Optical properties of ferroelectric $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$ for x = 0 and 0.02

Gerald Burns and F. H. Dacol

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598

W. Taylor

Department of Physics, University of Edinburgh, Edinburgh EH93JZ, Scotland, United Kingdom

(Received 6 April 1983)

We report accurate measurements of the temperature dependence of the indices of refraction [n(T)] in ferroelectric single crystals of $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$ for x = 0 and 0.02. Above the ferroelectric transition temperature T_c , n(T) is linear with temperature. (It had been hoped that the x = 0.02 sample would show nonlinear results similar to those observed in BaTiO₃.) Analyzing n(T) below T_c in terms of the quadratic electro-optic effect, $[\Delta(n^{-2})]_{ij} = \sum_{k,l} g_{ijkl} P_k P_l$, reveals very large g values, 20–100 times larger than those observed in Pb perovskites.

INTRODUCTION

In the ferroelectric BaTiO₃ the temperature-dependent optic index of refraction measurements n(T) has revealed unexpected behavior¹ above the ferroelectric transition temperature T_c . In order to investigate this further, similar measurements of n(T) were made² in two other ferroelectrics, PbTiO₃ and Pb₅Ge₃O₁₁. The former has the same simple perovskite structure as BaTiO₃, while the latter also is an axial ferroelectric but the structure is more complicated.³

In this paper we (1) extend the n(T) measurements, from 6328 to 4880 Å in Pb₅Ge₃O₁₁, (2) report results in (Pb_{1-x}Ba_x)₅Ge₃O₁₁ where x=0.02, measured to see if the

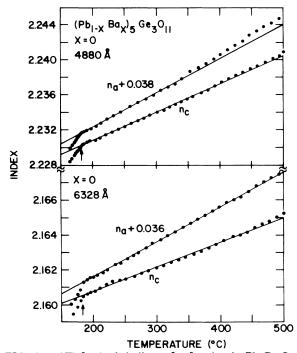


FIG. 1. n(T) for both indices of refraction in Pb₅Ge₃O₁₁, at two wavelengths, emphasizing the high-temperature nonferroelectric phase. The arrow indicates T_c .

randomly located Ba ions would produce an effect similar to that observed in BaTiO₃, and (3) discuss the measurements below T_c for both x=0 and 0.02.

EXPERIMENT

The growth of $Pb_5Ge_3O_{11}$ crystals has been described previously⁴ and several studies of the ferroelectric properties have been published.⁵⁻⁷ The ferroelectric properties of $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$ for several values of x also have been published.^{8,9} We have measured the indices of refraction by the minimum deviation method^{1,2} which is capable of high accuracy. The indices with light polarized along the ferroelectric axis n_c and perpendicular to the ferroelectric axis n_a were separately measured.

RESULTS ABOVE T_c

Figure 1 shows n(T) for Pb₅Ge₃O₁₁ (i.e., x=0) emphasizing the values above T_c (the arrow in the figure). The index data are taken at two different wavelengths in the visible and n_c is displaced so that both n_c and n_a can be shown on the same high-resolution scale (0.001 or 0.002 between tic marks).

Figure 2 shows the same data but for x=0.02 (i.e., 2 at. % Ba replacing the Pb). The x=0 data generally are in agreement with published measurements using Na D light up to 300 °C.^{5,6}

For both x=0 and 0.02, at 4880 Å, n_a above 350 °C seems to deviate above the straight lines as can be seen. However, otherwise, in the high-temperature phase the indices depend linearly with temperature for several hundred degrees above T_c . We do not think that the deviation from linearity at high temperatures has anything to do with the specifics of the ferroelectric process near T_c . We feel this way because it is observed only along one axis, but more importantly, because it is observed only with the short-wavelength, higher-energy light. At this high energy one is close to the band gap in these materials so that a nonlinear temperature dependence of the bands would be emphasized.

The linearity near T_c for all of the indices is observed in

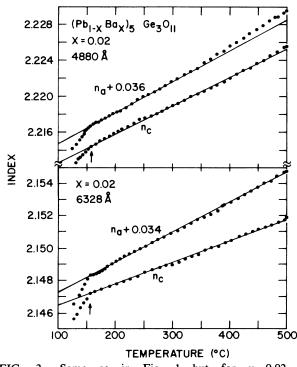


FIG. 2. Same as in Fig. 1 but for x=0.02 in $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$.

