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The position and width of the helium resonance line 1'SO~2'P& are calculated for a
high-density helium fluid. The theory aims at understanding the reflectivity data of Surko
et al. for the low-temperature liquid-vapor interface and the absorption data of Rife et al.
for room-temperature, high-pressure helium bubbles in aluminum. The theoretical in-
gredients of the model are (i) the long-range dipole interaction of an excited 2P atom with
the rest of the fluid and with the metal substrate; (ii) the short-range Pauli pseudorepulsion
arising from orthogonalization of the 2p-electron wave function with the 1s ground-state or-
bital of neighboring atoms; (iii) a statistical treatment of the high-density fluid based either
on the experimentally measured radial pair distribution function of low-T liquid He, or on
the Percus- Yevick distribution function of hard spheres and the theoretical equation of state
of Young et al. for the He fluid in the bubbles; (iv) the standard static line-broadening
theory to calculate the effect of Pauli repulsion on the line shapes. The theory provides a
reasonably accurate understanding of the observed spectra in both the liquid and high-
density gas, and can serve as a sound basis for interpretation of vacuum ultraviolet spectra
in other gas-metal combinations.

I. INTRODUCTION

Investigations by means of vacuum ultraviolet
(vuv) absorption and electron-energy-loss spectros-
copy' (EELS) of helium-implanted aluminum
films have been conducted in the last few years with
the aim of obtaining information on the density of
helium in the bubbles which develop as a result of
the implantation. One major result of this work was
that the He resonance line which occurs at 21.22 eV
(584.3 A) in the dilute gas was observed to shift to-
wards higher energies and to broaden by varying
amounts, depending on experimental conditions.
Typically, samples containing 1.45 at. %%uoH e ina
fairly uniform distribution of bubble sizes (50+ 10 A
diam) had an absorption band peaked at 22.6 eV and
broadened to 1.2 eV. More heavily itnplanted sam-
ples with an average of 3.5 at. % He had higher
shift (2 eV) and larger width (2.2 eV).

The qualitative interpretation proposed in Ref. 2
for such large shift and broadening was in terms of
an inhomogeneous raising of the atomic 2P level as
due to a cage effect produced around the excited
atom by the coordinating ground-state atoms. An
identical argument was invoked by Surko et al. to
interpret their observation of a small blue shift of

the resonance line as measured from the refiectivity
of the low-temperature liquid. The cage effect
stems from the Pauli pseudopotential repulsion
brought about by the orthogonalization of the 2p
wave function with the ls closed-shell orbital of
ground-state He atoms.

Other shift and broadening mechanisms were
studied previously by Ohtaka and Lucas. They
concluded that for bubble radii larger than a few A,
the dipole resonance effect should make a nonnegli-
gible density-dependent contribution to the overall
line shape. This mechanism will be reviewed (Sec.
II) as it bears on the interpretation of the spectrum
at densities corresponding to the liquid.

The principal aim of the present work (Secs. III
and IV) is to make a quantitative study of the Pauli
repulsion effect which was only sketched in Ref. 2.
The model proposed here incorporates a good
description of the perturbation of the dense fiuid on
the electronic structure of excited He and, moreover,
takes account of the statistical structure of the fiuid
itself. We arrive at the following main conclusions:

(1) At the lower end of the density scale the line
shape in a macroscopic gas sample is governed by
the usual red-shifting dipole resonance effect. This
mechanism, which depends linearly on density, can
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be qualified as of long range due to the long ra-nge

nature of the dipole interaction. When the gas sam-

ple is enclosed in a metal cavity of microscopic di-
mensions (smaller than the resonance wavelength),
the resonance shift is largely canceled by the depo-
larizing effect of the metal-cavity surface.

(2) At high density, the line shape is dominated by
the blue-shifting Pauli repulsion effect. This is a
short rang-e mechanism, originating from orthogo-
nalization of localized wave functions.

(3) The cryogenic liquid has a density for which
short- and long-range effects are of comparable size,
giving a net weak blue shift of the resonance line.

(4) The large blue shifts observed in our He-Al
samples are indicative of densities 2 to 5 times the
liquid density.

The model study proposed here is intended to be a
useful contribution towards establishing the vuv and
EELS spectroscopic techniques as powerful quanti-
tative tools for investigation of other gas-metal com-
binations of interest in material technology.

