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The ground state of the discrete sine-Gordon equation, used to model a one-dimensional solid in a
periodic potential, is examined in the incommensurate region. The behavior of the system near the
transition from an unpinned to a pinned phase (first discussed by Aubry) is investigated. A disorder
parameter and a correlation length are defined and shown numerically to obey scaling relations on
both sides of the transition. The system studied is equivalent to the “standard map” of dynamical
systems theory, and this relationship is discussed. In particular, our results extend the scaling
behavior found by Shenker and Kadanoff into the “chaotic” regime.

I. INTRODUCTION

Many solid-state systems, among them charge-density
waves, adsorbed monolayers, and incommensurate alloy
structures, exhibit competing periodicities.! Quasiperiodic
states also arise in many dynamical systems and have been
extensively studied recently, both experimentally and
theoretically.

In this paper we examine a model system which
displays a transition between two types of incommensurate
ground states. This simple, classical one-dimensional
model is a collection of balls connected by Hooke’s-law
springs between nearest neighbors all sitting in a
sinusoidal substrate potential at zero temperature. This
model (the discrete sine-Gordon equation) was introduced
nearly 50 years ago by Frenkel and Kontorova.® The po-
tential energy of the system is
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Here Z; is the position in space of the jth ball, a the
equilibrium length of each spring, b the period of the sub-
strate potential, K the spring constant, and ¥ the depth of
the substrate wells.

The force on the jth ball is
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(1.2a)

We look for equilibrium positions of the balls, which in-
volves solving the set of equations

fj=0

for all j. We will particularly be concerned with the
ground states of the system, rather than general extrema

(1.2b)
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of the energy.

This system has been studied in some detail.* Frank
and van der Merwe’ solved the continuum approximation
to (1.2) and found solutions that correspond to solitons.
More recently, Aubry® has studied the discrete model; we
will describe and interpret some of his results.

We note that Egs. (1.2) may be rewritten in a simpler
form (which we will use henceforth) by rescaling the vari-
ables

N=% %"
w |7
T
V=|="1|—=—,
b | K
to yield

Xj 1 —2X;+X;_,—VsinX; =0. (1.3)

We wish to investigate properties of the ground state of
the balls and, in addition, the effects of a uniform applied
force (caused by, for example, tipping the corrugated table
on which the balls rest, if the potential is gravitational).
In particular, for an infinitesimally small force, under
some conditions the balls roll down the incline, while in
other situations they remain stuck in the wells. The first
case we call “unpinned” and the second “pinned.” We
will show in the next section that whether or not the balls
are pinned depends on the phonon spectrum of the system
with no applied force. As we shall see, if a zero-frequency
phonon exists, the balls roll; otherwise they are pinned.

A set of equations equivalent to Egs. (1.2) and (1.3) also
have been studied from a dynamical systems point of view
where the spatial index j is thought of as time. By defin-
ing

;=X
ri=X;—X;_y,
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Eq. (1.3) can be written as discrete time (j) evolution equa-
tions

(1.4a)
(1.4b)

riy1=rj+Vsin; ,
6j+l=9j—+—r]-+l ,

which are the defining equations for the so-called standard
map.

This map is a model for the time evolution of a
sinusoidally driven pendulum. It has been extensively
studied by Chirikov,” Greene,! Shenker and Kadanoff,’
Mackay,'” and many others.!" We will discuss this map in
Appendix B. We note here that from a dynamical systems
point of view, all the solutions of Egs. (1.3) or (1.4) are im-
portant, but the existence of a Hamiltonian in our case
selects out a special set of states which are the ground
states. Since it is hard to make general statements about
the dynamical system in the large-V regime where most of
the states are chaotic, the standard map has been investi-
gated primarily in the small-V regime. In our case, the
condition that solutions of Eq. (1.3) be ground states en-
ables one to make physical interpretations of the behavior
of the system of balls for all values of the potential, thus
interpreting previous results for weak potentials and ex-
tending them into the strong potential regime. In spite of
claims in the literature to the contrary,'? the states corre-
sponding to chaotic solutions of the time evolution in Eq.
(1.4) are never ground states of the system. This brings us
to the definition of ground states.

The natural spacing a enters the potential energy in Eq.
(1.1) only as a pressure (or chemical potential) term
P = — Ka which couples only to the density or the average
particle spacing and does not enter the equilibrium condi-
tions in Egs. (1.2). We first consider the absolute ground
states with a given pressure, i.e., those states with the
lowest possible energy per particle. These states will have
a definite average relative periodicity

1
=lim —(Z,—Z 1.5
o= fim 5 =% (15
= lim L,(Xj—xo), (1.5b)

j—ow 27

measured in units of the wavelength b of the potential.
Aubry® has proven that for each a, there exists a pressure
P whose corresponding ground state has periodicity a; i.e.,
a is a continuous function of P.

If a is a given rational, there is a finite range of pres-
sures that gives a ground state with periodicity a, but an
irrational a corresponds to a unique pressure. For small
values of the potential V, if P is varied smoothly, a will be
irrational a finite fraction of the time. However, for suffi-
ciently large V, it is believed that!6®»6(h60.60) the set of
P for which a is irrational has measure zero. Despite this,
the periodicity can always be fixed at an irrational value
by boundary conditions, pressure, or by fixing the total
number of balls in a given large region.

In this paper we will consider states with a value of «
fixed by the boundary conditions. The ground state of an
infinite system with a given value of a can be obtained as
the limit of the absolute energy minima of finite-size sys-
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tems with N balls with the pressure chosen so that the
average relative periodicity of the ground states is a in the
limit N — 0.%“"*} The ground states with relative period-
icity a can also be obtained by considering a periodic in-
finite system whose energy cannot be lowered by moving a
finite number of balls. Aubry® has proven that the ground
states of the system with average relative periodicity a are
in fact periodic. The position of the jth ball in any ground
state (which can be degenerate by an overall phase; see Sec.
II) is given by

Xj=2maj+g(2maj), (1.6)

where g is periodic with period 27 (the period of the sub-
strate).

The nature of the ground states depends sensitively on
the relative periodicity a. If a is rational, then the system
is commensurate and the problem is relatively simple since
there is only a finite collection of nonequivalent balls. For
this case a well-behaved convergent perturbation theory
for small V can be constructed. Translational invariance
is broken for all ¥, and no zero-frequency phonon mode
exists. However, when «a is irrational the system is incom-
mensurate and the situation is more complicated. The
perturbation expansion for small V suffers from ‘“small
denominators,” so its convergence is problematical.'”® Au-
bry® has shown that if « is a “good” irrational (see Appen-
dix A), then for sufficiently small ¥V a zero-frequency
mode exists, but as V increases the zero-frequency mode
disappears. However, it is believed that for any V, pinned
incommensurate ground states occur for a set of a with
zero measure.5®

In this paper we hope to gain some insight into the na-
ture of the incommensurate states, and in particular, we
wish to study critical behavior near the disappearance of
the zero-frequency mode for a given a. In Sec. II, which
is primarily didactic, we relate pinning to properties of the
phonon spectrum, review the continuum approximation
and perturbation theory for Eq. (1.2), and demonstrate the
existence of a pinned state for large V. In Sec. III we de-
fine a disorder parameter and correlation function and
also describe the numerical calculations. Section IV con-
sists of results that demonstrate scaling behavior of the
disorder parameter and correlation length, while Sec. V
contains speculations and conclusions. Appendix A is a
summary of basic results of the number theory of irration-
al numbers relevant to the calculations, and in Appendix
B we relate our results to previous work on dynamical sys-
tems.

