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Depinning and wetting transitions in one and two dimensions
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Possible phase transitions and the critical properties of liquid films on top of substrates are dis-
cussed. Our ideas seem to explain a disagreement with mean-field theory in a recent experiment by
Kwon et al. Connection with models studied in the context of instantons is pointed out.

I. INTRODUCTION

There has been recent interest in the statistical physics
of fluid films epitaxially adsorbed on substrates. ' The
question of wetting of a three-component system near the
critical point of mixing of two of the components had
been studied by Cahn. ' More recently, DeOliveira and
Griffiths (DeOG) and Pandit, Schick, and Wortis (PSW)
studied the systematics of thick epitaxial films. DeOG
pointed out the role played by the roughening transition
on layer formation. PSW discussed possible phase dia-
grams for different substrate strengths. A self-consistent
calculation connecting layer formation and the roughening
transition was carried out by Weeks. The question of sur-
face effects on critical behavior had been discussed earlier
in the context of magnetic transitions. DeOG and PSW
in fact based their calculations on Ising models. This
analogy is further explored by Nakanishi and Fisher who
analyzed the global phase diagram of wetting on the basis
of Landau phenomenological theory.

The wetting transition is concerned with whether or not
a liquid layer forms on (wets) the substrate. The thickness
of the liquid layer need not be infinite after wetting. The
structure of this layer has been discussed by Widom with
Landau-type arguments. A similar question has also been
discussed by Sheng and Allender et al. ' and experimen-
tally investigated by Miyano" in surface phenomena in
nematic liquid crystals. The way in which the film be-
comes infinitely thick has been called the depinning (DP)
transition and has been discussed extensively in one di-
mension by Abrahams, ' Chui and Weeks, ' Burkhardt, '

Van Leeuwen and Hilhorst, ' Chalker, ' and Vallade and
Lajzerowicz. ' It is also called critical wetting by PSW.
All these calculations agree with each other. They found
that the film thickness goes to infinity as (T —TDp) . In
two dimensions there is no exact solution. Vieira and Bur-
khardt' have performed self-consistent-field calculations.
They found no phase transition for the Gaussian model.
For the solid-on-solid model they found a phase transition
such that the film thickness goes to infinity as
ln(T —TDp), in agreement with the prediction of Widom
and Cahn. Chalker' has performed a duality-type
transformation and found a pinning transition in all cases
if the pinning potential possesses a repulsive core. Kroll

and Lipowsky have performed a renormalization-group
analysis and found that the film thickness in the two di-
mensions (2D) goes to infinity as ( T —Top ) '. The
relevance of the depinning transition to magnetic systems
has been discussed by Lipowsky. '

In the presence of an external gravitational potential,
the width of the film thickness is always finite. This
width was calculated in mean-field theory by de Gennes
using the ideas of Cahn and Widom but incorporating the
long-range nature of the van der Waals forces between the
substrate and the epitaxy. The quantitative value of this
width disagrees with that found experimentally by Kwon
et al.

Actually, very similar models have been studied in the
context of droplet formation in three dimensions (3D)
and "instantons" in four dimensions (4D), respectively.
Our picture is as follows: The interface spends most of its
time away from the substrate. Every once in a while, it
comes close to the substrate via the formation of a kind of
2D domain or instantons, in which the film is thinner
than the surrounding area. This corresponds closely to
droplet formation in 3D in the sense that a droplet is a 3D
domain in which the density is higher than the surround-
ing volume. Using the basic idea of these approaches
here, we try to provide a physical picture of the depinning
transition in 2D and resolve some of the disagreement
mentioned. Let us outline the contents and summarize
our results here.

In Sec. II we shall set up our model and make connec-
tion with works of earlier workers. In Sec. III we shall
briefly recapitulate the results for the short-range pinning
potential in 1D. New results for different pinning poten-
tials are discussed. The possibility of observing a reso-
nance of the transfer matrix in the depinned state is men-
tioned. In Sec. IV our results for 2D depinning will be
presented. We found that just as in 1D a phase transition
will occur only if the pinning potential has a repulsive
core. In the absence of any excess chemical or gravitation-
al potential the interface width grows as ln(T —TOP). In
the presence of an external gravitational potential, the
functional dependence of the thickness on this potential is
the same as that predicted by the mean-field theory under
some conditions. However, its magnitude is reduced by a
"tunneling factor" which is quite substantial in general.
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This reduction may explain the disagreement of Kwon's
experiment with mean-field predictions. There are also
conditions under which the functional dependence accord-
ing to mean-field theory is not obeyed.