II. DIPOLE RESONANCE EFFECT

The feasibility of investigating the He-Al system
by means of ultraviolet absorption and EELS was
evaluated a few years ago. ' It was thought in this
work, before the experiment could be performed,
that the leading effect would be the dipole resonance
shift and broadening which usually dominate the
line shape of a dipole-allowed transition in a pure
gas at low and moderate pressures.

The resonance effect arises from the fact that an
optical excitation of one atom may transfer
resonantly to neighboring atoms through the
dipole-dipole interaction. Let n be the number den-

sity and let top be the resonance frequency that the
atoms would have, at that density, if the dipole-
dipole interaction was turned off. Thus cop possibly
includes other shifts operating at the indicated den-
sity. For the purpose of obtaining the further per-
turbation suffered by the atomic frequency due to
the dipolar interaction, it is sufficient to analyze the
dielectric properties of the fluid in terms of the
Clausius-Mosotti formula for the dielectric function

4~
e(cp)=1+4vrna(pi) 1 —— na(pi)

where a(pi) is the He ground-state polarizability at
frequency co. Let us indeed recall that the denomi-
nator in (1) arises from dipole-dipole interactions
and takes proper account of the red-shifting effect
of the dipole Lorentz field on the position of the in-
dividual atomic lines making up a(cp). Neglecting
this effect {as apparently was done in the analysis of

Ref. 4) results in underestimating the net blue shift
of the liquid resonance line with respect to the un-

perturbed atomic transition.
On account of the large 1S~2P dipole oscillator

strength of He we begin by simulating a(tp), in the
vicinity of ro =rpp, by just two Lorentzian lines,

fp
2 2m rpp —Pi —iPiyp

e' fthm+ ~ 2m Ng —N

where fp, and fit are oscillator strengths and yp is
the width of the resonance line in the fluid.

The second oscillator in Eq. (2) mimics the
remainder of the spectrum. Of the five parameters
of this model, only the first three top, fp, and yp may
be varied independently to fit the optical properties
around cop. Indeed, fit and co& are determined from

fp and cop by requiring that (i) the sum rule

fp+fR =2 should hold, and (ii) the quasistatic po-
larizability of He as measured in the visible for
high-density gas should be a(0)=0.205 A'.

The (near-normal) reflectivity function
R (to) =

~

1 —v e
~

/ 1+v e can be calculated
from (1) and (2) at liquid-He density and compared
with the experimental reflectivity data. An excel-
lent fit to the data (within a few percent) in peak po-
sition, height, and width was found for the follow-

ing values of the parameters: fp=0. 49 oui)p=21. 61
eV, and A'yp=0. 43 eV. Thus the resonance line at
that density appears to be blue shifted by 0.38 eV
(Ref. 4 estimated 0.2 eV only due to the neglect of
the Lorentz field effect) and broadened to 0.43 eV

[full width at half maxium (FWHM)].
Improvement of the model has been achieved by

performing a Kramers-Kronig (KK) analysis of the
data of Surko et al The latt. er being given in a
narrow energy range (19.5 & fico & 24 eV), it is neces-
sary to extrapolate the wings of the resonance spec-
trum by fitting oscillators to the reflectivity R and
its derivative dR/den at each end of the data range.
In the low-energy wing this was done with the fol-
lowing oscillators:

iruup
——21.61, fp ——0.51, fiyp 0.47, ——(3)

iripii —24, f i ——0.32, A'yi ——2, (4)

w11el'e flcop App, Ace „and A'y& are measured in eV,
respectively. The summed oscillators give a real
part of the refractive index n = 1.026 at irido =2.5 eV,
which is in close agreement with the observed value
of n = 1.025. Note that the required strength
fp-0. 5 in both the two-oscillator model (2) and in
the present KK analysis is substantially higher than
the free-atom value f]s pp=0. 276. On the high-
energy side of the resonance line, the extrapolation
was achieved by adding to the line (4) a broad peak



THEORETICAL INTERPRETATION OF THE vuv REFLECTANCE. . . 2487

~i—35, fi —1.86, iriyp
——50, (5)

where Picots and fiyi are measured in eV, respectively.
This yielded reasonable results for the magnitude
and falloff of the imaginary part k of the refractive
index relative to the measured atomic photoioniza-
tion cross section at high energy. In addition, with
these extrapolations the eq sum rule for the effective
number of electrons participating to absorption at
energy E saturates at the nearly correct value at high
energy (2.08 instead of 2, see Fig. 4).

