E . (2). First we establish some re-

ffect of the finite volume on the static prop-
i ili& i fierties o ef th system. The inverse suscepti i i y r

14.the following self-consistency equation

e e, l

Vr 2V +r,2 re

re —rp
m;„=m(0)

(0

1/2
—eo/4r ~

e

, 1

2V
q

(23)

~
rp I m(0)

I
[ (0) ]1/2 i(0) Erq

q'(q'+r, )

For rp &re t e on yth ly positive solution of this equation is o
the order of 1/Vand for large volume we have

re =rp —rp +
re've at the result that the relaxation of the mag-

approaches its equi i
then the orientational diffusion takes p ace on

Since t e two ime
etastable ifhe behavior of the systems appears metasvolumes, t e avior

t «~ . One can see this
earl on Fi . 4 where the system seems to be ordere on

necessarily as we approach the instability point r p

d are of the same order (see Figs. 3cause there ~, an v. ar
and 5).

n disa ears also farThe metastability phenomenon isapp
below the instability point if the sys stem is around or at an

In our case the state cr;unstable state initially. n
i . 1 forI -0, r(0)-rp] wi2

] ill be the unstable one (see Fig. or
to the unstable point small fluctuations w'ill

11 dgive rise to large changes
'

pin the ase an, a
of the hase limits t e in er-quence, the initial spread o p

ed' 1 esof themagnetization(see Fig. . isismediate va ues
well-known am-nothing e se ah' 1 than a manifestation of the we-

eca in from anplirscation o'f ' f fiuctuations in a system decaying
unstable state.

(25)r
2V(r~ —rp)

For rp &pre, oon the other hand, r, becomes

(26)re rp,

a art from corrections of the orderr of 1/V. Therefore,
iform mode case one can see a sudden

changeinthebehaviorofr, (rp). Ifweremem r a
normalized modulus squared of the field is

N

I (t) =—g —g(S;(q, t}S;(—q, t)),
=, v-l=

q

(27)

and in equilibrium it is related to r, r p by

le =re rp s
2=

1 a ain the geometrical picture worked out inwe can app y again e
Sec. II. e can is~ W distinguish a disordered region

I —1/V and an ordered region (rp((rp, ,where, — a
The transition between these reg're ions can bel rp . e

F' 2 hich shows also that the e ect of the fi-seen on Fig. , w ic
r to the uniform mode case.nite volume is very similar to

Turning to dynamical propert' ies let us consider q.
~ ~

1 limit. To derive an equation of motion,in the spherica imi .
b taken overconsiderations introduc p reviously can e

1 tte1
' thecaseof finite volume. Assu me the initia s aasoin ec

e of one of the com-to be a homogeneous one, the average o
f ld to be macroscopic and of thepononents (i =1) of the ie o

order n ' . Then we can write

(29)S,(x,t}=(V~n)m(t)+L(x, t),
t =(Si x, t))/VVn with the angular brackets

e over the noise and the initialdenoting again the average over e no

(2g)

2

m{t j

6 8 t

disappearance as the instability

0 2

FIG. 5. Metastability and its
point rp =0 is approached.

which becomes the critical value o
~ ~

r in the V~00 case.
Then Eq. (22) takes the form

(21)



2586 F. de PASQUALE, Z. RACZ, AND P. TARTAGLIA 28

m(t) = —1(t)m(t), (30)

where

conditions. Then averaging Eq. (2) with j=1 and q=O
and collecting the terms of the order n ', we obtain

where the q =0 terms are separated explicitly. Of course,
since y(t)=m (0)lm (t) and m(t)~0 as taboo, we ex-
pect y(t) to be an increasing function. The asymptotic
behavior will be determined by the only singularity (a sim-
ple pole) on the Re(z) )0 half-plane located at

I (t) =r, +m'(t)+ —QC(q, t),
V

q

(31)

and C(q, t) is the Fourier transform of the transverse
correlation function C(x, t) = (S;(x,t)S;(O, t) )
(i=2, . . . , n}

The equation for C(q, t) is obtained by solving Eq. (2)
for i&1, under the assumption that the transverse com-

ponents of the field S;»(x,t) are of the order of n Th. e
result is

zo =21' ~ (38)

m (t) 1 r,r-
m (0) v'y (t)

(39)

One can obtain this result by noting that the condition of
vanishing of the denominator of Y(z) coincides with the
static self-consistency equation provided z/2 is replaced
by r. Thus we arrive at the result that the long-time
behavior of m (t) is given by

C(q, t) =C(q, 0)exp —2 f ds[q +I (s)]

+ef dt'exp 2f—ds[q +I (s)] (32}

and the asymptotic behavior is completely analogous to
the homogeneous mode case. Since for ro « ro„
I, =

~
ro ~, the relaxation time can be expressed as

Now from Eqs. (30)—(32) one obtains a single nonlinear
integro-differential equation for m,

7
1~

2(r~ —ro}V 21

e/V
(40)

2

m(t)= — ro+m (t)+ —QC(q, O)e
m'(0)

i pq (( (') m (t)
( )

2 (t
m'(t )

q

(33)

It is important to recognize that a simple change of vari-
ables

m (0)
y t =

2m (t)
(34}

linearizes Eq. (33),

—2 2E
—,'y =roy+m (0)+—QC(q, O)e

V
q

+ gf dt'—e "" 'Iy(t'),V„
q

(35)

Y(z) =f dt e y(t), (36)

we obtain from Eq. (35)

Y(z) =

1 m (0) C(0,0) 1,C(q, O)—+ + ' +—
2 z Vz V z+2q2

q

z e e, 1ro—
2 V~ V z+2q

q

, (37)

and then it can be solved by Laplace transformation. In-

troducing the definition

and can be interpreted again as the orientational diffusion
of the magnetization.

It is important to understand whether the orientational
diffusional mode is separated from all the other relaxa-
tional mechanisms in the system. This can be examined
by looking at the other singularities of Y(z). For finite
volume they are all simple poles on the Im(z) =0,
Re(z) &0 axis and the distance between the poles is of the
order q -L . The short-time behavior of y(t) is related
to the large-z form of the Laplace transform. For t «L
the region of interest is z))L where the sums in Eq.
(37) can be replaced by integrals, and as a consequence the
initial-time evolution of the system is the same as in the
infinite volume. The volume starts to be important for
t =L . Since the pole on the negative half-plane closest to
the origin is also at a distance of the order of L, we see
that for times t))L all the relaxational processes died
out, except the orientational diffusion which has a time
scale r -L [Eq. (40)] well separated from the other ones
for d) 2. So for observation times At «L" we expect
metastablelike behavior, analogous to the homo-
geneous-mode case (see Fig. 4). However, this metastable-
like behavior appears only above dimension d =2, i.e., the
same condition under which the infinite system has a
phase transition.

Finally we mention that the above results imply that the
finite-size anlaysis of the Monte Carlo simulation of sys-
tems with broken continuous symmetry should be carried
out especially carefully. In order to extract those proper-
ties of the system which remain intact in the thermo-
dynamic limit, one must choose an observation time which
is much larger than the relaxation time of the observed
quantities but much smaller than the characteristic time
of the phase diffusion. In principle, the phase-diffusion
problem can be eliminated by increasing the size of the
system. In reality, however, the relaxation times of the
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system might be very large, as in spin-glasses for example,
and then the size needed to separate the phase diffusion
from other processes might be prohibitively large. In such
cases one must devise other methods to separate the phase
diffusion part of the relaxation. "
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