II. MODEL

In this paper we shall always assume that one is above
the roughening temperature. The liquid-height profile
above the substrate is described by a set of height variables
(h;) where i may be a ID or 2D index. The energy func-
tional E of the system is described by a surface-tension
term E& that tends to keep the surface flat and a pinning
potential E2 that keeps the liquid close to the substrate.
Specifically, we have E =E

~ + E2,

E, = g V, (h;)+ —„(h;+1/2)-' .

U =4(c, )+ f [bf +K(dc/dz} )dz . (2)

Here Vo is an exponentially short-ranged attractive poten-
tial of range b with a repulsive core. For simplicity we
take the short-range part of E2 to be a square well of mag-
nitude A. The exponential part of Vp we represent as
Voexp( h;r). Th—e second term in E2 comes from the van
der Waals interaction. w is a constant. According to Ref.
22. tc is proportional to —(o.~

—a, )(ag —a, ) where al, ag,
and n, are the polarizibilities of the liquid, gas, and sub-

strate, respectively. We expect w to be positive and have
assumed so here. This need not be true in general, howev-
er. J is proportional to the interface tension, as is dis-
cussed by Weeks. The dependence of E2 on h; is illus-
trated in Fig. 1. We shall assume the intercolumn distance
5 to be unity. One can regard Eq. (1) as the starting point
of our model. However, it may be worthwhile to recapitu-
late the connection of E2 with previous works using Lan-
dau phenomenological theory. (E& has been discussed by
Weeks. ) Let us first ignore the van der Waals interac-
tion. By denoting the concentration at a distance z from
the substrate by c(z) and ignoring lateral fluctuations, the
energy U of the system can be written in the notation of
Cahn as

Here c, is the concentration of the fluid at the surface.
4(c) is the short-range substrate-fluid interaction energy.
Af is the free-energy difference between the liquid and the
gas. K(dc/dz) is an elastic energy. Typically bf has a
double hump. Equation (2} has been studied intensively in

the context of domain walls. In general, by minimizing

(2), the qualitative behavior of c (z) is as illustrated in Fig.
2 where the energy dependence of that configuration on h

drops off exponentially fast. Our model in Eq. (1j is valid
when the domain-wa11 thicknesses 5~,52 are much less
than the height variable h. From the domain-wall work,
we expect h&,Az to be proportional to (rn~/K)' and
(mq/K)' where m, ,m2 are the curvature of hf at the
first and second minimum. The energy of the configura-
tion in Fig. 1 is a compromise between the substrate-fluid
energy 4(c, ) and the elastic energy a(m, k)'r
+b(mzk)'r (a, b are constants of the order of unity). The
energy of this configuration as a function of h is what we

have called Vo(h;) in Eq. (1). It is obvious that before the
wetting transition, it will be attractive so that h is small.
As one goes toward and passes wetting, it will be less at-
tractive. As we shall learn later, the film thickness h be-

comes infinite when this potential is still attractive.
In some experiments the substrate itself can also move.

J in Eq. (1) then corresponds to the "effective mass, " i.e.,
J =J ] +J2, where J~,J2 are the interface tensions of
the substrate-liquid and the "liquid-vapor" interfaces,
respectively.

In some problems there is an external chemical potential

hAp that keeps the film from becoming infinitely thick.
Ap may come from an external gravitational field as in

the experiment of Kwon et at.

III. ONE DIMENSION REVISITED

All the 1D calculations focus on the transfer matrix,
which is essentially identical to the Hamiltonian of a
quantum particle in a potential. The phase transition is

determined by whether or not the potential can support a
bound state. When the potential can no longer support a
bound state there can still be resonances. We shall explore
what this means physically in this section. All previous
work was carried out for short-range potential. In this
section we shall examine an example that illustrates the ef-
fect of the long-range potential on the critical behavior.
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FIG. 1. Schematic drawing to illustrate E~ as a function of
h;.

FIG 2 Schematic illustration of the density profile of a fluid

film absorbed on a substrate at z=O.
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We are interested in the partition function

Z = g exp( P—E) .

This can be written in terms of the transfer matrix T as

Z =TrT",

T(h, h') =exp[ —PJ(h —h') ]exp[ —PVo(h)] .

(3)

(4)

Even when no bound state can occur it is still possible
to have a resonance. We have not been able to find any
previous discussion of the resonance of the transfer ma-
trix. It is of interest to ask if there are interesting physical
consequences. The answer is yes. The correlation func-
tion of an operator P is given by

{P(0)P(r) ) = g exp[ /3(E—„Ez—)]r
~

(0
~

P
~

n )
~

",

In the continuum limit the eigenvalue equation for the
transfer matrix becomes

(4pJ) 'd, g+ pVOQ= kp .