II. PINNED AND UNPINNED PHASES

A. Relation of pinning to the phonon spectrum

In this section we show that the absence of a zero-
frequency phonon mode implies the existence of a pinned
state for a small applied force. Given a physically stable

solution {X;} to the force equations
XJ+1—2XJ+X1_1—VszJ=O, (2.1)

we wish to know whether a nearby solution {X;} exists
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with a small uniform force F added

Xj ;1 —2X] +X]_, —VsinX] +F=0. (2.2)

By “nearby” we mean that 6X; =X; —X; approaches zero
as F—0. If a solution exists, then the system is pinned;
i.e., the balls will only move a finite amount when a small
force is applied. Expanding (2.2) for small 8X; and as-
suming that the expansion is well behaved, we find that a
solution exists for small F if the equations

have a solution.

We now consider the phonon spectrum of the same set
of balls. We assume that the equations of motion are ob-
tained from a Hamiltonian formed by adding a kinetic en-
ergy term to Eq. (1.1) with the mass chosen to scale out of
the equations of motion. Given the same {X;} from Eq.
(2.1), the linearized equations of motion for small dis-
placements U; are

2
d’U;

7=U1+1—(2+VCOSXJ)U]+U]_1 .

(2.4)

Equations (2.3) and (2.4) are extremely similar. Both can
be written in terms of the dynamical matrix

M;j =24V cosX;)8;; —b;j _1—8;j 1 (2.5)
as

M:5X=F@ whereda"=(1,1,...,1), (2.6)
and

“:le =-MU, 2.7
respectively.

Stability of the solution {X;} of Eq. (2.1) implies that

all the eigenvalues of M, which are the squares of the pho-
non frequencies, are non-negative. If all the eigenvalues
are strictly positive, there is no zero-frequency phonon,

and Eq. (2.6) can be solved by inverting M. The state is

hence pinned. If a zero-frequency phonon exists, M is not
invertible. Physically, it appears clear that the zero-
frequency phonon, if one exists, will have an eigenvector
with all its elements having the same sign, i.e., all the balls
moving in the same direction. In this case the vector @
will not be orthogonal to this eigenvector and hence there
will be no solution to Eq. (2.6) and the balls will not be
pinned.

Note that in principle there could be a pinned solution
with the displacement of the zero-frequency phonon pro-
portional to F'/2, for example, rather than F. Arguments
based on the effective translational invariance of the sys-
tem with a zero-frequency phonon and numerical work
both strongly suggest that this does not happen.'* We
have also ignored potential subtleties of the limit of an in-
finite number of balls; however, these should not affect the
result that the lack of pinning and the existence of a zero-
frequency mode are equivalent.

S. N. COPPERSMITH AND D. S. FISHER

B. Continuum approximation, solitons,
and discommensurations

Frank and Van der Merwe® studied static solutions of
the continuum approximation to Eq. (2.1)

2
94X _ysinx . (2.8)
dj

Naively, this  approximation is valid when

Xj +1—2X;+X;_; is much less than (X;—X;_,), i.e, the
scale of the change in variation of X is much less than the
average separation between the balls. (Note that in this
section j is considered to be a continuous variable.)

This equation is the famous sine-Gordon equation,
which exhibits soliton solutions (see Fig. 1). These soli-
tons have been described in enormous detail'> and we note
here only that the solitons are unpinned; in other words,
the continuum system has a zero-frequency mode. This is
proved by examining the equation of motion in the contin-
uum approximation,

(2.9)

The linearized equation of motion for a small distortion
6x about a stationary solution x is

92 92
——50x =——58x—V 8x cosxy . (2.10)
ot aj
It is straightforward to show that
6x = §£ .
dj |x,

is a zero-frequency eigenmode of this equation.

In a weak potential an incommensurate system which is
nearly commensurate (i.e., one whose relative periodicity is
close to a rational with a small denominator) can be
thought of as consisting of almost commensurate regions
(domains) separated by regularly spaced domain walls or
discommensurations—which in the continuum limit are
just the solitons of the sine-Gordon equation. It is instruc-
tive to consider the motion of a single wall that is well
separated from others. The zero-frequency mode dis-
cussed above exists because, in this continuum limit, one

J
FIG. 1. Solution to the (continuous) sine-Gordon equation,
exhibiting solitons.
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soliton can be moved an infinitesimal amount by moving
each of the balls (here a continuum of balls) an infini-
tesimal amount. In the discrete case (which is the case of
interest to us), as the domain wall moves, some of the balls
must move from one valley of the potential to another by
going over the maxima in the potential. This can only be
accomplished in a continuous way, if, at any position of
the wall, there are balls arbitrarily close to the top (i.e.,
maximum) of the potential. If this is not the case, in order
for the wall to be moved to a position with the same ener-
gy, it must be moved by a discrete amount and at least one
ball must jump from one side of a maximum of the poten-
tial to the other. Since this cannot be accomplished with
small displacements, the wall is pinned and there is no
zero-frequency mode. This is due to the breakdown of the
continuum approximation: In a sense (to be made precise
later) xo is no longer a continuous function of j and
dx(/9j no longer exists. An extension of this argument
from an almost commensurate system to the general
discrete incommensurate case suggests that a state will be
unpinned if and only if there are balls in the ground state
arbitrarily close to the top of the potential. This idea
forms the basis for the definition of a disorder parameter
in Sec. III and for many of the physical arguments in this
paper.

Estimates of the discommensuration pinning energy, the
energy barrier which must be overcome to move a domain
wall in an almost commensurate system, have been made
by several authors'®; generally they calculate the wall
shape using the continuum approximation and evaluate
the resulting dependence of the energy on the location of
the discommensuration. For an almost commensurate
system the continuum approximation will be valid only
for extremely small potential strengths; however, in this
limit, the domain walls will be so broad that their defini-
tion is murky. Thus, if there are a small number of balls
per period of the potential, a description of the system in
terms of continuum solitons is probably never valid, in
spite of its prevalence in the literature. However, Joos'’
has found that the qualitative behavior of the pinning en-
ergy as a function of V is reproduced by this approxima-
tion.

C. Perturbation theory and the unpinned state

One can glean a great deal of insight about the system
by carefully examining the weak substrate potential per-
turbation theory for both commensurate and incommensu-
rate phases. The expansion parameter is simply V. As
made clear by Kolmogorov,? it is important to do the per-
turbation expansion at fixed relative periodicity a.

The force equations for a system with substrate wave
vector ¢ =2ma measured in units of the average ball spac-
ing, can be written in the form

[i=Y 11 -2Y+ Y —

Here Y; =X, —gqj is defined so that Y; =0 is a ground state
of the system when V' =0.

We first consider the stationary states of the system, the
solutions to f; =0, which we denote by Y;=§;, where

Vsin(gj +Y;) . (2.11)
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8;4+1—28;+8;_—Vsin(gj +5;)=0. (2.12)

For V << 1 we would like to expand the sine in a Taylor
series, assuming Sj is O(¥V). However, at this point one
must be careful and allow for a uniform phase shift, i.e., a
preferred overall position of the balls relative to the sub-
strate. We hence write

SJ=A0+8 ’

where now §; =0 (V), and thus

which to lowest order in V gives
8= — ——————sin(gj +Ao) . 2.14
j 2(l_cosq)sm(qur o) (2.14)

This solution is uniformly small unless cosq is very
close to 1, i.e., q is near 27. If g exactly equals 27 (i.e.,
lowest-order commensurate) then the divergence can be
eliminated by adjusting A, to be either 0 or 7, which
makes 8;” identically zero. The balls are thus in this case
“locked” onto the substrate, but the perturbation theory is
perfectly well behaved. On the other hand, if g is near to
but not exactly 27 [i.e., (2mr—q)? < V] the divergence is not
eliminated by adjusting A, and the perturbation theory is
useless, due to the small denominator; Pokrovsky16 calls
this the first “dangerous zone” in gq.

