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This paper investigates the problems associated with simulating many-body systems with finite-
state machines such as computers. It is shown that the digital (discrete) character of time brings in
features which are not encountered in the usual analytical studies using continuous time. This is il-
lustrated with a thorough study of the dynamics of simple magnetic systems with competing interac-
tions. Whereas continuous dynamics, as derived from the usual master-equation approach, yields
asymptotic behavior which is time independent, dynamics in digital time can lead to complex
behavior characterized by the existence of multiple basins of attraction, broken symmetries, oscilla-
tions, and chaos. These results might provide a dynamical explanation for the breakdown of ergodi-
city which has been reported in Monte Carlo studies of spin-glasses.

I. INTRODUCTION

The emergence of powerful computing machines has led
to the exciting possibility that a number of complex prob-
lems, which only a few years ago refused to yield any
answers, might be finally understood on a quantitative
basis. Large-scale computer simulations are becoming a
familiar tool in the study and understanding of the
behavior of stressed fluids, chemical reactions, and com-
plex economic organizations, to cite just a few examples.
Moreover, Monte Carlo methods have allowed for the
study of spin systems of relevance to both condensed-
matter physics and elementary-particle theory, and they
hold promise of providing realistic insights into kinetic
processes such as nucleation and pattern formation.'

Besides providing clues to the understanding of complex
systems, computer simulations are also assumed to give
answers which do not differ in a marked way from the
ones one would find by performing experiments on real
systems or by solving the differential equation embodying
a particular law of nature. Insofar as nature can be
thought of as an analog computer integrating a particular
equation with given boundary conditions, it would seem
that the advantage provided by fast digital machines is
one of flexibility (i.e., varying coupling constants or boun-
dary conditions) and ease of observing behavior as param-
eters are changed.

There are differences, however, between the way a sys-
tem is simulated by a digital machine and the way it is
studied in real experiments or analyzed by solving the dif-
ferential equations describing its behavior. A very impor-
tant, if seldom acknowledged, difference is that in a com-
puter, time can only be implemented by discrete processes
which correspond to steps of a program. This peculiar di-
gital character of time can in turn have serious conse-
quences in the dynamical behavior of the system simulated
and lead to results that might have little resemblance to
the real process being studied.
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This paper investigates the problems associated with
simulating many-body systems with finite-state machines
such as computers. It is shown that the digital (discrete)
character of time brings in features which are not encoun-
tered in the usual analytical studies using continuous time.
This is illustrated with a thorough study of the dynamics
of simple magnetic systems with competing interactions.
Whereas continuous dynamics, as derived from the usual
master-equation approach, yields asymptotic behavior
which is time independent, dynamics in digital time can
lead to complex behavior characterized by the existence of
multiple basins of attraction, broken symmetries, oscilla-
tions, and chaos. These results might provide a dynamical
explanation for the breakdown of ergodicity which has
been reported in Monte Carlo studies of spin-glasses.?°
A similar picture appears in numerical analysis when algo-
rithins are used for parameter values beyond their range of
validity.

This paper consists of five sections and an appendix.
Section II deals with the digital dynamics of Ising systems
with competing interactions. After obtaining exact results
for the time evolution of expectation values, local-field
corrections are used to obtain recursion relations for the
magnetization and susceptibilities. Section III analyzes
the global behavior of the magnetization and susceptibility
as a function of coupling constants and shows the ex-
istence of broken symmetries and many basins of attrac-
tion. Furthermore, it is shown that for systems with com-
peting interactions, the asymptotic behavior of expectation
values can have complicated dynamics such as periodic
cycles and strange attractors. This in turn implies a
breakdown of ergodicity and chaotic behavior, implying
that computer simulations of such systems would not con-
verge to meaningful static values of the observables.
These results seem to be consistent with reports of lack of
convergence in Monte Carlo simulations of spin-glasses.
Section IV analyzes the continuum limit in the context of
finite-state machines and shows the effective differential
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form of the master equation that one obtains. Section V
summarizes the results obtained and comments on their
applicability to Monte Carlo experiments. An appendix
provides a derivation of linear-response theory in discrete
time, and shows the existence of asymptotic time depen-
dence in the susceptibilities for the case of static external
fields.