Optical constants obtained from the KK inversion
are plotted in Figs. 1 —4. Table I gives the
resonance-peak parameters in the various optical
functions R, k, a, and Ei F.rom these results it must
be concluded that in the cryogenic liquid, the He
resonance absorption has been blue shifted and
broadened by a further interaction mechanism
which will be investigated in Sec. III.

The analysis given above applies if the dimensions
of the fluid sample are much larger than the wave-
length (584 A). When the He gas is bound+i in a
small cavity of the metal, the depolarizing factor of
the metal boundary modifies these results. The
finite-size effect has been considered in Ref. 5 from
the point of view of a standard effective-medium
theory. ' When, as in our case, the bubble size is
smaller than the wavelength, the effective dielectric
function of the He-Al composite medium is given by

(Eg E~ )—
e(co)=e (co)+3f

Eg +26~

where e and eg are the Al-metal and the He-gas

1m&a=1m Qe 1+ ,f-
&8+&&m

The imaginary-part factor has a Lorentzian shape
peaked at the frequency for which as+2@ =0.
After some algebra one finds up to first order in the
fluid density n,

=o(1 +nao) (8)

2 0

where ao ——e fo jmcoo-0. 12 A . Thus the depolar-
izing field of the metal-cavity surface overcompen-
sates the red-shifting effect of the inner Lorentz
field of the bulk fluid. The net result is a blue shift
of the line

Sip (bubble)=ficoonao-2. 6n

measured in eV. If we try to use this formula to ac-

dielectric functions, and where f is the ratio of bub-

ble voluine to total volume. For (6) to be valid, f
must be small, e.g., under 10%%uo, and the bubbles
should be spherical. Both conditions are realized in

many of our samples. Otherwise more complicated
forms of Z are available which allow for arbitrary
filling fraction f or more general bubble shapes. '

In the neighborhood of the He resonance line, e
is nearly constant" at e~ =0.5+0 03.i, whereas

eg(co) has the Lorentzian shape of Eqs. (1) and (2). f
being small, we can approximate the absorption
coefficient by

.15

= 0&0-
U
O

4)
K
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I

20 21 22
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FIG. 1. Absolute reflectivity of the low-temperature liquid-He surface at near-normal incidence, as reproduced from
Ref. 4.
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FIG. 2. Real part (n} and imaginary part (k) of the complex refractive index of liquid He obtained from a Kramers-
Kronig analysis of the data in Fig. 1.

count for our observations of a 1.4-eV blue shift, we
need to invoke a highly improbable density of
n=0 5A . which would imply as many as 9 He
atoms per Al vacancy in our bubbles. Thus the
long-range (LR) dipolar effect is an order of magni-
tude too weak to explain our spectra. We will there-
fore ignore this effect in later sections.

Finally, we note that Eq. (1) evaluated at densities
as high as n-0. 1 A (5 times the liquid density)
gives a dielectric constant of order e=l. l at fre-
quencies away from resonance. Thus the empirical

use of dielectric constants as high as E=2 by
Manzke and Campagna' to explain some of their
EELS data on He-Al thin films is difficult to justi-
fy.

III. PAULI REPULSION

It is known from both experiment and theory that
the ground-state He atom repels low-energy elec-
trons at short distances. Experimental evidences are
the following:

(a) The formation of any empty cavity of some

C4
4P

2

1

1

1

19 20 21
I &~ I

22 23
0

24

Energy (eV)
FIG. 3. Real part (e&} and imaginary part (ez} of the complex dielectric function of liquid He as obtained from a

Kramers-Kronig analysis of the data in Fig. 1.
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10—20 A radius around a free electron injected into
the dense gas, liquid, or solid He."' This is due to
the fact that dense He has a positive energy barrier
for free electrons which, in the liquid, is of order 1

eV. Spherical bubbles of similar size have been as-

sumed to develop around excited He atams' '7 in

order to understand the absorption and emission

spectra of 2S-, 2P-, and 3S-excited atoms in liquid
He.