BaTiO₃.^{1,2} Particularly surprising is that the linearity is observed for x = 0.02. One might expect a local strain associated with each Ba ion which would result in the nonclassical n(T) observed in BaTiO₃ above T_c . Clearly such is not the case. For the BaTiO₃ samples used in Ref. 1 the impurities are in the parts per million range. Here if one takes the point of view that Ba ions are an "impurity," then a fraction ~ 0.004 of the atoms in the crystal are impurities. Thus in the x=0.02 sample there are greater than 10⁴ more impurities than in the BaTiO₃ samples. Yet the nonclassical behavior is not reproduced by the x=0.02 samples. One might think that for crystals with larger x values the nonclassical effect could be observed but this seems unlikely since there are already greater than 10^4 more impurities present for x = 0.02 than for BaTiO₃. Apparently the nonclassical behavior in BaTiO₃ is not due to local strain-type effects on the atom level.

Above T_c the straight lines, shown in Figs. 1 and 2, are

TABLE I. Values of A and B that describe n(T) (=AT+B)above T_c at the two wavelengths, parallel (n_c) and perpendicular (n_a) to the ferroelectric direction.

x	Index	$A (10^{-5} \text{°C}^{-1})$	В
0	n_{c} (4880 Å)	3.259 40	2.224 36
0	n _c (6328 Å)	1.387 79	2.158 00
0	n_a (4880 Å)	3.950 51	2.18641
0	n_a (6328 Å)	1.994 02	2.121 62
0.02	n_{c} (4880 Å)	3.147 97	2.209 50
0.02	n_{c} (6328 Å)	1.317 20	2.145 18
0.02	n_a (4880 Å)	3.442 12	2.175 30
0.02	n _a (6328 Å)	1.864 22	2.111 42

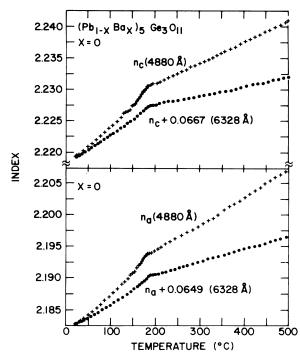


FIG. 3. Same as in Fig. 1 but the data in the ferroelectric phase are also shown.

of the form

$$n(T) = AT + B , \qquad (1)$$

where T is the temperature in $^{\circ}C$; values of A and B are listed in Table I.

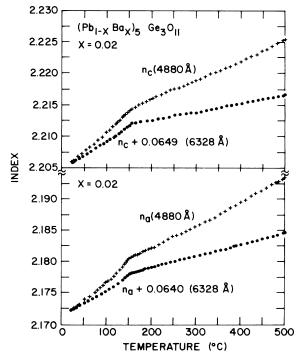


FIG. 4. Same as in Fig. 2 but also showing the data in the ferroelectric phase.

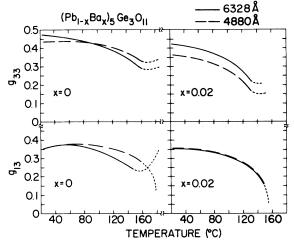


FIG. 5. Temperature dependence of the g values for $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$ obtained from Eqs. (2).

RESULTS BELOW T_c—THE QUADRATIC ELECTRO-OPTIC EFFECT

Figure 3 shows the same measurements as in Fig. 1 but now n(T) is also shown in the ferroelectric region. The phase transition is second order⁵⁻⁷ and the continuous nature of the transition can be seen. Figure 4 shows the same type of data for x=0.02. As can be seen (in Figs. 1-4) the phase transition shows up almost as clearly for x=0.02 as for x=0 in these homogeneous crystals; other than a shift in T_c to lower values for x=0.02 there is little difference from the x=0 materials.