If the lowest-order correction to Y; is not too large, the
next step is to plug 8}” back into Eq. (2.13) to find the
second-order contribution. When this is done, one finds
8; =8}”+8}2), where

2
8'(,.2) — V

~ 8(1—cosq)(1—cos2g 2.15)

ssin[2(g] +80)] .

This expression is troublesome near ¢ =27 (which has
already been excluded) and also at g =m. When g =, one
can adjust A to be 0 or /2 (or, equivalently, 7 or 37/2),
again locking the balls to the substrate, but, as before, if ¢
is near but not equal to 7, the perturbation theory is badly
behaved.

This procedure can clearly be continued. At nth order,
one finds that a new dangerous zone of width (in ¢) of
O((V'V )*) appears corresponding to a new harmonic of g.
If g is not exactly commensurate but is in the dangerous
zone, the perturbation theory is divergent, but if nq exactly
equals an integral multiple of 27, then by adjusting A, the
divergence can be eliminated at the price of locking the
balls onto the substrate.

One should note, however, that for the commensurate
case, where at some order, nq /2w is integral, two ine-
quivalent choices of A, always exist when the balls lock.
One corresponds to a minimum and the other to a saddle
point of the energy. We are primarily concerned here with
the energy minimum, which is the ground state with the
rational periodicity a=q/27m. The other state is the
lowest saddle point of the energy (about which there is one
unstable direction), which we will call the ‘“saddle state.”
We have examined 8 orders in perturbation theory and
have found that the stable solution does not have a ball
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sitting at the top of a well, while the saddle state does.
Greene® has observed this result for small V and, in addi-
tion, that in both the solutions all the balls are symmetri-
cally placed about either X =0 or 7. One can see this in a
physical way as follows: If there are an odd number of
balls in the unit cell, then putting two balls equidistant
from the top allows them to more efficiently minimize
their potential energy (we have used the reflection symme-
try); see Fig. 2(a). When the number of balls is even, at
first it is not clear which state in Fig. 2(b) is preferable—
the one with balls in the bottoms and the tops or the other
symmetric state. However, if one considers the energy of
spring stretching, one finds that is necessary to stretch
more springs to let the balls in the former solution “settle
in,” so it appears to have higher energy.

On the basis of these considerations, we expect that for
all V the stable ground-state solution for a commensurate
system will never have a ball at the top of a well and will
always have the balls symmetrically placed about X =0 or
m. Hence any commensurate system will have no zero-
frequency phonon and will be pinned for any value of the
potential. This can easily be verified in perturbation
theory: If the balls lock at nth order, a gap to the lowest-
frequency phonon will appear at the same order in pertur-
bation theory.

For an incommensurate system with a irrational, it is
not clear whether the perturbation theory converges.
Eventually one reaches an order n where for some m,
|gn —2mm | <€ for any e, but, intuitively, if n is large
enough then the large denominator will be compensated by
the small factor V. This situation is precisely the one ad-
dressed by the Kolmogorov-Arnol’d-Moser’* (KAM)
theorem. The theorem implies that at fixed @, if a is far
enough from every rational (see Appendix A) and V is
small enough, then the factors of ¥” do indeed wash out
the small denominators and the perturbation theory con-
verges. Only if the |gn —2mm | are not bounded below
by a negative power of n does the perturbation theory have
a vanishing regime of validity.

In the regime where the perturbation theory converges
for a given a which is sufficiently irrational (see Appendix
A), Aubry® has shown that a zero-frequency phonon mode
exists. The proof is analogous to the proof for the contin-
uum approximation. In the incommensurate discrete case,
the zero-frequency phonon eigenvector {U;} must satisfy

U

]+1—2Uj+ Uj_l—UjVCOS(qj +A0+61)=O s

(2.16)
I

d

UJ+1—2U]+U1_1—UJVCOS((1] +A0+6])

Thus the existence of a KAM trajectory implies that the
threshold force to make the balls slide is 0. When the per-
turbation theory is divergent, on the other hand,
dd;/d(qj +4Aq) no longer exists and the proof breaks
down. Note that in contrast to commensurate states for
which the overall phase Ay can take only discrete values
(signifying locking to the substrate), A, is arbitrary for in-
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~d(gj+4)

(a)

STABLE AND UNSTABLE CONFIGURATIONS OF THREE BALLS

STABLE AND UNSTABLE CONFIGURATIONS OF FOUR BALLS

FIG. 2. (a) Stable and unstable configurations of three balls
(typical of an odd number of balls). (b) Stable and unstable con-
figurations of four balls (typical of an even number of balls). In
both cases, the stable configuration does not have a ball at the
top of a well.

where we have expanded about the stable solution by set-
ting Y;=8;4+A¢+U;. As Aubry points out, the KAM
theorem implies that §; is an analytic function g of
qj +Ag where A is an arbitrary phase which determines
the overall position of the balls. Therefore it is well de-
fined to set

dg
U=14+——">—. (2.17
TP W) )
This distortion is the mode we seek, since
[8j+|——28j+6j_1—Vsin(qj+Ao+5j)]=O . (218)

-
commensurate states, corresponding to translational in-

variance.
D. Existence of the pinned state

One of Aubry’s major contributions is his proof that for
sufficiently large V the ground state is pinned even in the
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incommensurate system. One can see this result intuitive-
ly by considering the limit ¥— o0, where it is clear that
the balls lie in the bottoms of the potential wells. If one
tries to move the balls an infinitesimal amount, they do
not slide smoothly but are stuck in the concave potential
wells. Although it is true that one could have constructed
a state degenerate in energy which is near to the original
one, in order to reach it a ball must “jump over” a finite
barrier, so there is no continuous motion that leaves the
energy invariant. By this argument, one can also see that
the existence of metastable states is closely connected with
pinning, since the system cannot smoothly iron out defects
in its structure if metastable states exist.

Aubry® has proved many results about the nature of the
ground states of the system with relative periodicity «
equivalent to a relative substrate wave vector g =27a.
The result of Aubry that we use most heavily is that the
position of the jth ball can be written, for any V, as

X;=qj +8o+8(qj +A0) , (2.19)
where A, is an arbitrary constant phase, and g is odd,
bounded by +, and periodic with the substrate period 27.
Aubry calls g(gj +A) the hull function of the ground
state. A physical picture of the hull function is obtained
by considering a system with a continuously variable V.
When V is zero, the position of the jth ball is gj + A,
where A is an arbitrary phase that reflects the translation-
al invariance of the system. If V is adiabatically increased
from zero keeping the average spacing of the balls fixed,
the balls fall down into the wells. The hull function deter-
mines where the jth ball is located when V is finite; its ex-
istence implies that X; is a function only of where the jth
ball was when V was zero. The bounds on g imply that
each ball will fall into the closest well (without hopping
over a barrier). The state so obtained will be the ground
state with the original periodicity. Aubry further showed
(as mentioned above) that g(gj + Ay is analytic for suffi-
ciently small ¥, and conversely that when the balls are
pinned the hull function becomes discontinuous. In fact,
he proved that in the pinned phase X;(qj +4o) is the sum
of a countable number of Heaviside step functions and the
balls hence lie only at a countable set of values of the local
potential. It follows that the expression (2.17) for the
zero-frequency mode in perturbation theory is identically
zero whenever it exists and hence is not an eigenmode,
verifying that in the pinned phase no zero-frequency mode
exists. We provide simple arguments below which show
that the pinned phase must exist for sufficiently large V
without relying on theorems about the hull function.