(b} The insolubility of He in metals. ' The con-

duction electrons of the metal repel the He atoms
into atomic or extended traps of lowered electron
density such as vacancies and voids.

Theoretically, the Pauli exclusion principle ex-

cludes accupation of the Is closed shell of a
ground-state atam by a third electron. Calculations
have been performed to determine the repulsion en-

ergy for both free and bound electrons:
(1) With the use of general pseudopotential

theory, ' Kestner and co-workers ' ' have calculat-

Energy (ev)

FIG. 4. Effective number of electrons taking part in

absorption at energy E for liquid He as obtained from a
Kramers-Kronig analysis of the data in Fig. 1. Note the
correct sum-rule saturation at n,ff 2.

0.8O
6)

C
0.6-

f I

\

i, exponential fit

\

0.45eV
0.4-

0.2-

0.0 ———

ed the pseudopatential repulsion experienced by a
free electron from a ground-state He atom. For
electrons of vanishing kinetic energy the pseudopa-
tential energy barrier has a height of 8 eV at 1.2 a.u.
from the nucleus. Averaged over the liquid, this en-

ergy barrier is of order 1 eV, in agreement with
Sommers's experiment which requires a barrier of
1.3 eV.

(2) Potential energy curves for the Heq excimer
molecule in II and X states have been calculated by
Browne and by Guberman and Goddard III,
respectively. Figure 5 reproduces the D'X„molecu-
lar excited state which corresponds, at large inter-
nuclear separation R, to one atom in the I'So
ground state and the other in the 2'Pt excited state
with its 2P arbital along the nuclear axis. There is a
positive energy shift of the excited X molecular level

with respect to the atomic 2P level for all nuclear
separations larger than R =1.5 A, a maximum close
to 0.63 eV occurring around 2 A.

Thus, on experimental and theoretical grounds, a
strong electronic repulsion energy exists at a few a.u.
distances from the nucleus of a ground-state He

R
k

Ima
Ep

Peak position
(ev)

21.64
21.57
21.61
21.49

F%HM
(ev)

0.58
0.47
0.43
0.37

Shift from atomic
(eV)

0.42
0.35
0.39
0.27

TABLE I. Resonance-peak parameters for various op-
tical functions as deduced from a Kramers-Kronig
analysis of experimental reflectivity data of liquid He: R,
reflectivity; k, imaginary part of refraction index; Ima,
imaginary part of polarizability; ez, imaginary part of
dielectric constant e.

~
2-

I I

2 ! 4 6 8
5a.u. Distance(A)

FIG. 5. Potential-energy curve for the He& excirner in
the O'X+(3so, 2p} state as reproduced from Ref. 24. The
dotted curve represents the function given in Eq. (13) with
8=0 (X state) and with C adjusted so that this function
coincides with the excimer curve at the point indicated by
a square.
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atom. This large effect appears to be what is needed
to explain our observation of the large blue shift of
the absorption line in the dense fiuid of our He bub-

les.

tory fit over the entire large-R tail. This state was
selected for the fit and not the 'Xs+(3pa, 2p) (Ref.
24) since the dipole selection rule for absorption
from the gerade ground state requires an ungerade-
orbital final state. The result of the fit is

A. Contact potential
C =40, (14)

For the kind of densities we are contemplating in
the He fluid of the bubbles (n is approximately a few
times the liquid density), the mean nearest-neighbor
distance is of order R=2 A. Referring to Fig. 5,
this places the interatomic distances of the fluid at
or beyond the maximum of the X excimer potential
energy curve.

This part of the repulsion curve can be repro-
duced with reasonable accuracy by modeling the
pseudopotential repulsion exerted by the ground-
state He atom on the 2p electron of the excited atom
by a simple Fermi contact potential. If we write

V&( r —R) =C5( r —R), (10)

where +zz(R) is the normalized 2p-orbital ampli-

tude at R. With the use of the Slater-type orbital
this is

where the strength C is to be determined, it is
straightforward to obtain the perturbation of the 2P
state. The fact that the van der Waals energy of the
Hez molecule in its ground state is negligible for
R & 2 A indicates that the ls orbital is essentially un-

perturbed. ' ' We can therefore identify the blue
shift of the 1S~2P absorption line of the Hez mole-
cule to the perturbation brought about by (10) to the
2P atomic level. In first order, this is

bz(R) =(2P
~ V~, (r —R)

~

2P) =C
~
+zi (R)

~

0
measured in eV A'.