We approximate Vo by ignoring its exponential tail. For a
short-range attractive potential backed by an impenetrable
barrier, a bound state begins to form at some critical po-
tential strength, V, . The wave function at large z behaves
as exp[ —[z(A, )] ' ]. The thickness of the film is in-
versely proportional to A.

' and hence to (A —V, ) '. It is
interesting to know if the critical exponent depends on the
form of the potential. The eigenvalue equation for the
long-range attractive potential B(z+1/2) can still be
solved exactly. The eigenfunction is now the Bessel func-
tion z' K, 4, ,~, ( —A,

' (z+ —, )) where y=4P JB. For
{]/4 —y)

a bound state to occur ( —,
' —y)' must be imaginary. Let

( 4
—y)' =iv, whence v would be real. The eigenvalue is

then determined from the boundary condition l((0)=0.
From the small distance expansion of K;„(z) we get
A, = —16exp[ —2ir(y ——, )

' ]. Note that the critical cou-

pling y, is just —,. Hence in this case the thickness of the
film, which is proportional to A. '~, is proportional to
exp[+ 2ir(y —y, )

' ]. This behavior for a long-range at-
tractive potential is quite different from that of the short-
range attractive potential.

The potential in Eq. (1) consists of a short-range attrac-
tive part and a repulsive part that subsides as (z+ —, )

The eigenvalue equation can be solved first in the region
where the short-range potential is absent. The eigenfunc-
tion is just (z+ —,')' K 4 „,(A,

' '(z+ —,')). If we as-
{y+ 1/4)

sume that the short-range potential is a square well with

depth A, the small distance solution can also be obtained
as sinz(A E)' . The eige—nvalue can then be obtained by
matching the logarithmic derivative at the point c where
the two potentials joined,

(A —k) '~'cot[(A —1, )
' ~'c]

If the system is barely bound, A, is small,
K (A,

' C) =(cA.' ) ", and

(A —k)' cot[c(A —k)' ] =1—(1+4) )'

The critical y, is determined by

A' cot(cA' )=1—(I+4y )'

Note that cA' must be larger than m/2, otherwise no
bound state occurs. The critical behavior can be obtained

by considering small changes of y from y, . The same re-
sult as for the short-range potential is obtained.

where
~

n ) are the eigenstates of the transfer matrix. The
density of states near a resonance is proportional to the en-

ergy derivative of the phase shift d g/dF. . Since
tan '[I /(E E„)],— dr)/dE I /[I" +(E E„) ]-.

Hence there is an enhanced contribution to the correlation
function from the resonance. This contributes the follow-
ing term to the correlation function:

(P (0)P (r) ) o: exp [ [ —(E„—Eo) +&'I ]P]&

The Fourier transform of this term can presumably be
measured and one obtains a term of the form
[(g —I P)+iP(E, Eo)] ',whe—re q is the wave vector.
We thus get a Lorentzian peak located at I P with width
PE„.

IV. DEPINNING IN TWO DIMENSIONS

Let us first present a physical argument for the critical
properties of the depinning transition. We shall then
make it more precise by using ideas from the study of in-
stantons.

Owing to thermal fluctuations in the lateral direction,
the interface will consist of portions that are close ta the
substrate and portions that are not. Suppose at some point
P the interface is around the mean distance lo from the
substrate. Owing to thermal fluctuations, the root-mean-
square deviation of the film thickness away from its mean
value lo grows as one moves away from P. When this de-
viation becomes of the order of lo itself, there is a signifi-
cant probability that the interface would come close to the
surface. When this happens because of the hard core of
the substrate, the interface must turn around at the ex-
pense of some elastic energy. On the other hand, due to
the pinning potential some energy is saved. When the net
energy is negative, the interface will be pinned. Let us
first determine the cost in the elastic energy.