We first show that the existence of a hull function im-
plies that for sufficiently large V, each ball sits in the bot-
tom half of a well (i.e,, such that — ¥ cosX; <0). (Aubry
has proved this result also, but the argument here is
simpler, though only rigorous for finite-size systems.) The
existence of a hull function is invoked here only to put a
bound on the distance between successive balls, so the ar-
guments can be trivially generalized to show that meta-
stable states with bounded ball separations are also pinned.

First we note that stability of the system to small per-
turbations of the ball positions implies that
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2
Oga—g=2+Vcosz .
axX;

(2.20)

This condition is necessary but not sufficient for stabili-
ty; it merely says that any small motion of one ball cannot
lower the system’s energy. From Eq. (2.20) the condition

cosX; > —2/V (2.21)

must hold, which implies that the balls cannot be at the
tops of the wells for large V. Since the hull function g is
bounded by *7, the maximum spring force on the jth ball
in the ground state is less than 477. The magnitude of the
force from the potential is V' | sinX; |, so X; must satisfy

[sinX; | <4m/V, (2.22)
which implies
|cosX; | >[1—(4m/V)*]"/%. (2.23)

If V>2(14+47)!2, then the only way to satisfy both
(2.21) and (2.23) is for cosX; to be positive for all j. Thus,
the balls must all be in the bottom halves of the wells for
sufficiently large V.

Aubry then proved that if each ball is in the lower half
of a well, no zero-frequency mode exists. This can again
be easily demonstrated by a simple physical argument. As
shown previously, the balls are pinned to the wells if the

matrix M defined in Sec. IL A is positive definite. Since,
as shown above, for large V, Vcos)& >0 for all j, M can
be written as a sum of two matrices A and B, with

Ayj=28;;—5;j41—8;_1,
Bij :8'] VCOSXj N

where B is positive definite. Equation (2.23) implies that

each eigenvalue of B can be made bigger than any arbi-
trary A, by making V sufficiently large. The eigenvalues
of A are of the form A=2(1—cosk) and are hence non-
negative, so A s positive  semidefinite.  Since
V~ﬁ-V=V-(X+§)-VzO+AO for any normalized vector
v, it follows that the eigenvalues of M are bounded below
by Ay, and hence, even in the infinite system no zero-
frequency mode of the balls exists and the system is
pinned. Aubry has actually proven stronger results than
those quoted here, but the simple arguments presented in
this section are sufficient to demonstrate that a transition
must occur between pinned and unpinned phases in an in-
commensurate system.

III. DISORDER PARAMETER, CORRELATION
FUNCTION, AND RATIONAL APPROXIMATION

We are interested in studying the behavior of incom-
mensurate systems near the critical value ¥, (a) of the po-
tential which separates the unpinned from the pinned
phase for a given relative periodicity a. In order to make
analogies with usual critical phenomena, it is useful to
consider one of the two phases as ordered and the other as
disordered. Since there is no broken symmetry in the con-
ventional sense in either phase, this identification is not at
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all clear. However, the unpinned phase does have several
features which are characteristic of conventional ordered
phases: It has a zero-frequency (Goldstone) mode and has
correlations which extend to arbitrarily long distances (in
a sense which we will make more precise later). However,
there is no obvious order parameter, and it is thus simpler
to define a disorder parameter that is zero only in an infi-
nite incommensurate unpinned system. Motivated by the
belief that the unpinned and pinned phases are dis-
tinguished by whether or not there are balls arbitrarily
close to the tops of wells in the physically stable solution,
we define the “‘disorder” parameter by

Y=min | X;—2m(n +5)| , 3.1)

nn
which is just the minimum distance (measured along the x
axis) of any ball from the top of a well. As long as ¢ is
finite, the balls are pinned, and ¥=0 corresponds to the
unpinned phase. Note that this disorder parameter is not
an average—as seen previously, the average distance from
the top can be quite large in the continuum model, even
though the solution is unpinned. For any finite system,
and similarly for any commensurate system, i will always
be nonzero.

In order to numerically study the properties of an in-
commensurate system with periodicity a, we use a method
originally due to Greene® and study a sequence of com-
mensurate systems with rational periodicities Q, /P,
which approximate the incommensurate system.'® The
natural and most rapidly converging sequence of rational
approximations is given by the continued fraction expan-
sion of a (see Appendix A). For definiteness, we study the
golden mean ¢=(1+V'5)/2 whose continued fraction is
just [1,1,1,1,1,...]. The sequence {Q,/P,} of rational
approximants (which in this case are ratios of successive
Fibonacci numbers) converges more slowly for ¢ than the
sequence for any other number; in this sense it is the most
irrational of all irrational numbers. A system with rela-
tive periodicity a =¢ thus has the advantage of being least
likely to be affected by being close to a low-order rational
number, i.e., the system is unlikely to show ‘“almost com-
mensurate’ behavior.

In addition, as for all other quadratic irrationals [those
of the form (a +b6V'n )/c with a, b, n, and ¢ integers], the
continued fraction of ¢ is periodic and hence the system of
balls might be expected to show the simplest scaling
behavior near the critical value of V. In Sec. V we make
some conjectures about extensions of our results to other
irrational periodicities.

Since commensurate systems are equivalent to finite-
size systems with periodic boundary conditions, computa-
tions on a commensurate system with periodicity Q, /P,
can be performed by finding solutions to P, force equa-
tions (with periodic boundary conditions) of the P, balls in
Q, periods of the potential. Two solutions are found, one
corresponding to the minimum of the energy and the other
the lowest-energy saddle-point solution, which has one ball
constrained by symmetry to be at the top of a well.

It is clear from the discussion in Sec. IIC that the
ground state and the saddle state should have axes of re-
flection symmetry; this has been checked numerically. If
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P, is odd, one expects the ground state to have a ball in
the bottom of a well, and if P, is even, one expects it to
have two balls symmetrically placed about the bottom of a
well. In the limit of Q,— o the minimum energy solu-
tion approaches the ground state of the system with
periodicity a=¢. The saddle solution is found by fixing
one ball at the top of a well and letting the others adjust to
minimize their energy subject to this constraint. We shall
see that for ¥V < V,, this solution also approaches the in-
commensurate ground state as Q, — oo, but for ¥ > V, the
incommensurate saddle solution is distinct from the
ground state. In order to reliably obtain the desired solu-
tions, we explicitly impose symmetry on the solutions and
solve the P, /2 [or (P, —1)/2] force equations for each V
and then slowly increase V.

This method is quite different from that used in Refs.
7—11. In those calculations, after using symmetry to
eliminate X as a variable, the Eqs. (2.1) were used to ob-
tain Xp as a function of X, and the solution determined

by requiring Xp —Xo=27Q,. Our method has the disad-

vantage of requiring the solution of many simultaneous
force equations, but it enables us to study the pinned re-
gime V>V, which is inaccessible by the dynamical sys-
tems methods of Refs. 7—11.