We note that this value of the strength is not in-
consistent with the following independent evidences
concerning He:

(a) The scattering length I of He for low-energy
electrons is close to 1.2 a.u. The total cross sec-
tion of the model potential (14) being
m C /mR =4ml, the strength C which corresponds
to the observed scattering length is found to be
C=30 eVA, i.e., reasonably close to the first esti-
mate in Eq. (14).

(b) As noted before, hquid He presents a positive
energy barrier of order E =1.3 eV for electrons. If
we calculate the expectation value of the perturba-
tion due to a distribution of scatterers such as (10)
with respect to an electron plane wave of vanishing
kinetic energy, we find (,E)=nC where n is the den-
sity of scatterers. For liquid He, n =0.0217 A
and thus C=60 eVA, again not unreasonably far
froin the value in (14) (if we use the theoretical esti-
mates of E=l eV from Jortner et al. ' and from
Burdick, one gets C=50 eV A ).

The first-order perturbation energy (13) is pair-
wise additive. In the dense fluid environment, we
can take the statistical average of this formula over
all pair orientations 8 and distances R. The fluid
shift is then

&» ——g(2P
~
V„(r—R, ) ~2P).„

R;

( r ) &5/2R 0.r —(a/2)r
32m

(12) =n qR, gR (15)

R is the unit vector R/R along the nuclear axis
and a=Zzz/ao is the orbital exponent with ao the
Bohr radius and Zz~

—0.97, the variational effective
core charge as seen by the 2p electron. Inserting
(12) into (11) we get

where g(R) is the radial pair distribution function
(RPDF) of the fluid at the density and temperature
of the absorption experiment. Introducing (13) into
(15) and performing the angular integration gives

u'
b,z(R, 8)=C R cos 8e2 ' 32~

(13)
kz~=Cn f dR R g(R)e

24 o
(16)

where 8 is the angle between the 2p orbital and the
nuclear axis.

In Ref. 2 the constant C was chosen such as ex-
pression (13) with 8=0 fits the repulsion energy of
the D'X„+ state as calculated by Guberman and
Goddard III at some value of R in the tail of the
potential-energy curve. As illustrated in Fig. 5
(dashed curve), choosing R =5 a.u. gave a satisfac-

In the qualitative evaluation of Ref. 2 g (R) was tak-
en to be a simple step function at some value of R:

0 for R(a
(17)

1 for R &cr,
0

where o=2.566 A was chosen as the distance at
which the Hez potential energy of the ground state
vanishes. The remaining integration in (16) is then
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elementary and the result is

bzp C——n dxx e
(aa)' "

4

24

i.e., letting u =ao=4.69,

&zp C——n( I+u+ —,u'+ —,u'+ —„u )e

(18)

1.6

1.0—

or

b,zp-0 5Cn. . (20)

From this result and our previously determined
value for C in (14), the observation of a 1.4-eV blue
shift in the 1.45 at. % He sample is indicative of a

0
density n =0.07 A

To build confidence in this result, it is necessary
to test Eq. (20) against some experimental data
point. Such a test should be provided by the mea-
sured low-T liquid blue shift discussed in Sec. II.
With the use of n =0.0217 A for the liquid densi-

ty at 1 K, Eq. (20) gives a shift b,zp-0. 43 eV, not
unreasonably different from the observed value in
Ima (Table I). Conversely, if we start from the
liquid shift in Ima to determine the strength C from
Eq. (20), one finds C=36 eVA which then implies
a density equal to n =0.078 A in the bubbles of
the sample under consideration.

From the equation of state of high-density He as
recently measured by Mills et al. the above densi-
ties correspond, at room temperature, to pressures
of 17 (n =0.07 A ) to 24 kbar (n =0.078 A ).
Thus, according to this analysis, the bubbles in this
particular sample are overpressurized to two or three
times the surface tension pressure of 8 kbar (4y/d
with y=1000 erg/cm and d =50 A).