II. DISCRETE DYNAMICS

A. Exact results

Consider an Ising spin system with both ferromagnetic
and antiferromagnetic interactions, and in the presence of
an external magnetic field, h;, acting on each site i. The

i

P(Sl, .o ,SN,I+T)—P(SI, .o ,SN,[)=——2[COk(Sk)P(S|, [
k

where 7 is the basic time step, and wg (s ) the probability
that the kth spin flips its configuration in time 7. Follow-
ing the standard convention we will assume that w;(sy) is
given by

wr(sp)=3[1—s,tanh(BE,)] , 2.4)

with B=(kg )", kg the Boltzmann constant, and

Ex=23 Jusi+hi . (2.5)
!

This choice of transition probability not only satisfies the
principle of detailed balance, but also produces the correct
equilibrium relation for the probabilities determined by
Eq. (2.3). Moreover, this transition rate is thought not to
differ substantially from that used in Monte Carlo simula-
tions of Ising spin systems.’

The quantity of interest is the magnetization of the sys-
tem at time ¢, (s; ), which is given by

(s;)= 3 s5;P(sy, ..
{s}

and where the sum extends over all possible spin configu-
rations at time ¢. With the use of Eq. (2.3), the following
equation of motion is obtained:

.,S}v,t) (2.6)

(Sj ),+T—(sj>,=—2<sja)j(sj)), , (2.7)

which, for the particular choice of transition rates given
by Eq. (2.4), becomes

(Sj >r+1-= (tanh(BEJ)>t )

an exact equation which in equilibrium (i.e., no time
dependence®) produces the standard known result of sta-
tistical mechanics of Ising systems.® !

The approach described above can also be used to evalu-
ate the time evolution of the magnetic susceptibility, a
quantity of direct relevance to experiments and Monte
Carlo simulations. Assume the existence of a time-
independent external field h; acting on each ith spin:
Then the time-dependent susceptibility is defined as

(2.8)
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Hamiltonian of the system is then given by
H"_"—ZJU_S.!_S.J-Ehlsl N (2.1)
iJj J
where the interaction term has the form
J, for p neighbors
Jyj= —J, for r neighbors 22

with both J; and J, positive, but not necessarily equal,
and the summation extends over all z=p+r neighbor
spins.

The probability P(s,,s,, .. .,sy,t) that the system is in
a given state, (s;,...,sy), at time ¢ evolves in time ac-
cording to the master equation

,SN,t)—a)k(—Sk)P(S], e Sk 1y —SksSk 41> - - - ,SN,I)] ,
(2.3)
~
a(S] )‘
U= — ’ .
Xij ok |, 2.9)
which, with the help of Eq. (2.8) becomes
d{tanhBE;)
Xt +7)= OUanbPE; e | (2.10)
oh; § =0

a result that can also be obtained from linear-response
theory. Its digital-time version is developed in the Appen-
dix.

B. Local-field corrections

Equations (2.8) and (2.10) provide an exact description
of the discrete dynamics of a general magnetic system
with both ferromagnetic and antiferromagnetic interac-
tions. Since the ensemble averages entering their right-
hand sides cannot be calculated exactly, an approximate
scheme is necessary in order to evaluate them. The sim-
plest such approach is the Weiss molecular-field approxi-
mation, in which E; is replaced by an effective local field
hj", such that

hij(Ej>= Eijmk +hj y
k

where m; =(s;). For systems with competing interac-
tions, however, this approximation fails to give behavior
consistent with thermodynamics and an improved local-
field correction is necessary. In what follows, we will use
the scheme proposed by Brout and Thomas,'! in which E !
is replaced by

hi= 3 Jymy— 3 JiXem;+h; (2.12)
k k

where X, represents the response of spin k to the average
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magnetization at site j (sk), and it is given by

amk

—_— (2.13)
B(kamj)

Ykk=

ah;‘:ff a

3 Jum— 3 JaX ymy + by,
1 7

Eq. (2.13) can be written as

~ amk

Xk = ah’:ff .
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This equation has also been used by Thouless, Anderson,
and Palmer'? in their study of spin-glasses with infinite-
range interactions.