Two calculations were performed. In the first, the
ground state was found numerically and the distance of
the balls from the tops of the wells calculated. One can
think of this calculation as measuring correlations of the
balls with the substrate potential; the minimum distance is
just the disorder parameter. The second calculation in-
volved comparing the ground-state and lowest saddle-
point solutions. This was done by starting with the ball at
the top of a well in the saddle-point solution and one of
the two balls closest to the top in the ground-state solution
and calculating their spatial separation, with the origin
chosen to be at the maximum (or the nearest maximum) of
the potential. The two solutions were then compared by
labeling these balls “0” and then calculating the separation
['(j) between the jth balls in the two solutions. This pro-
cedure measures correlations of the two solutions with
each other. The easiest way to gain insight into the
behavior of this separation as a function of j is to consider
the V=0 and o« limits. (Using renormalization-group ar-
guments, we expect qualitative features of the unpinned
region to be determined by the ¥—0 behavior and those
of the pinned region to be determined by the V—
behavior.) When V =0, for a commensurate system with
P balls in Q wells, the two solutions maintain a constant
separation of 27/2P. On the other hand, when V— oo,
the zeroth balls in the two solutions are separated by 7,
but every succeeding difference is 0. Thus, intuitively one
expects that in the small-V unpinned phase the two solu-
tions stay distinct for all j, while in the large-¥ pinned
phase, far from the ball O which is locked at the top in the
saddle-point solution, the ground state and saddle state are
basically indistinguishable.

IV. RESULTS AND SCALING
Since ¥ is nonzero for any finite or commensurate sys-
tem, we expect the system size or the number of balls per
unit cell to be analogous to finite size in a spin system.
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We thus expect a scaling behavior for ¢ as a function of V
and P, for n large and V' ~ V, of the form

WV,P,)~ |€|’f(eP)7), 4.1)

where e=V —V,. The scaling function f should have
various limits which can be determined. In particular, for
any finite P,, one expects finite-size effects to dominate
when € is so small that €P,”” approaches zero. Hence
fy)~1/]y |7 fory—0 and

1 o/v

n

YV, ,Py)~ (4.2)

The function f(y)= |y |°f(y) is thus expected to be
smooth at y =0.

In the opposite limit, for fixed (nonzero) €, the limit
P,— « yields results for the incommensurate system
which should be independent of P, provided P, >>¢€".
Thus on the pinned side f(y) approaches a constant as
y— + o« and hence

WV,Py=c0)~ |€|° (4.3)

for ¥V > V,. The exponent o is thus the disorder parameter
exponent. On the unpinned side we expect
lim,_,_ , f(y)=0, but it is useful to ask how f(y) tends to
zero as y— — oo. To do this we consider turning on the
potential adiabatically from a V' =0 state which has the
symmetry of the ground state for V' > 0, i.e., with a ball at
X =0 for P, odd or balls symmetrically placed about
X =0 for P, even. The closest ball to the top of a well in
each of these cases is a distance 27 /2P, from the top at
V' =0. This ball will also be the closest to the top at V' >0
and hence will determine ¢(V,P,). In the limit P, — co,
the function which yields the positions of the balls in the
ground state as a function of their positions at V' =0
should approach the function for the incommensurate
case; the position of a ball x, initially at x,, will be
x =xg+8(xq) where g is the hull function defined in Sec.
IID. Hence we can conclude that as n— «

27
2P,

27
2P,

YV, P +7—m+— g lm+ . (4.4)

However, by reflection symmetry, as long as V<V,
g (m)=0 (g is odd about 7); thus

27 27
V,P,) = — 4.5
WV,P,) 2P, + |g |7+ 2P, g(m) (4.5)
For V < V,, g is analytic and we therefore have
. YV,P,) dg(xo)
lim =
n—w 2’7T/2P,l dX() Xg=1
=Y(V) . (4.6)

The scaling form of ¢ implies f(y)~(—y)~¥ as y— — o0
and Y(M)~ |e|"Vas V-V, .

Excellent fit to the scaling form of Eq. (4.1) has been
found from a study of the standard map for V<V, by
Shenker and Kadanoff.® They find o/¥=0.721+0.001,
v=1.00+0.015, and V.=0.971635. Our results, though
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not as accurate due to the smaller system size, extend the
calculations into the pinned regime which is not accessible
by the methods of Ref. 9. The disorder parameter data
for various values of V are plotted in Fig. 3 as a function
of 1/P, for commensurate approximations to the golden
mean. On both sides of the pinning transition, the data fit
the scaling form of Eq. (5.1) with the exponents quoted
above, as shown in Fig. 4.

From the analogies with finite-size scaling in usual crit-
ical phenomena, one expects that the exponent v describ-
ing how finite size effects increase the disorder parameter
should be equal to the exponent v of some diverging corre-
lation length in the true infinite incommensurate system.
This is in fact the case and we can identify this correlation
length on both sides of the transition.

Before discussing the correlation length, we briefly di-
gress and consider whether there is a ‘““disorder field”
which is conjugate to our disorder parameter. Since the
disorder parameter is a function of the properties of the
balls near the tops of the wells, it is natural to consider a
perturbation in the Hamiltonian which affects the balls in
this region. The simplest choice which will have an
anomalous effect only on the balls near the top is just

8H=—h3 |cos(1X;)]| ,
J

(4.7)

which has a linear cusp at the top of each well. If a small
term of this form could be added to the Hamiltonian, the
system could no longer exhibit a zero-frequency mode
even for small V since the KAM theorem does not apply
unless more than three derivatives of the potential are con-
tinuous (this is because the Fourier coefficients of a cusp-
like potential fall off so slowly that they cannot cancel the
small denominators in perturbation theory). Balls will not
be arbitrarily close to the top if 4 is positive, and hence ¥

V>V (1.0)

V =Ve(0.972)

V<V (.06)

L I | L

1/377 1/2331/144  1/89 1755 1/34
17P

FIG. 3. Behavior of the disorder parameter for three values

of V plotted as a function of 1/P,. For V> V, ¢ approaches a

finite value as 1/P,—0, but for ¥ < V, ¢ approaches 0 linearly

as 1/P,—0.
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FIG. 4. Scaled disorder parameter ¥P?’¥ as a function of
€P'? (e=V —V,) for various P with ¥=1.00,06=0.721. The
plot is of the scaling function f() defined below Eq. (4.2).

will be nonzero and the system will be pinned even for the
incommensurate case; presumably there will be no phase
transition as a function of V. Unfortunately, it is not at
all clear what a physical realization of this disorder field
might be.

We now turn to the definition of a correlation length
which we define in terms of the differences I'(j) between
the ground-state and lowest saddle solutions for finite P,
discussed above. Since the saddle-point solution is ob-
tained by fixing the position of one ball, we can see that
the large-j behavior of I'(j) measures the extent of the ef-
fects of a forced boundary condition. As discussed above,
I'(j) behaves quite differently in the pinned and unpinned
phases. We consider the pinned phase first. In Fig. 5,
I'(j) is plotted as a function of j for a 377-ball system for
various V in this regime.