Before Eq. (20) can be used throughout the densi-

ty range and with other He-metal systems, it is im-
portant to refine the statistical model by using in

Eq. (15) the actual excimer pair interaction
b,z(R, e) and a more realistic pair distribution func-
tion g(R), instead of the simplified ansatz of Eqs.
(10) and (17). We shall find that such improvements
of the model do modify appreciably the density
blue-shift relationship and thus point to the impor-
tance of using an adequate statistical treatment of
the high-pressure fluid.

B. Low-temperature liquid

The RPDF g,„p,(R) for liquid He has recently
been accurately measured by neutron and x-ray dif-
fraction over a range of pressures and temperatures
below 4.27 K by Svensson et al. ' and Robkoff and
Hallock. The experimental result is shown in Fig.
6 where g,„p, is seen to vary only slightly with tem-
perature in this range. With this basic data, we can
test whether the observed liquid blue shift of Table I

0.0 ——

0
I I

8 12
Distance (A)

FIG. 6. RPDF of liquid He as reproduced from Ref.
30.

(23)

i.e., b,zp-0. 36 eV at the 1-K liquid density. This is
within less than 10% of the observed shift in Ima
reported in Table I. Thus the use of the actual pair
distribution function and theoretical excimer curve
leads to a remarkable agreement between the
theoretical shift and the shift deduced from reflec-
tivity measurements.

C. Roam-temperature bubbles

We now turn to the theoretical evaluation of the
shift in the high-density fluid of the bubbles. We
must evaluate Eq. (15). For b,z(R, H) we keep the ex-
cimer form of Eq. (22). Unfortunately, no experi-
mental data for g(R) are available at high tempera-

can be reproduced or not by the theoretical excimer
curve b,z (R) shown in Fig. 5. We write

6»=n fdR62(R, 8)g,„n(R), (21)

and for b,z(R, O) we now use

hz(R, O) =cosz8hz (R) .

The cos 8 factor which is exact for a 5-function
pseudopotential as seen in Eq. (13) is meant to take
account of the dependence of the excimer curve on
the 2p-orbital orientation. Being zero for the Il
configuration, this factor probably underestimates
somewhat the angular averaging in Eq. (21) and
hence will result in providing a lower bound for b, zp.
This angular averaging is again trivial and the
remaining radial integration has been done numeri-
cally with the result

6»= n f dR R~()2nn(R)g , (R)=16 6n„, .
0
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TABLE II. Hard-sphere diameters d(n, t) which, at the indicated temperature and density, minimize the excess

Helmholtz free energy given in Eqs. (25)—(28) in the text.

60
120
180
240
300

0.02

2.4300
2.2829
2.1996
2.1411
2.0957

0.04

2.3965
2.2511
2.1692
2.1117
2.0672

0.06

2.3342
2.2015
2.1252
2.0712
2.0291

0.08

2.2574
2.1416
2.0729
2.0236
1.9850

0.10

2.1784
2.0785
2.0176
1.9732
1.9381

0.12

2.1033
2.0165
1.9625
1.9226
1.8909

0.14

2.0346
1.9578
1.9096
1.8738
1.8454

P(V, T)= — A(V, T)
V

(24}

requires a theoretical expression for the Helmholtz
free energy A of the fiuid. This is written as the per-
fect gas free energy plus an excess free energy A,„
per atom given by ( V =N/n, where N is the number
of atoms)

A,„(n,T)
A Hs +A jpj +AQ

tj T

where

(25)

4

+'g +
2 2

4 3 2

(26)
(1—rt)

A;„,=12' 4x g xg x x,
A~ ——g F xgx, gx x. (28)

rl =(n/6)nd is t.he packing fraction of the fluid of
hard spheres (HS) with diameter d. The first term
(26) represents an accurate analytical expression for
the hard-sphere excess free energy. The second

(27)

tures and pressures. We must therefore rely on
some theoretical RPDF. We chose to use the solu-

tion of the Percus- Yevick equation for a gas of
noninteracting hard spheres. ' Our justification for
using this model, besides the great computational
convenience it offers, stems from important works
recently published on high-pressure helium. First,
the experimental (P, V) equation of state up to 20
kbar has been obtained by Mills et al. and the
room-temperature melting point near 120 kbar has
also been determined. Second, these and earlier re-
sults were used as a firm thermodynamic experimen-
tal basis by Young, McMahan, and Ross' from
which to construct an accurate theoretical equation
of state for both the fluid and the solid under high
and extreme pressures (up to metallization).

