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Upper critical fields of regular superconductive networks. Surfaces and impurities
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The upper critical field of several defect structures is studied using the de
Gennes —Alexander theory of superconductive networks. The systems considered include a
terminated ladder, an impurity site within the ladder, and a square lattice with a surface.
Localized modes of condensation appear in all the structures considered. Four different
methods have been used alternatively or concurrently: direct diagonalization, continuous-
fraction expansion, transfer matrix, and a renormalization-group decimation procedure.
This last method has proved very useful to study irrational values of the ratio flux to flux

quantum in the square lattice. The case of the square lattice with a surface shows several

characteristics in common with surface superconductivity (H, 3) in bulk materials.

I. INTRODUCTION

The de Gennes —Alexander theory' of supercon-
ductive networks, first envisaged as a theory of in-
homogeneous superconductors, yields, as was shown
in a previous paper, quite interesting results when

applied to regular superconductive networks.
Based on solutions of the linearized Ginzburg-
Landau equations, the theory gives the magnetic
phase boundary of nets of thin wires which behave
as weak links, joining the nodes. i

In Ref. 2 we had studied an infinite ladder, for
which we found a critical value Pi of the flux per
square P, such that for /&Pi superconductivity
condenses in a uniform mode and for P&P~ a
modulated structure appears. In this paper we want
to discuss some applications to defects in an other-
wise regular array, a necessary step to understand
the behavior of real systems whose experimental
realization may not be too far ahead. In Sec. II of
this paper we discuss the transfer matrix' and a
renormalization-group decimation (RGD) applied
to the infinite ladder and then we use both methods
to deal with a semi-infinite ladder. We find that su-
perconductivity nucleates at higher temperatures in
the defect structure, giving rise to a localized mode.
The methods are complementary because the RGD
is very effective in giving the phase boundary,
whereas the transfer matrix is more adequate for the
discussion of the spatial variation of the order
parameter. At the end of Sec. II we have used the
transfer matrix to discuss the properties of an im-

purity in the ladder, i.e., the case when one loop in

the infinite ladder is of different size from the rest.
We find that a localized mode nucleates around the
impurity at a temperature higher than required for
the whole structure to become superconducting.

In Sec. III we study the two-dimensional (2D)
square lattice with a border or surface. As in the
previous cases here again the defect nucleates a lo-
calized mode at temperatures higher than the transi-
tion temperature for the perfect structure. The
properties of the surface mode resemble very much
those of surface superconductivity in a bulk materi-
al. For the sake of comparison we have, in that sec-
tion, also studied the infinite square lattice, obtain-
ing the phase boundary by use of fractional values
of Pleo ((to ——e/Itc) and diagonalizing the implied
basis. As alternative techniques we have decimated
the nodes within the basis and finally also applied
the RGD directly to the original equations. This
method can be used to discuss irrational values of
the ratio flux per square to flux quantum, which
cannot be treated by any of the other procedures.
We have checked the statement by Aubry, accord-
ing to which the superconducting square lattice
would be a special case of a more general electronic
problem which can have both localized and extended
states. The superconducting case lies on the critical
values of the parameters where the crossover occurs.

As noted in Ref. 2, when studying structures with
a border the first eigenvalue is always associated
with surface properties. At the end of Sec. III we
have discussed the case of a multiple ladder and
shown how the first and second eigenvalues give
phase diagrams and order parameters resembling
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surface and "bulk" modes, respectively. This is
similar to the case of the Ginzburg-Landau (GL)
differential equation, which gives H, 2 and H, 3, de-

pending on the boundary conditions.