To simplify the discussion, we would initially ignore the
long-range tail of F2 and assume it to be zero for h & b.
The elastic energy expended in turning the interface
around is proportional to the mean-square slope
s =

~

Vh
~

of the interface. Let us estimates by consid-
ering two points, one of which, such as P mentioned be-
fore, has the interface at around the mean distance lo fram
the substrate (see Fig. 3). If the distance between P and Q
is x, then the mean slope of the interface between P and Q
is lo/x. The mean-square slope s, to which the elastic en-
ergy is proportional, is then given by s'=(lo/x)~+c'
where c is the standard deviation of the slope in the ab-
sence of the substrate. It remains to evaluate x. To do
this we ask how the mean-square fluctuation of the film
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substrate

FIG. 3. Illustration of the interface at some distance 0 from

the substrate coming close to the substrate at a lateral distance x
due to thermal fluctuation.

thickness ((5h) ) grows as we move away from the point
I' where we know that the film thickness h has its mean
value lu. In one dimension we have ((6h ) ) -Inx,
whereas, in two, we would have ((5h) ) -lnx. If we ap-

ply our previous criterion that x is typically the distance at
which (5h ) is of the order of lu itself, we would get
x Ip in 1D and x -exp(lo) in 2D. Hence the elastic en-2 2

ergy is of the order of J(c +lo ') in 1D and

J[c +luexp( —2lo)] in 2D. Owing to the pinning poten-
tial, the interface gains an energy —Ab. The interface be-

comes depinned when the sum of the above two energies
becomes positive. From this we get

(A —u, }
' in 1D, where u, =Jc2/b

la 1/21n'~ (A —u, ) in 2D
(10)

if we ignore the pre-exponential lo dependence in one of
the terms in the elastic energy in this crude estimate.

In the above calculation we have assumed that E2 is
zero for distances longer than b. In most physical prob-
lems Vo(h) has an exponential dependence on h for large
h. Even if one ignores the long-range van der Waal energy
and sets w =0, the pinning energy gain, mentioned above,
will become Ab + Vuexp—( —«lu), were Vu and «are con-
stants. In 2D, this added term would eventually become
larger than the term Jloexp( —21u) in the elastic energy for
a sufficiently large lo and takes over. When this happens,
we have lu proportional to ln(A —u, ) instead. ' Hence
our results in 2D for the critical behavior agree with previ-
ous mean-field calculations when m=0. They disgree with
the renormalization-group result of Kroll and Lipowsky.
In 1D this argument gives the same result as previous cal-
culations. By a similar argument, we also expect that any
attractive pinning potential of the form Dh ~ will change
the pinning energy gained to —Ab+Dlo~. In 2D the
added term would dominate the exponential elastic energy
term for sufficiently large lo near the transition. Hence,
the critical behavior of the thickness becomes
lo ~(A —V, ) 'ri'. In 1D it would have no effect, unless

p & 1, which is unlikely. Let us now reformulate the above
calculation in a more precise way.

Models similar to ours have been discussed in the con-
text of droplet formation in 3D (Ref. 24} and false vacu-
um of the universe in 4D. The Lagrangian L studied in

One seeks a path go(p) that extremizes E subjected to the
boundary condition go(0) =b and go(R }= lo. [In the drop-
let language, this corresponds to picking configurations

p(r) such that for large r, p represents gas density while at
small r, p represents liquid density. ] This can be obtained
from the Euler Lagrange equation

dgo
p =0.

dp dp

We get

(12)

ap+P, d =1
alnp+P, d =2

(13)

where a,P are constants. From the boundary condition we
have P=b,

( b+lu)/R, d =l-
( b+ lo)/ln(R /b—u), d =2

(14)

where bo is a lower limit cutoff of p.
To complete the steepest descent calculation, one con-

those cases [Ref. 25, Eq. (1.1)] is given by
L = f [(Vit) —U(P)]. U(g) has a type of double-well

structure. In the present case, h plays the role of 11, U is

replaced by E2. The 3D or 4D domains of integration are
replaced by one that is 2D. Note that E2 has a kind of
double-we11 structure. When Ap is zero, the outer
minimum is at r = oo, but is very flat; for hp&0 this
minimum is moved in. While the detail of these ideas is
not directly applicable here, the essence of their approxi-
mation is. In general, one has to sum over all possible
configurations [h; ] to calculate Z. In particular, there are
configurations that correspond to h =lo at some point I'
and h =b at point Q, a distance R away from P Thes. e

correspond to the instantons. Z is approximated by sum-

ming over all configurations of this instanton gas. Near
the depinning transition, the interface does not come close
to the substrate often. One then is in the dilute limit of
this gas. The interaction between instantons will hence be
neglected. The only relevant parameter is then the free en-

ergy (chemical potential) of an isolated instanton. One
can evaluate the probability of an instanton configuration
by the method of steepest descent. The presence of the
substrate can be neglected until the probability of the in-

terface coming close to it becomes substantial. This deter-
mines an optimal distance Ro. For R &Ro, the interface
must turn around and we do not have a single instanton
configuration anymore. Let us write out the mathematical
details. First let us assume hp, =0. The energy of the
domain wall or instanton consists of an elastic part E and
a part due to the substrate potential. For h &b, the sub-

strate part is small and slowly varying. Hence the inter-

face energy is dominated by elastic energy E. The energy
functional E is in circular coordinates, with p as the dis-

tance from Q,
2

E=2 Jirf p" '
dp, h )b .