We shall summarize the argument of Young
et al. for the fluid phase since it is relevant for the
justification of our own statistical treatment of the
He bubbles. The equation of state

with the following values of the parameters:

e/ktt =10.8 K, r'=2. 9673 A, a =13.1. The last

terin (28) is a quantum correction, important for He
even at high temperature and pressure, z ' in which

AF(r)= 7 4(r),2' (30)

where A=h/+2nmkitT measures the de Broglie
wavelength of the He atoms of mass m and energy

=ktt T. In Eqs. (27) and (28), g (r, rl) was taken to be
the Percus- Yevick hard sphere RPDF for which
there exist several fast computational schemes. In
our work we have used the algorithm given by Per-
ram, 3' which is particularly efficient. A few sample

g curves are given in Fig. 7 as illustrations for pack-
ing fractions rl of interest in our problem.

To determine the hard-sphere diameter d ap-

propriate to each density n and temperature T, the
scheme of Young et al. consists in tninimizing the
excess free energy (25) with respect to d. The a
parameter in Eq. (29) is then set (at the indicated
value) so as to give the overall best fit of the experi-
mental pressure-density isotherms of helium. In or-
der to obtain the d (n, T) values relevant to our bub-

ble problem, we have repeated this minimization
scheme. Table II illustrates some of the results.
The scheme then completely determines, through
the packing fraction rl, which RPDF g(n, T) should
be used to evaluate the theoretical blue shift in Eq.
(15) at given density and temperature. The use of a
realistic RPDF brings two important improvements
with respect to the simple step-function estimate of
Eqs. (17}and (18):

term (27) in which x =r/d represents the perturba-
tion due to the interaction between the He atoms
simulated by the exp( —6) potential

'6
a(i —rlr )

kttT a —6 6 r

(29)
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4l

q = O. I180----
O

Ã~evl

0.8$0$---

6.3112---

2 0.2010--

x =r/d

FIG. 7. RPDF as predicted by the Percus-Yevick equa-
tion for hard spheres of diameter d. g is the packing frac-
tion parameter related to density n by g =end /6.

(i) The average nearest-neighbor distance d in the
model dense fluid depends on density and tempera-
ture as it should, whereas in Eq. (17), d was set at
the fixed value a =2.566 A (to be compared with d
values of order 2 A in Table II).

(ii) The structure of the fluid is taken into account
through the oscillations of the RPDF, while in Eq.
(17) complete randomness was assumed.

The end result for the blue-shift function b,qp(n, T)
is given in Table III. Figure 8 shows the predicted
kpp(n) at room temperature. The shift is seen to be
nearly linear in the density range shown and only
weakly temperature dependent. A linear fit of the
300-K curve from n =3X10 cm to n =7)&10
cm is
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b qp(eV) =31n ( A ') —0.15, (31)

measured in eV, which should be compared with our
previous estimate in Eq. (20), i.e., b,2p

—20 n (using
C=40 eVA ). The slope in (31) is substantially
higher than in the simplified model. This mainly
comes from the fact that the Percus-Yevick RPDF
starts at d=2 A, whereas the step RPDF used in
Eqs. (21) and (18) started only at cr=2. 556 A and
hence the result (31) includes higher values of the
excimer blue shift than (20).
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Liquid —Solid (300K) planted sample contains a majority of overpressur-
ized bubbles.

IV. LINE SHAPE

We wish to investigate in this section whether the
Pauli repulsion effect, which seems capable of ac-
counting for the line shifts, is also consistent with
the observed widths. We start from Anderson's
line-shape formula, which predicts a line intensity

I(ee)= f de e' 'C(e),

equal to the Fourier transform of the correlation
function (6=1),

C(e)=exp —n fdR(1 —e (33)

Liquid

(1.2K)

6 9 12 15

Density n ( 10 cm )

FIG. 8. Blue-shift function of the resonance line of He
as a function of gas density, at room temperature. The
square indicates the shift for low-T liquid observed from
reflectivity data.