II. TERMINATED LADDER AND IMPURITY 0'. 5

A. Infinite ladder and surface

In Ref. 2 we considered 2D lattices built from N
equally spaced infinite wires joined by transverse
strands. The structure obtained for N =2 we called
the "ladder, " for which the nodal equations in ma-

trix form read
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Here I is the length of each branch normalized by
the GL coherence length, y=m. {{}/|(ipwith P the flux

per square.
To define the transfer matrix for this problem we

introduce the infinite matrix 4 made up of 2&(2
blocks according to

nn' —" n, n' +1— n+1, n'—A =5,H„-+5, U+5, Ut,

and define the resolvent matrix by the relation
G(z)=(A —zjL) '. The matrix elements of this
resolvent satisfy

FIG. 1. Terminated ladder: {a}geometry; (b) phase dia-

gram of the terminated ladder {lower solid line) compared
with the one of the infinite ladder (upper solid line}. Note
that it is periodic in P/({io. Also shown is the effective
coherence length (dotted line), in units of L (c) Curre.nt

in the terminal branch, arbitrary units.

(Hp+ Ut Tg + U ~T )Gpp
——]L,

(Hp+U Tg+UTg )=0,
(Hp+U~T+U TL ')=0.

The problem of finding the phase diagram
reduces now to finding the poles of Gpp, i.e., the
zeros of the factor multiplying Gpp, in (5}. The as-
sociated order parameter at site n can be determined
through the transfer matrix by

+UG„ i p
——0 for n&0. (3b) =TRPp 0 = Tl".4p

6—n —i,p TLG n, p ~ Gn—+ l, p ~RGn, p . (4)

Substituting Eq. (4) into (3), one obtains the rela-
tions

Here the site n =0 is any arbitrarily chosen refer-
ence site on the ladder. We see from (1) and (3) that
it is the pole of G at z =0 that determines the super-
conducting properties. We define left and right
transfer matrices by the relations'

where Pp is the eigenvector of Gpp associated with
the pole. It is easily verified that the above relations
are completely equivalent to those obtained in Ref.
2, exploiting the translational invariance of the sys-
tem. Equations (3)—(6) are more general because
with due care they can be easily applied to cases
where there is no translational invariance as for a
surface or impurity.

For a semi-infinite ladder, Fig. 1(a), and assuming
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that the surface is at n =0, Eq. (3a) changes to

H, Gpp+ UtG)p ——1,
and write it in the form

H(P)Q +U(P)$„,+ U( )tQ„,=0 .

where

Hs=
—2 cosl

—2 cosl

where

(9)

We now eliminate from this set of equations every
second node, counting from a given n A. fter repeat-
ing this procedure r times, we find

while the other equations remain unchanged. The
transfer matrix allows us to obtain the relation

(H, + UtTt( )Gpp) =1 .

The poles of Gp'p determine the surface phase dia-

gram. Figure 1(b) shows it together with the bulk

phase boundary. The eigenvalues of the transfer
matrix have a modulus less than 1 for 1 and y on the
surface phase boundary. This means that the sur-
face will nucleate a localized mode whose amplitude
decays exponentially as one moves away from the
end point. Also shown in Fig. 1(b) is the effective
coherence length, defined as (,tt=1/lnt, where t is
the modulus of the largest eigenvalue of TR. Figure
1(c) shows the current in the first transverse branch
which, as for the infinite ladder in Ref. 2, vanishes
for Plgp ———,. It is seen from Fig. 1(b) that this fact
is associated with an increase in the effective length

g ff since superconductivity is favored by the
currentless branches which appear as a consequence
of fluxoid quantization. This situation reflects itself
also on the phase boundary which in this region
moves closer to the bulk transition line.

Recently Sokoloff and Jose have devised a RGD
technique to deal with one-dimensional (1D) tight-
binding problems. We have applied this inethod to
some of the superconductive networks to obtain the
phase boundary. The idea of Ref. 6 is to eliminate,
from the set of equations defining a given tight-
binding problem, the amplitude at every second
node at each iteration. Thus, after r iterations, the
procedure gives a new set of equations containing re-
normalized coefficients and showing couplings be-
tween sites which, in the original lattice, were a dis-
tance 2r apart. The power of the method lies in the
fact that, in general, the coefficients connecting
"nearest neighbors" in the renormalized lattice tend
to zero quite rapidly (for most cases after 5—6 itera-
tions), whereas the on-site coefficients have proper-
ties which allow one to determine the phase boun-
dary from their behavior. For the ladder this im-

plies that the phase diagram can be determined by a
2X2 on-site problem, in spite of the fact that, as
solving the problem by other methods show, the
states are extended.