To analyze the data below T_c we make an assumption often made for ferroelectrics: The index of refraction in the ferroelectric phase can be understood in terms of that in the high-temperature (centrosymmetric) phase but with a contribution from the reversible spontaneous polarization that comes about via the quadratic electro-optic effect.^{10,11} For the materials discussed here, where the reversible spontaneous polarization P_r is along the c or three-axis, the change of the index of refraction due to this polarization is Δn_c (or Δn_a for the index perpendicular to the ferroelectric axis). Derived from the basic quadratic electro-optic effect,^{10,11} $[\Delta(n^{-2})]_{ij} = \sum_{k,l} g_{ijkl} P_k P_l$, using the standard contracted index notation (Ref. 12) one easily obtains

$$\Delta n_c = -(n_c^0)^3 g_{33} P_r^2 / 2 , \qquad (2a)$$

$$\Delta n_a = -(n_a^0)^3 g_{13} P_r^2 / 3 , \qquad (2b)$$

where n_c^0 (or n_a^0) is the index of refraction given by Eq. (1), which is extrapolated from the high data and values can be found in Table I. The g's are the quadratic electrooptic coefficients, P_r is the reversible spontaneous polarization,⁷ and Δn_c (or Δn_a) is the difference between the extrapolated n(T) and the experimental measurements.

Since we measure n_c , Δn_c , and know⁷ P_r , we can determine g_{33} from Eq. (2a). Similarly, we can determine g_{13} from Eq. (2b). Figure 5 shows the results for the two different g's for x=0 and 0.02 at two wavelengths. Before discussing these results it is worthwhile to investigate what is obtained from classical ferroelectrics. Thus we

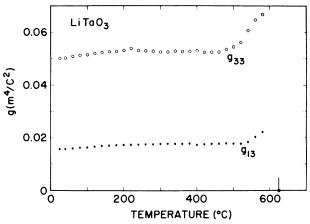


FIG. 6. Temperature dependence of the LiTaO₃ g values from Eqs. (2).

discuss two ferroelectric systems.

 $BaTiO_3$. By making n(T) measurements both above¹ and below¹³ T_c in BaTiO₃ and using the same analysis via Eq. (2a), we find that $g_{33}=0.115\pm0.008$ m⁴/C² between 20°C and T_c . Thus the value is independent of temperature over a 100°C range below T_c . Also one normally finds that the g's become larger at shorter wavelength¹⁴ (high energies) just as does the index of refraction; these dispersions are due to the strong valence- to conductionband electronic resonances in the ultraviolet spectral region.

LiTaO₃. This material has a second-order phase transition at $T_c \approx 625$ °C. By using the published P_r values¹⁵ and published n(T) values¹⁶ we have determined g_{33} and g_{13} via Eqs. (2). As can be seen in Fig. 6 the g 's are fairly independent of temperature except for ~100 °C below T_c . Although Δn is smallest in this temperature region, we suspect that this temperature variation is due largely to the P_r measurements. $P_r(T)$ is steepest in this temperature region, and its measurement is inherently not very accurate. From the index data,¹⁶ at room temperature we determine that the g's have the following values (in m⁴/C²) at the stated wavelengths:

Å	g 33	g ₁₃
4680	0.050 05	0.015 70
4800	0.049 52	0.01468
5090	0.048 27	0.013 05
6440	0.045 31	0.012 07

Now, via Fig. 5, let us observe how the g's in $(Pb_{1-x}Ba_x)_5Ge_3O_{11}$ behave. First, they are very large. Most ferroelectrics with the perovskite or related structures that do not contain Pb ions have g_{33} 's about^{10,11,14} 0.12 m⁴/C². However, the same perovskite materials with Pb ions replacing, e.g., the Ba ion in BaTiO₃, etc., have g_{33} values an order of magnitude smaller.^{17,18} The reason for this has never been understood. Here we see g_{33} values in Pb-containing materials that are very large, $\sim 0.4 \text{ m}^4/\text{C}^2$. Second, the g values seem to have a temperature dependence. As can be seen they tend to decrease as T_c is ap-

proached from below. However, the measurements of Δn are not accurate enough near T_c , where Δn is small, to give reliable g values via Eqs. (2) and values of P_r are also not reliable enough to give accurate values of g via Eqs. (2). Thus the room-temperature g values are really an average value obtained via Eqs. (2). Third, the normal and expected tendency for the g values to increase at shorter wavelength is not observed here. (For example, see the above values for LiTaO₃.) Fourth, $g_{13} \approx g_{33}$, while for the perovskite materials^{11, 14, 17, 18} $g_{13} \ll g_{33}$.