One can see that for V> V,,I'(j) falls off as j is in-
creased from its value ' =1 for j =0 (the boundary condi-
tions at both ends of the system cause the plot to be nearly
symmetric about j =188). As V — V¥, increases the rate of
decay increases. To obtain a length scale characterizing
this falloff, the logarithm of I'(j) is plotted versus j;
graphs for various values of ¥ are shown in Fig. 6. For
V> 1.0 an exponential envelope for the falloff is clearly
evident, and we define the inverse correlation length
E71(¥) to be the slope of this exponential. [Since the force
equations are solved to one part in 10%, the values of I'(j)
that are less than 10~8 exhibit numerical noise and are dis-
carded from the plots.] Close to V,, the system size be-
comes comparable to the correlation length and the
behavior of I'(j) is not so clear. However, we expect that
for values of V¥ for which 1 <<£ <100, £&(V) should behave
like (V — V) ™", where v is the correlation-length exponent
of the infinite system. Figure 7 shows a plot of 1/£ as a
function of e=(V —V,), and it indeed appears that

Exe™, (4.8)
with v=1.0%£0.04, and thus, in the pinned region, as ex-
pected, v=¥ (to within the accuracy of our data). In the
pinned regime, the behavior of I'(j) for j << P appears to
approach a well-behaved limit as P, — oo, so the informa-
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FIG. 5. Difference between stable and saddle solutions I'(j)

plotted vs j for two values of V' > ¥,=0.9716. Note I'(j) decays
for j far from the boundaries.
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FIG. 6. Semilogarithmic plot of I'(j) vs j for two values of
V > V.. The correlation length & is defined by fitting the graph’s
envelope to the form I'(j)=1e ~//%.
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CORRELATION LENGTH FOR V >V,
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FIG. 7. Plot of inverse correlation length £~ vs V —V,,
demonstrating that £ << (V' —¥V,.) ™", with v=1.0£0.04.

tion extracted from a system with finite but large P,
should be valid for the true incommensurate system. As
in critical phenomena, the correlation length in the disor-
dered phase measures the falloff of the effects of a boun-
dary condition.

In the unpinned region, on the other hand, the behavior
of T'(j) is qualitatively different. It is tempting to guess
that, by analogy to the spin-spin correlation function in
the ordered phase of a magnet, I'(j) will decrease exponen-
tially to a constant value. However, examination of Fig. 8
shows that, for ¥ below V,, I'(j) has structure that does
not decay far from the boundaries. Nonetheless, I'(j) does
seem to have a characteristic length scale of variation that
increases as V approaches V.

We will associate the length scale of the variations of
['(j) with the correlation length in the unpinned phase.
Before doing this, we must argue that I'(j) is a sensible
quantity to calculate in the unpinned phase even though it
approaches zero for each j as P, approaches infinity.
However, for V <V,, (P,/m)T p,(J) is just an approxima-
tion to the derivative of the hull function g (X,). This fact
can be seen by noting (as above) that X,=m corresponds
to the ball at the top in the saddle solution (i.e., the zeroth
ball), while Xq=m+2m/2P, corresponds to the ball in the
ground-state solution that is closest to the top (again
j =0). Similarly, for general j we have

17'-i-q,.j+l

P,, _g(w+Qn]) ’

I‘pn(j)zg

where g, =27Q,/P,. Since g is analytic for V <V, the
limit as P,— o0 of (P,/m)Tp (j) is well defined, and is

just  1+dg(Xo)/dXo|x,=gj+-~ The hull function
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FIG. 8. Difference between the stable and saddle solutions

I'(j) plotted vs j for two values of ¥ < V.. I'(j) does not exhibit
decay, but has a characteristic length scale of fluctuations.

g(gj +7) is a quasiperiodic function of j, so I'(j) must be
quasiperiodic also, which explains why exponential decay
is not observed.

Thus for V < Ve,Tp (j) goes to zero as P, gets large, but

P,Tp (j) tends to a nonzero value for all j, while for

V> V,, I'(j) approaches a limit as P, — oo, but it exhibits
exponential decay as j increases.

In order to gain more insight into the behavior of I'(j)
for V <V,, it is useful to calculate its Fourier transform
Tpk)=3; eI p(j); the corresponding structure factor
I377(k)=| ['335(k) | ? is plotted as a function of k in Fig. 9
on a semilogarithmic plot. Note that the values of k al-
lowed by the boundary conditions are multiples of
27/377. One can see that I (k) falls off for very small k;
this fact is directly related to the exponential convergence
of the perturbation theory implied by the analyticity of g.

This exponential convergence implies that the contribu-
tion of the nth order of perturbation theory (for n large
but less than the number of balls in the system) to I'(j) is
of order e ™" for some y>0. This is because the first
nonzero contribution to I'(ng) occurs at nth order in per-
turbation theory. The wave vector ng is equivalent to
some (ng —27m) in the first Brillouin zone (for m an in-
teger). The magnitude of I(k) for k near zero is thus
determined (at least for small V) by the value of n neces-
sary for |ng —2mm | to be k. As discussed in Appendix
A, for quadratic irrationals the minimum such value of n
goes as 1/k, so that as k approaches zero I'(k) should be
of order e~"/*. Therefore, we expect that a semiloga-
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FIG. 9. Plot of structure factor I(k)=| ¥ ;e™T(j)|* vs k
on a semilogarithmic scale for two values of V < V..

rithmic plot of |'(k)|? vs 1/k will exhibit a linear slope
characteristic of the convergence rate of the perturbation
theory; our data is plotted in this manner in Fig. 10, and
the heights of the principal peaks appear to exhibit an en-
velope with linear dependence on 1/k. The slope, which
we define to be the inverse correlation length £~! for the
unpinned phase, is a measure of the length scale of the
variations of I'(j). In Fig. 11 £~! is plotted for various
values of |€|=| ¥ —V, |, and it appears that £« | €| ™
with v'=1.0+0.1. The correlation length for ¥ < V_ is an
order of magnitude smaller than for ¥V > V., which we be-
lieve is due to arbitrary factors of 27Q, /P, =10 in the
definition of £ for ¥V < V.

By examining the difference between ground-state and
lowest saddle solutions, we have found that one can define
a correlation length that diverges on both sides of the tran-
sition like |V —V,| ™% with v=v'=1.0 equal to the
finite-size scaling exponent ¥, as expected.

One can find a physical interpretation of the correlation
length in the unpinned phase. Recall that, as shown in
Sec. IIC, 14dg/dx is the (unnormalized) eigenvector of
the zero-frequency sliding mode in the unpinned phase.
For small V, the sliding mode will involve motion which is
spread out relatively uniformly over the whole chain, but
as V increases, the motion will be concentrated more and
more in smaller and smaller regions of the system until at
V., an infinite amount of motion is needed at a countable
number of points [corresponding to the step function
structure of x +g(x)]. For V <V,, the motion will be
concentrated in separated regions. The characteristic
maximum scale of the distances between these regions will
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FIG. 10. Structure factor I(k) plotted on a semilogarithmic
scale vs 1/k for two values of V < V.. The correlation length §
is defined by fitting the envelope of the peaks to the form
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be of order the correlation length &.

At least one more exponent is necessary to describe the
pinning transition. This can be seen by examining Fig. 8,
in which the difference between the ground-state and sad-

CORRELATION LENGTH FOR V<Vg

1 I
0.10

€= [v-vel

FIG. 11. Inverse correlation length plotted vs |V —V,]|,
demonstrating that v=1.010.1 for V < V.
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dle solutions I'(j) for 377 balls is plotted for V' < V,. The
exponent 0 =0.721 describes the maximum of the curve,
and v=1.0 describes the length scale of variations in the
curve. However, in order to describe the amplitude of the
fluctuations in ['(j), one needs to know how the minimum
of I'(j) varies with V. Shenker and Kadanoff® calculated
this exponent in the unpinned phase by determining how
close the ball nearest the bottom of a well is to the bottom,
and they found that the distance from the bottom d,, for a
P, /Q, cycle satisfies a scaling form

d3y 4i=(P,)""D;(€P,”) (4.9)
for i =0, 1, and 2, with ¥=1.0+0.015 and 7=1.093
+0.001. However, they found scaling only for every third
approximant, i.e., three different scaling functions D;, de-
pending on whether P,, @,, or both P, and Q, are odd.
This complication probably reflects the fact that the balls
near the top dominate at the transition, and the balls near
the bottom may be merely reflecting the singularity of
those at the top described by the exponent o=0.721.
However, a detailed understanding of this scaling behavior
is lacking and our numerical accuracy is not sufficient to
determine whether the exponent 7 also describes the
behavior of the bottom balls in the pinned phase.