To illustrate the method let us go back to Eq. (1}
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Writing the matrices in the form
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The subscript (r —1) means that quantities inside
the parentheses shauld be taken at the given order of
iteration. For the infinite ladder the behavior of the
coefficients as a function of r is as follows For.
P &P) and for I and y below and up to the phase
boundary the on-site coefficients a and b tend to
constant values of opposite sign. On the phase
boundary the absolute values are equal. For 1 and y
above the phase boundary they fluctuate around a
constant value. This can be used to determine the
phase baundary, in good numerical agreement with
Ref. 2. The off-site coefficients c and d go to zero
as a function of iteration. For P&P) the conver-
gence af a and b towards canstant values and that of
c and d towards zera is slower than that for ()(} &()(}).
In fact, for this region it is the onset of oscillations
which can be best used to determine the phase boun-

dary.
For the surface problem we have the equatians
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We can proceed as above eliminating every second
node to the right of the surface, thus defining a re-
normalized semi-infinite ladder. After r steps of
this procedure, the surface node is coupled to the
node which originally was at site 2'. It can be seen
that at each iteration the coefficients are given by
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FIG. 2. Terminated ladder: (a) and (b) renormalized

coefficients: a, solid circles; b, open circles; c, crosses as a
function at the order of iteration for two different values

of l. (a) For 1=0.31, below the phase diagram of the in-

finite ladder; (b) for 1=0.32, above the phase diagram. (c)
Determinant (a' b') as a functio—n of the order of itera-
tion for different values of I: I=0.29 below the phase dia-

gram (open circles); 1=0.318 above the phase diagram of
the terminated ladder but below that of the infinite ladder
(crosses); 1=0.32 above the phase diagram of the infinite
ladder (solid circles).

B. Impurity

The presence of one loop in the ladder of different
size from the rest, i.e., an impurity, is of importance
in systems that can be experimentally realized. For
this reason we have considered the case in which the
longitudinal strands joining nodes 0 and 1 have a
length 1' different from the rest. In such a case the
equations for the Green functions read

—i—00+——io+———io

HiGiii+ UtGpp+8 Goo ——0,
where
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Figure 2 shows the behavior of the coefficients as
one proceeds with the iterations. It is seen that
again in this case the connecting coefficients go to
zero very rapidly for 1 and (() below and up to the
phase boundary of the infinite ladder. Above this,
they fiuctuate but remain smaller than the on-site
coefficients. The latter tend to constant values
which are of equal magnitude and of opposite sign
at the phase boundary for the semi-infinite ladder.
These coefficients start to oscillate once we are
above the phase boundary of the infinite ladder.
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over a short length. The impurity is generally
favored (higher transition temperature} when the
magnetic flux is such that the fluxoid quantization
condition is satisfied for the corresponding rec-
tangular ladder. As a rule, the mode around the im-

purity is more extended when the corresponding
transition temperature lies closer to the "pure"
square case.

III. 2D SQUARE LATTICE AND SURFACE
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FIG. 3. Phase diagram for the impurity in the infinite

ladder (lower solid line). Also shown is the phase diagram

for the "pure-square" ladder (upper solid line) and for the
"rectangular" ladder of the same dimensions as the im-

purity (dotted line). L ' =0.5L,O. 8L, 1.2L, 1.5L. The

phase boundary for the impure ladder is not periodic in

0/4o

with h= —3cosl+sin(l' —1)/sinl' and p=e'r'
&&sinl/sinl'. With the use of the transfer matrix,

Eqs. (14}can be solved to yield

(Goo) '=[al —U TL
' B(I UTz ') —'B] —(15)

where a =sin(1' —1)/sinl'. Figure 3 shows the
phase diagram for different 1' values. Also shown
is the phase diagram for a perfidy:t rectangular ladder
in which each loop is of the same dimensions as the
impurity. The change in period on the flux axis is
apparent. It is seen that for P&P&, when supercon-
ductivity is uniform, the phase diagrams coincide.
When a nonvanishing wave vector is dominant, the
transition temperature of the smaller ladders goes
down, because the deformation energy is distributed