- ¹G. Burns and F. H. Dacol, Solid State Commun. <u>42</u>, 9 (1982); Ferroelectrics <u>37</u>, 661 (1981).
- ²G. Burns, F. H. Dacol, J. P. Remeika, and W. Taylor, Phys. Rev. B <u>26</u>, 2707 (1982).
- ³Y. Iwata, H. Koizumi, N. Koyano, I. Shibuya, and N. Niizeki, J. Phys. Soc. Jpn. <u>35</u>, 314 (1973); M. I. Kay, R. E. Newnham, and R. W. Wolfe, Ferroelectrics <u>9</u>, 1 (1975); Y. Iwata, J. Phys. Soc. Jpn. <u>43</u>, 961 (1977).
- ⁴M. R. Houlton, G. R. Jones, and D. S. Robertson, J. Phys. D <u>8</u>, 219 (1975).
- ⁵H. Iwasaki, K. Sugii, T. Yamada, and N. Niizeki, Appl. Phys. Lett. <u>18</u>, 444 (1971).
- ⁶N. Nanamatsu, H. Sugiyama, K. Doi, and Y. Kondo, J. Phys. Soc. Jpn. <u>31</u>, 617 (1971).
- ⁷H. Iwasaki, S. Myazawa, H. Koizumi, K. Sugii, and N. Niizeki, J. Appl. Phys. <u>43</u>, 4907 (1972).
- ⁸B. A. Stukov, E. V. Senyakov, E. P. Marschik, K. A. Minoeva, V. G. Monya, and O. G. Vlokh, Acad. Sci. U.S.S.R. Bull. Phys. Ser. <u>41</u>, 24 (1977).
- ⁹W. Taylor and T. J. Hosea, Ferroelectrics <u>25</u>, 503 (1980). Judg-

A detailed microscopic understanding of these properties of the quadratic electro-optic coefficients in $Pb_5Ge_3O_{11}$ undoubtedly requires a knowledge of the electronic energy bands of these materials¹¹ and how these bands shift with polarization. However, these results do show that salts with Pb ions can have some remarkable properties. These particular materials have quadratic electro-optic coefficients 20–100 times larger than those observed in Pb perovskites.

ing from the sharpness of the data, the crystals reported in this reference must be much more homogeneous than those in Ref. 8.

- ¹⁰G. Burns and A. W. Smith, IEEE J. Quantum Electron. <u>QE-4</u>, 584 (1968); G. Burns, IEEE Trans. Electron. Devices <u>ED-16</u>, 506 (1969).
- ¹¹M. Di Domenico, Jr. and S. H. Wemple, J. Appl. Phys. <u>40</u>, 720 (1969); S. H. Wemple and M. Di Domenico, Jr., *ibid*. <u>40</u>, 735 (1969).
- ¹²G. Burns, Introduction to Group Theory with Applications (Academic, New York, 1977), p. 69.
- ¹³G. Burns and F. H. Dacol (unpublished).
- ¹⁴J. E. Geusic, S. K. Kurtz, L. G. Van Uitert, and S. H. Wemple, Appl. Phys. Lett. <u>4</u>, 141 (1964).
- ¹⁵A. M. Glass, Phys. Rev. <u>172</u>, 564 (1968).
- ¹⁶H. Iwasaki, T. Yamada, N. Niizeki, H. Toyoda, and H. Kubota, J. Appl. Phys. Jpn. <u>7</u>, 185 (1968).
- ¹⁷W. A. Bonner, E. F. Dearborn, J. E. Geusic, H. M. Macros, and L. G. Van Uitert, Appl. Phys. Lett. <u>10</u>, 163 (1967).
- ¹⁸P. D. Thacher, J. Appl. Phys. <u>41</u>, 4790 (1970).