With the use of the fact that, to first order,

1, (2.14)

(2.15)

We are now in a position to evaluate the dynamics of both the magnetization and susceptibility. Replacing E; in Eq.

(2.8) by the effective field given by Eq. (2.12), we obtain

mj(t+7)=tanh | B

%ijmk(t)— %Jﬁ)?kk(t)mj(twhj

l ) (2.16)

where it has been assumed that the magnetization at site j at time ¢ is determined by the effective field produced a time

step earlier [i.e., hfff(t —7)] and that therefore

Imy(t)

X ()= ————,
S angfe—n)

or equivalently, using Eq. (2.12),

X =Bl1—mi(D]} =0,

(2.17)

(2.18)

which gives the quantity evaluated in several Monte Carlo simulations of magnetic systems with competing interac-

tions.>*

The equation for the time evolution of the susceptibility can also be obtained in a similar fashion. With the use of the

same local-field corrections as above, Eq. (2.10) becomes

3m; (1 47)

Xi(t4+7)= o,

b

h=0

which can be written with the help of Eq. (2.16) as

Xj(t+7)=Bl1—m}(t+7)]

3 JiXia ) — 3 TiX (DX (1) + 8
k k

(2.19)

(2.20)

h=0

The results of this section then show that in the absence of an external field, the magnetization and susceptibilities behave

in time according to the equations

B

mj(t+7)=tanh

Xj(t+7)=B[1—m}t+7)],

Xij(t+7)=X;(t +7)

In what follows, we will study the global behavior of their
solutions as a function of both the strength of competing
interactions and initial conditions.

III. RESULTS

In the previous section, we derived equations which
determine the time evolution of the magnetization and

k k

S T X =B 3 Tl 1—miOW;(0)+8;;
k k

(2.21a)

(2.21b)

I

susceptibilities. We will now study the global behavior of
their solutions as a function of both the interaction
strength and the amount of competition present in the sys-
tem.

In order to obtain the basic features of the spin dynam-
ics in our system, we will assume that any given spin has
the same amount of nearest neighbors and ferromagnetic
and antiferromagnetic couplings.!> This in turn implies
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that one can write m; =m and

S Ij=pli—r),=J, (3.1
k

with p the number of ferromagnetic neighbors; J; is their
strength, and r is the number of antiferromagnetic neigh-
bors with strength J,. Similarly

S Ji=pli+rIi=J"r. (3.2)
k
Equations (2.21) then become
m;(t+7)=tanh[(J—J )m;(t)+J *m} (D],  (3.3a)
Xilt+7)=1—m}(t+7), (3.3b)
and
Xi(t+7) =X (0 + 1) 1=T (0 +T X (hm0)]
(3.3¢)
where we have defined
j:BJ, er:B2JIZ , (3.4)

and have assumed J;;X; << 1 in deriving Eq. (3.3c).