dh

dp
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E= fp dp+~ f p dp.d —1 (15)

The mean slope is

dh =aR +c,
dp

where c =(dq/dp) is a number of the order of unity.
The free energy Fp for these configurations is obtained by
integrating over g. Hence

2' Jl p /R, d = 1 (17)
2n Jlp/In(R/bp), d =2

where Fp is the contribution due to g. So far the value of
R has not been specified. As we mentioned at the begin-
ning of this calculation, this is determined by the require-
ment that the probability of the interface coming close to
the substrate becomes significant. This happens when

P(F —Fp} is of the order of unity. This deterinines an op-
timum Rp given by

2mJP!p, d =1 (18)
Rp tx:

27TJbpexplp, d =2 .2

siders a small deviation from the optimum path gp, i.e.,
h =gp+g. The energy functional becomes

2

From this the slope s in the preceding section is obtained.
The rest of the calculation is then essentially as described
in the first paragraph. We add the energy gained due to
the pinning potential. The net energy determines if the
configurations are favorable or not.

Let us next turn our attention to the case such that hp
is finite. In this case the interface is always bound. One
would like to determine the height of the interface as a
function of Ap. Again we evaluate this by the method of
steepest descent. The pinning potential now consists of a
double well with an inner minimum at around h =b of
magnitude A and an outer minimum at hp-(by/c} '~ of
magnitude V(hp ) =3(b p c)'~ /2. For small deviations
from hp, the potential is given by

V(h)= V(hp)+ , (b—h) (A@4/c)' '

—:V(hp)+ JG'(bh)

At the depinning transition A is of the order of —Jb .
The favorable configurations will consist of the following.
Part of the interface will be at the inner minimum while

part of it will be at the outer minimum. In between, they
are joined by a kind of domain wall, the instantons. The
free energy per unit area of an interface at the outer
minimum is approximately given by

F(hp) = ——ln(PJ/m) — f f dg„dg~ln[P(0) $(g)+—G ]+V(hp), P(g) =2(cosg„+cosgz) .
2

(19)

We shall assume that when the interface is located at the
inner minimum, the entropy associated with it is suffi-
ciently small to be negligible. The probabilities of a unit
area of the interface at the outer and inner minimum are
proportional to exp[ —PF(hp)]=Pp and exp( —PVp) =P;,
respectively. However, since the total interface is continu-
ous, we now have to estimate the energy of the domain
wall ( Wd ) joining these regions. If P; & Pp, the net proba-
bility of finding the interface at the outer minimum will

be reduced by the factor exp( —PWd). This corresponds
to the "tunneling probability" in the instanton language.
Because of this factor, the average height of the interface
is reduced. We think it is this factor that causes the
disagreement between the experimental result of Kwon
et al. and the mean-field estimate of de Gennes.

It is difficult to give an analytic expression for 8'd valid
for the entire range of the parameters. There are essential-

ly two limits depending on the relative magnitude of Jhp
and mhp . If Jhp «Nhp then the domain wall should
be very thin. In the other limit it should be thick. If one
is close to the critical point, then one of the interface ten-
sions (J;) is small. Hence the domain wall should be thin.
In that case the domain-wall energy W~ per unit length is
approximately —,

' J (h p
—b ) .

We now turn our attention to the evaluation of the aver-

age height (b ). Let us assume that P; & Pp. First, we

shall assume that hp &gb. Since we are interested in the
average height (h ), even though the possibility for an in-

terface to be at the outer minimum is small, they are the
ones that provide the dominant contribution to (h ). The
optimum area Ap of the interface at the outer minimum
can be determined by minimizing the quantity

—P[F(hp}—Vp]Ap —PWp(Ap)' +InAp

with respect to Ap. Let us call the optimum value of this
Kp. The average height (h ) is then approximately equal
to hpexp( —Kp). Presumably, the parameters in this cal-
culation can be determined from experiments. It would be
interesting to measure the interface tension J and see if the
tunneling factor does account for the discrepancy between
experiment and the mean-field calculation. For hp com-
parable to b, the above simple functional dependence is
not obeyed, and the dependence of (h) on b,p is then
much more gradual.
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