The properties of a semi-infinite square lattice are
of importance in the understanding of experimental
results in these systems since a surface or border line
will be a part of any real system. Before going into
the surface problem we have looked at the perfect
2D square lattice, firstly, to check (in a nontrivial
case) some of the inethods we used against the solu-
tions to this same problem obtained by other au-

thors, and secondly, to have a first-hand phase dia-

gram to compare with the surface case.
The equivalent electron problem has recently been

extensively discussed in the literature. From the
results obtained by Aubry it can be seen that the su-

perconducting case coincides with the critical case
of the electronic problem, corresponding to a value
of the parameters where the states go from localized
to extended. So for the superconducting case the
states are probably localized with a power law,
which poses problems for some of the methods that
can be used. The nodal equations for the lattice read

—4(cosl )ll„+e '""f„+e'"rf„

+ Pn —1,m + (1'n+ l, m —0 (16)

If we look for solutions of the form f„=g„e'&~,
the above equations reduce to

(17)

where e„=4cosl leos(—q ny) —For su. perconduc-
ti»ty, &=2. By assuining that y is of the form
y=2irm/N where m/N is an irreducible fraction,
the "energies" e„repeat after N steps in the chain
represented by Eq. (17).

This introduces a periodicity in the system and
defines a basis. We can exploit this translational in-
variance and reduce the problem of solving Eq. (16)
for those particular y values by diagonalizing the re-
sulting NXN matrix. This procedure yields the
phase diagram shown in Fig. 4. As pointed out by

1 1

Hofstadter, the simplest fractions, such as —,, —,,
etc., give rise to the dips which lend their special
shape to this spectrum. The associated eigenstates
are extended.

Another possibility is to apply a decimation tech-
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{a) o.s

eigenvalue, corresponding to k=0. In general, on
the phase boundary there is degeneracy in q, i.e.,
there are several q values which are relevant at a
given point on the phase boundary.

Together with these methods we have applied the
RGD which is especially suitable for analyzing the
cases where Pleo is irrational. To apply the method
we rewrite Eq. (17) as
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The recursion relations are
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FIG. 4. Semi-infinite square lattice. (a) Phase diagram
for the surface mode (lower solid line) and for the infinite

square lattice {upper solid line). Note the dips for the
simplest rational values of Pl/0. The dotted line is the ef-

fective coherence length for the surface mode, in units of
L. The figure is periodic in PI/0. (b) Transverse wave

vector (q) (parallel to the surface) associated with the sur-

face phase diagram. (c) Modulus of the order parameter
(thin line) and currents (thick line) for the first branches

parallel to the surface, for Plgo ———„. 3(cosl )Po ——go + i+ go i+
and for n & 1,

4(cosl)1(„=e '"rg„+,+e'""f„

(22)

where the subscript (r —1) has the same meaning as
given previously.

This method provides a phase diagram which
complements those previously obtained. For irra-
tional P/Po the "band width, " not shown in Fig 4,
vanishes. Hofstadter had noted this tendency for in-

creasing degree of commensurability. This can be
taken as an indication of the localized character of
the states. Because of the importance for the elec-
tronic problem we have checked the statement by
Aubry that for A, &2 the states are extended, and
that for A, &2 they are localized, where A, is the
strength of the incommensurate potential. Within
the RGD, one has that as a function of iteration the
ratio eo"'/2t'"' oscillates between +1 and —1 for ex-
tended states, whereas for localized states it goes to
zero, as do both numerator and denominator. For
the case of a surface or border line in the square lat-
tice, the nodal equations for n =0 read

nique within the basis of N sites, leaving a renormal-

ized chain governed by the equations +4n —1,m +In+ I, m (23)

(eoQN —1 PN —1 PN —1 Wn 4 —1 1 n+1
R L (N) (N) (N)

(18)