Since Eq. (3.3a) is independent of the susceptibility
values, we start by analyzing its behavior as a function of
the renormalized constants. Consider a system with pure
ferromagnetic couplings. In that case, any initial spin
configuration relaxes to a simple fixed point which is ap-
proximately given by the solution of Eq. (3.3a) with 7=0,
in agreement with earlier studies of Ising systems using
continuum dynamics.'*

As the number of antiferromagnetic bonds is increased
even further, new fixed points appear in the dynamics of
the system. Starting with a small antiferromagnetic in-
teraction, a new stable fixed point is first encountered. In
this case, regardless of the initial spin configuration, the
long-time behavior corresponds to a time-independent
solution with m; =0. As the relative strength of the anti-
ferromagnetic interaction is further increased, the solu-
tions of Eq. (3.3a) undergo a bifurcation into asymptotic
oscillations such that the average magnetization flips its
value from plus to minus periodically at every time step.
However, since the values at each instant of time are sym-
metric about the origin, a time-averaged measurement of
the magnetization in this range would produce a zero
value.

As the number and strength of both the ferromagnetic
and antiferromagnetic couplings is further increased while
keeping their difference constant, new fixed points and
basins of attraction appear in the dynamics of the system.
The existence of different attractors implies that the long-
term behavior of magnetic systems with competing in-
teractions, can, when simulated by digital machines, be-
come time dependent and complicated. Furthermore,
multiple basins of attraction will make the solutions reach
asymptotic values which strongly depend on initial condi-
tions. In what follows, we will describe some of the im-
portant dynamical features that are encountered in a mag-
netic system both as a function of the amount of competi-
tion and temperature.

M. Y. CHOI AND B. A. HUBERMAN

28

Figure 1 gives a description of the possible asymptotic
regimes to be encountered in a magnetic system with J =2
as a function of the total strength J '>=rJ? + pJ3, with ini-
tial conditions for each value of J ' set at m =0.6. As J '
is increased past the point 4, a new attractor appears such
that the long-time behavior corresponds to a simple fixed
point with zero magnetization. A further increase in J "2
produces a bifurcation into a periodic cycle such that the
magnetization reverses itself in every cycle, while giving
an average value equal to zero.

At J'?=B, an interesting symmetry-breaking process
takes place. Beyond this point, the asymptotic magnetiza-
tion still reverses itself every time step, but with an asym-
metry which produces a nonzero average value. This
phenomenon is associated with the appearance of two
basins of attraction for the solutions of Eq. (3.3a). Each
of these basins traps all solutions started with either a pos-
itive or negative magnetization, respectively. (If an initial
configuration with negative m were chosen, the broken
symmetry state would correspond to a negative average
value of m.) For still higher values of J'2, each basin of
attraction bifurcates into new periodic states, yielding a
finite average magnetization whose actual magnitude de-
pends on the initial value of m. A further increase in J "
produces new dynamical behavior such that initial config-
urations can now be trapped into strange attractors.

In this regime, the asymptotic behavior of the magneti-
zation is chaotic, and its average can become either zero or
nonzero, depending on initial conditions. Figure 2 shows
its time evolution as predicted by Eq. (3.3) for J=2,
J'2=6. As can be seen, the magnetization wanders in
time over a large range of values without any recognizable
period. For still higher values of J'%, a variety of basins
of attraction, periodic cycles, chaotic, and intermittent
behavior is encountered, implying that a discrete simula-
tion of such magnetic systems can lead to nontrivial situa-

+1

FIG. 1. Asymptotic behavior of the magnetization, as deter-
mined by Eq. (3.3a) for J=2 as a function of J'%. The initial
configuration for each value of J ' is m =0.6.
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FIG. 2. The solution of Eq. (3.3a) for J=2, J'*=6 after an
initial transient of 500 steps. Notice the random macroscopic re-
versals in the magnetization.

tions with non-Gibbsian measures.

While it is beyond the scope of this paper to produce a
detailed analysis of Eq. (3.3a), it is worth pointing out that
in the chaotic regime one observes random switchings of
the magnetization with time. Notice that this effect is ob-
tained in the large N limit of our equations and it is there-
for not a finite-size problem.