Several other quantities which we have not yet investi-
gated in detail should show interesting scaling behavior
near the pinning transition; examples include the phonon
spectrum, the threshold field, and the density of meta-
stable states. Aubry® has shown that this last quantity is
zero in the unpinned phase, and it is nonzero in the pinned
phase. A detailed study of these and other quantities
should provide more insight into the physics of the pin-
ning transition.

V. SPECULATIONS AND CONCLUSIONS

In this paper we have restricted our attention to a sim-
ple system with relative periodicity a=¢=(1+1'5)/2.
On general grounds, one expects that other systems with
the same periodicity but different potentials will be in the
same universality class and exhibit the same critical
behavior (in particular the same exponents). This will
probably be true only if the potential is sufficiently
smooth, i.e., if it has a sufficient number of continuous
derivatives. It is not at all clear at this stage how smooth
the potential must be, but a simple lower bound on the
necessary smoothness is obtained by considering a periodic
potential with a cusp (discontinuity in the first derivative),
which has been shown to exhibit no unpinned phase®®’
and is thus in a different universality class from the ana-
lytic potential considered here. In order for the KAM
theorem for the existence of an unpinned phase to be
valid, more than three continuous derivatives are neces-
sary, presumably setting a better lower bound on the
necessary smoothness.

A more interesting question concerns the degree of
universality for analytic potentials when the relative
periodicity a is varied. Mackay'® has shown that all irra-
tionals whose continued fractions end in an infinite string
of I’s have the same exponents. Shenker and Kadanoff®
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have calculated the exponents for V2-1=[0,2,2,2,... ]
and found them to be within 1.5% of those for the golden
mean, while our preliminary results using their methods
(for V<V,) for a=[1,2,1,2,...] and a=[1,4,4,4,...]
indicate that the exponents for these periodicities are
within 3% of those for the golden mean. However, the
apparent numerical accuracy of o/¥ is about 0.1%; it is
not clear whether the variation is due to scaling correc-
tions or to slight but significant differences between qua-
dratic irrationals.

In any case, we conjecture that the exponents for all
quadratic irrationals are similar. Preliminary calculations
for a=[2,1,2,1,1,1,1,1,2,2,2,1,2,1,1,2], a random string
of 1’s and 2’s, suggest (perhaps contrary to expectations)
that power-law scaling behavior exists for this nonqua-
dratic irrational with exponents within a few percent of
those for (V'5+1)/2.° If further study supports this con-
clusion, it may be that the “almost universality” as a func-
tion of a holds for all @ approximable optimally to order
1/n?%, a class which consists of all quadratic irrationals
and all other irrationals with bounded entries in their con-
tinued fractions.

It would be interesting to investigate periodicities a
with more rapidly converging rational approximants, al-
though there may be technical difficulties in trying to use
the finite-size scaling methods of this paper and other re-
cent work. It seems reasonable to speculate that the ex-
ponents for all relative periodicities @ which are not Liou-
ville numbers are primarily determined by the convergence
rate of the continued fraction of a.

A study of the exponents as a function of « is being car-
ried out. Understanding their apparent weak dependence
on relative periodicity and the apparent scaling behavior
for nonquadratic irrationals is a challenging unsolved
problem.?

Lastly we note that it is natural to assume that further-
neighbor interactions between the balls do not change the
critical behavior (at least not if they are reasonably weak).
From this it follows that 2n-dimensional area-preserving
maps (see Appendix B) have the same critical behavior at
the breakdown of an orbit with two incommensurate fre-
quencies as the standard two-dimensional map with two
frequencies.
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Note added. We have received a copy of unpublished
work by Peyrard and Aubry?! which also discusses scaling
at the pinning transition, but examines only the pinned
phase (they evaluate a correlation length, the minimum
phonon frequency, the discommensuration pinning force,
and the threshold electric field). Their definition of the
correlation length is equivalent to ours for V>V, but
they obtain v=0.960+0.004 versus the value from Ref. 9,
v=1.0010.15 (assuming v=v'=%). Their value was ob-
tained by examining a 377-ball system only, and we be-
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lieve that the discrepancy may be due to corrections to
scaling. The finite-size effects are negligible only if the
correlation length is less than 100 or so (V' > 1.0V,); but on
the other hand, outside the scaling region when € is small,
there are corrections to scaling. Examination of the scal-
ing function for the disorder parameter i shows devia-
tions when ¥ ~(1.13)¥, even in the infinite system. Since
Peyrard and Aubry include data in the range V, to ~5V,
and obtain v from a fit between ¥V, and 2V,, they may be
incorrectly weighting data outside the scaling region,
which would account for the discrepancy. Mackay'® has
recently calculated the exponents o and v very accurately,
both directly and also by finding eigenvalues about a
renormalization-group? critical fixed-point map. He
finds 0=0.712 and v=0.987.

Mather®® has recently considered comparing the ener-
gies of the ground-state and lowest saddle solutions (which
he calls the max and minimax solutions) for a sequence of
Q,./P,’s. He proves rigorously that this procedure has a
well-defined incommensurate limit, and that pinning is
equivalent to the statement that the ground state and sad-
dle state have different energies in this limit. This con-
clusion is compatible with our results and those of Aubry.
Previous work on the unpinned phase of this model by
Sacco and Sokoloff?* has also been brought to our atten-
tion by Sokoloff.

APPENDIX A

A principal property of irrational numbers with which
we are concerned is how well they can be approximated by
rationals.”> For instance, in the context of the small
denominators found in the weak potential perturbation
theory for a given a, one wishes to know how close
|na—m | is to zero for a given integral n (corresponding
to the order of the perturbation theory) and optimally
chosen integral m. We quote here several useful results.?

Definition: If f(n) is a positive, monotonically decreas-
ing function, a is approximable to order f(n) if there is a
constant C, such that the condition

la—m/n| <Cf(n) (A1)

is satisfied for an infinite number of integral m and n. An
irrational a is optimally approximable to order f(n) if in
addition there is another constant C, < C, such that

la—m/n| <C,f(n) (A2)

has only a finite number of solutions (i.e., for every func-
tion g(n) with «a approximable to order g(n),
lim,_,  [g(n)/f(n)]>0).

(1) All irrationals can be approximated to order 1/n2.

(2)  Quadratic irrationals [those of the form
a=(a +bV'r)/d, with a,b,r,d integers] are optimally ap-
proximable to order 1/n2.

(3) If the sum

0

Sf= 2 nf(n)

n=1

(A3)

is infinite, then almost all (in the sense of Lebesgue mea-
sure) irrationals are approximable to order f(n).

(4) Conversely, if Sy is finite, than almost no irrationals
(a set of measure zero) are approximable to order f(n).
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For example, the sets of irrationals optimally approxim-
able to order 1/n? or 1/(n*nn) have zero measure while
those approximable to order 1/[n*(Inn)?] or 1/n%*€ (with
€> 0) have zero measure.

In particular, the Liouville numbers, which are approx-
imable to order 1/n* for any u, are a set of zero measure
(although they are dense). The KAM theorem applies to
all a that are not Liouville numbers.