Assuming a solution of the form 1(„=g„e'1"we
obtain

&ohio = Pi

e.4.=4.-1+it.+1
where eo ——4 cosl —2 cosq, e„ is as above, and

P„=6n P„ 1 P„2, Q„=en —Qn 1
—Qn 2 With

Po ——0, Pi ——1, Qo ——1, Q 1 ei Translatio——nal . invari-

ance allows us to write tP'„N'=P'N'e'"" so that the
equation to be solved is

eoQN 1
—PN, PN 1 2cosk ~- ——R L

The phase boundary is associated with the largest

(24)

where now Co=3 cosl —2 cosq.
To solve this system we have used a continuous-

fraction method, which is generated through the
progressive elimination of the amplitude coupled to

In the first step, this procedure eliminates ij'ji

and leaves fo coupled to $2. In the next step we
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FIG. 5. Multiple ladder of N=20 longitudinal wires.

(a) Phase diagram derived from the second eigenvalue,

shown at discrete values of Plgo, to allow for comparison
with Fig. 4(a}. The low-lying dots are degenerate with the

phase boundary for the first eigenvalue. (b) Eigenveetor
37

associated with a degenerate eigenvalue at Pl/0 ——
, . (c)

Eigenvector associated with a nondegenerate eigenvalue at

4'/0o= —,

eliminate $2 and leave po coupled to $3, and so on.
Carrying out this procedure until node n leads to the
following relations:

n 1
e0 ~ 6 ~ An+1

Vn Rn
(25)

The coefficient 1/Q„ tends to zero very rapidly
with n due to the localized nature af the surface
state, and the phase boundary is obtained by finding
the zeros of the left-hand coefficient in (25).

Figure 4(a) shows the phase boundary for the sur-
face mode, compared with that of the infinite lat-
tice. It can be seen that the surface nucleation ap-
pears at temperatures higher than the bulk transition
temperature. Figure 4 also shows the effective
coherence length with which the surface mode de-

cays toward the inside of the lattice. From the ini-
tial slopes of both phase diagrams one can obtain
the relation between H, 3 and H, 2 for this geometry,

namely H, 3
——1.59 H, 2.

Figure 4(b) shows the q value associated with
the phase-transition boundary for the surface. Asso-
ciated with this inode there are currents flowing
parallel to the surface, as for surface superconduc-
tivity. The net current is zero, as is for that case.
There are some features of the present situation
which are associated with fluxoid quantization. It
can be seen from Fig. 4(b) that q and therefore the
longitudinal currents change sign when Pleo goes

1

through —, . The wave vector q shows two other
zeros corresponding to the smooth minimum in the
phase-boundary line. From a study of the eigenvec-
tors, it can be seen that this situation is associated
with the fact that the order parameter has secondary
maxima at the even-numbered branches towards the
inside of the network. For iI}/Po ———,, the order pa-
rameter vanishes at the midpoint of the odd-
numbered branches. Figure 4(c}shows the order pa-
rameter and the currents of this surface mode, for
the first branches, at a given field value.

These properties are similar to those obtained in
Ref. 2 for multiple ladders of N infinitely long wires
joined by transverse strands. The first eigenvalue
gives a phase diagram which for N=20 is already
indistinguishable from that of Fig. 4(a) for the sur-
face. The eigenvectors look very much like the one
shown in Fig. 4(c). In Fig. 5 we show the phase dia-
gram associated with the second eigenvalue for
N =20. It can be seen that the points show a close
resemblance to the bulk phase diagram far the
square lattice. Far small values of i||/Po there is a
large difference between both phase boundaries.
This happens in the regions where the effective
coherence length is large and both surfaces interfere.
In addition, there are some values of iI}/Po where the
points shown fall on the phase boundary for the first
eigenvalue, i.e., there is degeneracy between these
two eigenvalues. This correspands to a removal of
the degeneracy in q, the longitudinal wave vector.
Corresponding by the associated eigenvector, as
shown in Fig. 5(b), has the same value on both sur-
faces. Finally, Fig. 5(c) shows a typical eigenvector
corresponding to the second eigenvalue in a case
where there is no degeneracy.
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