Another interesting scenario appears in systems with
equal amounts of ferromagnetic and antiferromagnetic
couplings. In this fully frustrated limit, J=0 and an in-
crease in the value of J ' in Eq. (3.3a) can be regarded as a
lowering of the temperature. Figure 3 shows the asymp-
totic behavior of the magnetlzatlon asa functlon of the in-
verse square temperature, in units of (rJ3 +pJ3)~2. Some
of the features encountered in the previous case are still
present, such as solutions with broken symmetries and
chaotic behavior. In addition, one encounters a great deal
of overall symmetry around the m =0 state, although for
many values of T (see, for example, A and B) nonzero
values of the average magnetization are encountered.
Furthermore, the local susceptibility, as given by Eq.
(3.3b), also exhibits chaotic behavior, implying lack of
convergence into a time-independent fixed point (Fig. 4).

IV. THE CONTINUUM LIMIT
AND FINITE-STATE MACHINES

Since the results obtained in the previous sections con-
tain qualitative features which differ considerably from
those encountered in studies of spin systems using
continuum dynamics,'>~!” we will now discuss the origin
of these differences, together with a detailed analysis of
how the differential form of the master equation is
recovered in a finite-state machine.

Consider time to be given in units of a basic time
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FIG. 3. Asymptotic behavior of the magnetization, for a sys-
tem with equal amounts of competing interactions, as a function
of T—% The initial value of the magnetization at each point is
m =0.6.

length, 7, such that t=nr and t +7=(n+1)7r. The master
equation for the time evolution of the probability that a

given configuration of the system be a=(sy,...,sy) is
given by
P(a,t +71)—P(a,t)
=— 3 [pla— B)P(a,t)—p(B— a)P(B,1)] ,
4.1)

where p(@— B) denotes the probability that the system
make a transition from a configuration a to another con-
figuration B in a unit time step 7. As shown in Sec. II, the
expectation value of the jth spin at time ¢, (s; )¢, can be

simply obtained from Eq. (4.1) yielding
<Sj>t+1'_<sj>l=_2<sjpj(sj))t : 4.2)

Since the left-hand side of the equation is a finite differ-
ence, it can be written as

M‘ | ’ i M

I

500 t 700

FIG. 4. The time evolution of the local susceptibility for
J =0, J'?=6 after an initial transient of 500 steps.
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rd(s) 7 d*(s)
dt 2! dr?
. rd 3<§>

3t dt

Moreover, if the standard assumption is made that the
transition probability scales linearly with time (i.e., the
golden rule) p can be expressed as

(s )r+r_<5 )=

+ (4.3)

p=ort, (4.4)

with « the transition rate. In the limit 7— O, Eqs. (4.2)
and (4.3) then give

d(s)
dt

which is the familiar first-order differential equation that
follows from the continuous version of the master equa-
tion. For a scalar expectation value, this exact equation
can only produce asymptotic behavior consisting of a sim-
ple time-independent fixed point. Since, however, Eq.
(4.5) obtains because of the assumptions listed above, it is
worthwhile to study its validity in the context of studies
using finite state machines such as computers.

As is well known, a general computation goes through a
series of discrete states which are upgraded by the pro-
gram at integer multiples of a unit time 7 according to a
set of given instructions, thus emulating the evolution of
the system. It is therefore clear that a finite-state machine
violates Eq. (4.4) because in time intervals shorter than
the probability that the system changes its state is zero,
while large changes can occur at the instants when the
states are upgraded. Since the golden rule is no longer
applicable, an infinite number of derivatives will appear in
the resulting differential equation for the expectation
values. This enlargement of the dimensionality of the
manifold in turn allows for more complex dynamics to
take place in the simulation, such as periodic cycles and
strange attractors. Thus, in this limit, the results that one
obtains agree with those generated by nonlinear recursion
relations.