It is seen from Table III or Fig. 8 that our ob-
served blue shift of 1.4 eV in the 50-A bubbles now

implies a density of n =0.05 A '. From the P(n, T)
isotherm at T=300 K, this density corresponds to
a pressure of P=7 kbar which should be compared
to the surface-tension pressure of P=2ylr =8 kbar
for r =25 A in aluminum (y=1000 erg/cm ). We
conclude that in this particular sample and accord-
ing to the presently improved statistical model, the
bubbles should be in near equilibrium, contrary to
what was concluded from the simpler model in Sec.
IIIA, where overpressurized bubbles were implied.
In the 3.1 at% He samples, the observed 2-eV shift
appears to indicate a density of n =7 102 cm 3, i.e.,
a pressure of P=16.5 kbar. Equilibrium bubbles
with this pressure would have a diameter of 24 A.
The sample showed a large population of 40-A-diam
bubbles plus a broad tail towards larger ones up to
200-A diameter. Thus it seems that this heavily im-

=~i exp
(co —b,pp )

—2I
(34)

where

(!ep=n fdR()e(R)g(R) (35)

gives the line shift, as before, e.g., in Eq. (15), and
where

('=n fdR[6, (R)]'g(R) .

Thus, to this order, the line shape is Gaussian and of
width (FWHM):

W=ZV'2 ln2 I =2.35I (37)

The same computer code which generated b~~ in

Eq. (35) from the theoretical excimer shift b, 2 (R)
can also produce the width function I . The result is
shown in Table IV for the investigated range of den-
sities. The width is remarkably well accounted for
in the 1.5 at. % sample (n =5) which, we will recall,
has a fairly uniform size distribution around 50+10
A. The discrepancy between observed and calculat-
ed widths for the 3.5 at. %%uosampl e(n=7 )ma ybe
partly due to the much more irregular size distribu-
tion of the bubbles, which probably entails a distri-
bution of density values.

Again pairwise additivity of the energy shift func-
tion b,z(R) of the He2 excimer is assumed to hold.
Moreover, the correlation function (33) holds true
only in the static limit, certainly valid here, where
the atoms can be considered as immobile during the
1S~2P absorption event.

If we expand the exponential in small parentheses
in powers of b, 2 we obtain, up to second order,

+ 00

I(co)= dec'"'exp( irb2p — r—I )
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TABLE IV. Gaussian linewidth (FWHM) predicted by static line-broadening theory as a

function of density and at room temperature. The line marked "liquid" concerns the low-T

liquid results. The densities n =5)& 10 cm and n =7X 10 cm are obtained by fitting the

theoretical blue shifts to the indicated observed ones. All theoretical widths are calculated

from the indicated theoretical shifts.

n

(10" cm ')

Shift b,2t (eV)

Experimental
fit Theory

Width W (eV}

Experimental
fit Theory

2
2.17 (liquid)

3
4
5

6
7
8

9
10

0.39

1.40

2.0

0.52
0.36
0.80
1.11

Fitted
1.75

Fitted
2.41
2.74
3.06

0.43

1.2

2.2

0.75
0.53
0.95
1.13
1.30
1.45
1.60
1.74
1.87
1.99

For the low-temperature liquid, the theoretical
width has been evaluated from (36) but with

g(R) =g,„~,(&) as in (21) rather than with the
Percus-Yevick g, which is unreliable at low tempera-
ture and with b,2(R) as given by Eq. (22). Thus we
have for the liquid.

(38)

we rely for our calculations of the liquid line shift
and width in Eqs. (23) and (38). Such a reevaluation
is also desirable for the interpretation of the bubble
data, particularly in view of the fact that the
predicted line-shape parameters in that case depend
critically on the height of the hump around 2 A in
the excimer curve. Work is in progress in this direc-
tion.

and we found I =0.05 eV, hence a width %=0.53
eV. Although this result at first appears reasonably
close to the observed width (0.43 eV, see Table I),
the remaining 20% discrepancy exceeds the experi-
mental uncertainty from the reflectivity data and
from the liquid g,„~,(R ).

This points to the need of a theoretical reevalua-
tion of the excimer potential-energy curve on which
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