The best rational approximations to a with given
bounds on the denominators are obtained from truncations
of the continued fraction expansion of a, which has the
form

ap+ (A4)
a +

a+

I S
a3_+_-..

where the a; are positive integers (except ao, which is zero
for0O<a<1).

The sequence {a;} is infinite if and only if « is irration-
al. For irrational a the continued fraction expansion is
unique. In order to obtain the sequence of best approxi-
mants {Q,/P,} to a,'® the continued fraction is truncated
by setting a, .= 0} i.e,,

On 1

= AS
Pn ap+ 1 ( )
a+
aj —+
1
+ c—
a’l
Given a continued fraction which we denote
[ag,ay, ..., aj,...], the integers P; and Q; of the approxi-

mants are determined recursively by
P_y=0, Py=1, Pi=a;P;_+P;_,,
Q_1=1, Qo=ap, Q;=a;Q;_+Qi_,.

The “odd” approximants Q,; . /P,; ., are always greater
than a, but decrease as j increases, while the even approxi-
mants are always less than a, but increase with j. It can
be shown that

LR (A7)
P] Pj—l PJP_]-—I ’

so that as j— oo the sequence of approximants converges
to a.

The order to which a is approximable, i.e., how fast its
best approximants converge, is related to the behavior of
the high-order coefficients of its continued fraction expan-
sion. The set of numbers with bounded continued frac-
tions corresponds exactly to those numbers which can be
optimally approximated to order 1/n2.

All quadratic irrationals have periodic continued frac-
tions and hence their rational approximants converge
slowly and smoothly; it is for this reason that we study a
quadratic irrational in this paper. The number whose ra-
tional approximants converge most slowly is the golden
mean ¢=(V'5+1)/2, whose continued fraction is
[1,1,1,...]

(A6)

(—=1y~"
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APPENDIX B: RELATIONSHIP TO THE STANDARD
MAP OF DYNAMICAL SYSTEMS THEORY

Dynamical systems with competing periodicities, such
as an anharmonic oscillator with a “natural” frequency o,
externally forced at a frequency w,, have been extensively
studied recently.”~!" A model for this system is the so-
called “standard map”

(Bla)
(B1b)

rj+1=rj+VSin9‘ s

O 1=0;+rj 1,

with the index j representing discretized time, which we
have seen is equivalent to Eq. (2.1). The relative periodici-
ty is called the winding number in this context.

Several authors"!? have tried to exploit the relation be-
tween these systems in order to explore the pinned phase
of the discrete Frenkel-Kontorova model. However, be-
cause of questions of stability, naively carrying over re-
sults from the standard map leads to very misleading re-
sults. In this appendix we discuss the relation between
properties of various solutions of Egs. (2.1) and (B1) in or-
der to elucidate the correspondence, in particular as im-
plied by Aubry’s work.®

An important question concerning any solution to Egs.
(B1) is whether the solution is stable to small perturba-
tions. For the balls connected by springs, a sufficient (and
necessary) condition for local stability is that the Hessian
of the Hamiltonian, 3°H /0X;0X i have only non-negative
eigenvalues. Physically, this means that no small displace-
ments of the balls from their positions can lower their en-
ergy. However, when (B1) is viewed as a time evolution,
the stability condition is different, as shown below.

One can start an oscillator with the initial velocity and
J

1+VCOSOP"_1 1| |14+ Vcosbp _» 1

TPn= VCOSGP’I_I 1

|4 Cosopn —2 1

If the eigenvalues of Tp, both are of modulus 1 for

n— 0, then the orbit is elliptic. This condition can be
conveniently written in terms of the trace of Tp,. Greene

defines the residue

R,=5(2-TrTp), (B4)
whence the condition for ellipticity is that
O0<R,<1 (B5)

for large n. The residue is simply related to the product of
the phonon frequencies for the system of P, balls with
periodic boundary conditions,

P’l
Ry=—7 [l o, (B6)

j=1
i.e., to the determinant of the force matrix M (with period-
ic boundary conditions) defined in Sec. II A, which is just
the Hessian of the Hamiltonian.® The residue R of an or-

1+Vcosh, 1
VecosO, 1
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position given, thus determining 6, and r,. Equations
(B1) then determine 6; and r; for all j, i.e., the initial con-
ditions determine the position of the oscillator at all future
times. A solution is called “elliptic” if the changes 86;,56r;
induced in 6; and r; by a small perturbation 66,,6r, to 6,
and r| are uniformly small for all j. The elliptic solutions
are particularly important physically because two experi-
ments with nearly identical initial conditions will yield
nearly identical results for all times. However, there also
exist solutions for which almost all small perturbations
grow without bound at long times; these are called “hyper-
bolic.” The condition for ellipticity of an orbit can be
written in terms of the linearized transformation T about
a solution with initial conditions 8,,r, defined by

56,
Srl

56,

or;

=T; (B2)

Since the map is area preserving, T; generally has deter-
minant 1. The solution is elliptic if the eigenvalues of T;
both have modulus 1 in the limit of large j.

Thus the criterion for the stability of the balls and
springs and the criterion for the ellipticity of the orbit in
the phase space of the oscillator are quite different. In
fact, unless a zero-frequency phonon mode exists, physi-
cally stable states of the balls are always equivalent to hy-
perbolic orbits. This result, which we discuss below, is
implied by Greene’s work.®

Again, we consider approximating an orbit with irra-
tional winding number by a sequence of orbits with period
{P,}. It is straightforward to show that the linearized
transformation about this orbit is, with j =P,,,

(B3)

I

bit with irrational winding number is just the limit of R,
as n— oo. It follows that any stable or metastable state
will have R <0. If R =0, then an elliptic state with a
zero-frequency phonon can exist, but stable or metastable
systems of balls with no zero-frequency phonon have
R <0 and hence correspond to hyperbolic orbits.

Physically, this result says that given a pinned stable or
metastable state, no nearby solution to the force equations
exists with the same periodicity. Most perturbations to 6,
and r; cause the periodicity to change, which results in ar-
bitrarily large displacements far from 6,.

For sufficiently small potential only two solutions exist
for a given rational winding number, Q,/P,. The
ground-state solution is hyperbolic and the saddle-state
solution is elliptic. As n increases and Q, /P, approaches
the irrational a, the two solutions meld into one KAM
surface. This orbit with winding number a has zero resi-
due and is hence elliptic.

At V.(a) the elliptic KAM orbit disappears, and for
V>V.(a), it is observed numerically that all orbits with
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winding number a are hyperbolic. Physically this result is
supported by the behavior of the saddle state. For V>V,
the saddle solution has a ball at the top of a well that is
“held up” by symmetry only, so an infinitesimal change in
the ball next to the one at the top causes the position of
the one at the top to change by a finite amount as it “falls
down.” The saddle solution which corresponded to an el-
liptic state for ¥V <V, has thus become hyperbolic for
V > V.. The residue of the rational approximating orbits
will approach + w0 as n— o0 for V> V..

For V>V, the inverse correlation length £~ is the
Lyapunov exponent of the dynamical system. From the
definition of the correlation length in the pinned regime
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(Sec. III), it is apparent that one of the eigenvalues, A}, of
the linearized transformation T; about the ground-state
solution goes as e /¢ for large j. Since T; has deter-
minant one, its other eigenvalue A;" goes as e *//5. The
Lyapunov exponent A is given by

A= lim ~InAf =¢1. (B7)

Jj—ow ]

For V> V.(a=¢), the standard map is in the chaotic
regime. Only very special initial conditions, which ap-
parently have no physical meaning for dynamical systems,
will lead to quasiperiodic orbits like the ground state of
the balls.
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