Before concluding, we should mention that, although in
real magnetic systems as found in nature there is no evi-
dence of a discrete time, there exist situations where the
violation of Eq. (4.4) will lead to results similar to those
obtained here. In systems where interactions are mediated
via dynamic fields, retardation effects can become impor-
tant. These delays, which have been shown to be able to
affect the critical dynamics of spin systems,'® will in turn
produce evolution equations which are equivalent to re-
currence relations with time steps of order of delay times.
In such cases, competing interactions of the type discussed
in this paper will be expected to produce asymptotic
dynamics which can be time dependent, chaotic, and with
broken symmetries implying a lack of ergodicity.

=-2(sw) , 4.5)

V. CONCLUSION

Throughout this paper, it has been shown that discrete
time produces a host of new phenomena in the dynamics
of spin systems with competing interactions. In particu-
lar, asymptotic behavior characterized by complicated
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time dependence and nonergodicity appears naturally as a
result of the existence of multiple basins of attraction and
solutions with broken symmetries. Since phenomena of
this type have been reported in spin-glasses'® and the evi-
dence quoted is mainly numerical, it is of interest to ascer-
tain whether our predictions are of relevance to those
studies.

In analyzing Monte Carlo simulations, it is important to
elucidate the correspondence between Monte Carlo step
per spin and the time unit 7 that we have used in our
theory. Unfortunately, the available data does not provide
a conclusive answer. If at each Monte Carlo step a single
spin can flip its value, and the new configuration is then
used to upgrade the next spin, then it could be argued that
in the inifinite limit the simulated dynamics is effectively
continuous.?’ On the other hand, spins could be upgraded
in such a way that in a given time step the same transition
probability is used for all of them, a case that closely
resembles our treatment. Which procedure is closer to the
true dynamics of a magnetic system is not clear, and it
would be of interest to compare each algorithm with avail-
able experimental data, if any.

Although Monte Carlo simulations of purely ferromag-
netic systems have shown very good agreement with the
results of a continuous master equation,’! we have also
shown (Sec. III) that the absence of competing interactions
in digital dynamics gives a time-independent fixed point
identical to the continuous case. It remains to be seen
whether simulations of systems with competing interac-
tion will validate our results.

In spite of these ambiguities, it is suggestive that Monte
Carlo simulations of spin-glasses give results which appear
to agree qualitatively with the predictions of a digital-time
theory. We should point out that in spite of the fact that
those results have been obtained in systems with random
distributions of coupling constants, we expect them to per-
sist in systems with no explicit randomness.

In closing, we should mention that although the results
of our paper are based on a specific problem (i.e., magnetic
systems with discrete symmetries), we anticipate them to
be of wider applicability. Besides the retardation effects
mentioned in the previous section, we have recently noted
that networks made up of threshold elements do behave as
if time were discrete.”> In that case their dynamics give
rise to complex asymptotic behavior which is similar to
that discussed in this paper. At a different level, our re-
sults indicate that continuous systems and their corre-
sponding digital simulations do not always display the
same behavior.
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APPENDIX: DIGITAL-TIME VERSION
OF LINEAR-RESPONSE THEORY

Consider time to be given in integer units of a basic
time interval 7, such that t=n7 and t+7=(n+1)r. The
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master equation for the time evolution of the probability is
then given by

P(ag,n+1)—P(a,n)=LP(B,n) (A1)

with a denoting a particular configuration of the system,
and the right-hand side of the equation given by

LP(B,n)=— 3 [w(a— B)P(a,n)
B
—o(B—a)P(B,n)], (A2)
with w(a— ) the transition probability in time 7. If by

equilibrium it is meant that P(a,n +1)=P(a,n)=P'®,
Eq. (A1) yields detailed balance in the form

LP®=0, (A3)
with P'® given by
o —BH(Q) e—ﬁH(g)
P(a)= = . (A4)
Tre —PH Ee—BH(g)
a

As it is customary,’’ it will be assumed that the Hamil-
tonian of the system can be written as the sum of two
parts, H=H,+ H, with H, a time-dependent Hamiltoni-
an which corresponds to an external perturbation K(t),
ie.,

H,=—AK(1) . (A5)

This in turn implies that both the probability function P
and the operator L can be written as the sum of a time-
independent part plus a time-dependent one,

P(a,n)=P§ (@) +P(a,n),
L =L0 +L1(n) .

(A6)
(A7)

Substituting these expressions in Eq. (A1) and keeping

only linear terms, one obtains
Py(a,n+1)—P(a,n)=LoP,(B,n)+L,(n)P5(B) .

(A8B)

Furthermore, using Eq. (A4), it is easy to show that in the
linear regime

PO—p© L ple (A9)
where
P =—B(H,—(H\))P( , (A10)
with
(H\)o= Tr(H‘i;:HO)
Tre ~°

With the description given by Eqs. (A6) and (A7), Eq.
(A3) also implies that

L\P§' = —LoP{' =BLoH,P{’ (A11)
and therefore the master equation becomes (with
BLoH P§ = — BK(:)AP{,")

Pi(n +1)=(14+Ly)P;(n)—BK(n)LoAPY ,  (A12)
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an equation which has the solution

Py(n)=— (1+L )" ~kBK (k —1)LoAPY , (A13)

TTM=

with the initial condition P,(n=0)=0.
We are interested in ensemble averages of operators
such as

n))l_zB )P(a,n) (A14)
Using Eq. (A13) (B(n)), can be written as
(B(n)),=-B 2 K(k—1)®,45(n—k), (A15)

where QAB(I)E(B(1+L0)IL0A Yo is the response func-
tion. In the spirit of the standard linear-response theory,
let K (k) be written as

K (k)=K e k" A1e
or
K(k—1)=Kgei@k=1r
_Koe oln—1r, —io(n—kir (A17)

Using the Fourier series representation for K(k), Eq.
(A15) becomes

(B(n)); =X p(@,n)Koe =17, (A18)
where the susceptibility X 45 is defined as
n—1 .
Xap=—B 3 e "I, p(l) . (A19)

=1

It now remains to compute ®,z(/) from its definition
above. Writing explicitly the ensemble average as

Dp()= 3 Bla)(1+Lo) LoABPS (B,

-9}
(A20)
it can be shown that it is equivalent to
Gp(0= 3 Bla (y)
a.By
X[(14+Ly) ' —(14+Ly)"
X Po(B,0]7,0), (A21)
with Py(,0]y,0) the conditional probability, or
@, 5(N=(A(0)B(I+1))o—(A(0)B(])), . (A22)

Using this result, the time-dependent susceptibility be-
comes

X 4p(w,n)=PB{A(0)B(0))y—Be "=V 4(0)B(n) ),

n—1
—Be"—1) T e (4 (0)B(k)),
k=1
(A23)

In order to analyze the meaning of this equation and its
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differences with the continuum theory, it is useful to look
at the limit in which the external field becomes time in-
dependent. In this “static” limit «=0 and Eq. (A23) be-
comes

X 45(0,n)=B{A4(0)B(0))o—B{A(0)B

which, as can be seen, contains a time-dependent factor in
the second term of its right-hand side. If the system is er-
godic, one obtains, in the limit of n — o,

n))oe, (A24)

X 48(0,00)=PB[(4(0)B(0))o—(4)o(B)o],  (A25)
a result which agrees with the standard version of linear-
response theory. It should be pointed out, however, that
for the spin system treated in this paper, the assumption

of ergodicity is by no means obvious, in which case the
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static-field limit still produces the time-dependent suscep-
tibility given by Eq. (A24).

Another interesting limit is that obtained with a time-
dependent field acting on the system. As n— « Eq.
(A23) reduces to

X 45(®,0)=B(A4(0)B(0)),

xw‘r 2 e—iw‘rk<A(0)B(k)>0’
k=1

(A26)

which for 7— 0, becomes the familiar result of linear-
response theory, i.e.,

X4p(w)=PB(A4(0)B(0)),
~ioB [ e 4(00B(1))odr .
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