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The dynamical density and spin-density response functions are expressed within a dispersion-

relation representation in terms of the corresponding static susceptibilities and relaxation kernels.
The kernels are approximated by two-mode decay processes. The resulting coupled integral equa-
tions are solved to get self-consistent spectral functions of the density and spin-density response. It
is found that a density mode can decay into two density modes and two spin-fluctuation excitations
whereas a spin-density fluctuation decays only into a density mode and a spin-density excitation.
The theory predicts a well-defined zero-sound mode. The calculated excitation spectra of zero sound

and spin-fluctuation excitations and their strengths are compared with neutron-scattering results.

I. INTRODUCTION p(q) = Xe =pt(q)+pi(q)
N

(2.1)

Some time ago Pines' argued that the Landau zero-
sound mode should be expected to exist in normal liquid
He for wave numbers q-qF. Recently, neutron inelastic

scattering experiments ' done at temperatures in the mK
range have demonstrated that the scattering function con-
tains two peaks for wave numbers up to 1.2 A ', The
peak at lower energy is due to collective spin-density fluc-
tuations in the particle-hole regimes whereas the peak at
higher energies is identified as a zero-sound mode of col-
lective particle-number fluctuations.

The neutron scattering results have been interpreted3
within the framework of generalized random-phase ap-
proximation (RPA) theories. The emphasis in these ap-
proaches is on the extension of Landau's Fermi-liquid
theory to finite q, co. That requires the introduction of
various parameters, for which at present, it does not seem
to be possible to provide derivations and justifications.
Therefore our aim in this paper is to develop a parameter-
free theory of collective excitations in normal liquid He.
Other attempts in this direction along different lines of
approach have been reported by Valls et al.

In Sec. II we describe the formalism we used to calcu-
late dynamical susceptibilities, correlation functions, and
relaxation functions. We also include relevant results con-
cerning their analytical behavior and their spectral proper-
ties. In Sec. III we review the generalized RPA theories
and give a brief outline of the polarization-potential ap-
proach of Aldrich et al. Then we present our alternative:
a self-consistent mode-coupling approximation for the re-
laxation kernels appearing in the dispersion-relation repre-
sentation of the dynamical susceptibilities. A description
of the evaluation of their spectra and a discussion of the
results of our theory are given in Sec. IV. Section V con-
tains a summary and our conclusions.

II. GENERAL FORMALISM

We are interested in the fluctuation dynamics of the
particle-number density

and of the spin density

tr(q)= gtT, (r„)e "=p,(q) —p, (q) (2.2)
N

of normal liquid He in a paramagnetic state described by
the Hamiltonian

2

H=g " + —,'g'v(~r„—r ~).
2m

(2.3)

In (2.2), cr, (r„) has eigenvalues 1, i.e., cr, (r„)=1. The
He particles of bare mass m move in a spin-independent

central symmetric potential U (r) acting between pairs.

for Irnz g 0, (2.4)

measuring the response of variable A to a perturbation
coupling to A. We do not have to consider cross suscepti-
bilities between p and cr—they vanish due to spin-rotation
invariance of p and H. Furthermore, spatial isotropy im-

plies Xq to depend only on the modulus q =
~ q ~

. In (2.4)
8 is the unit step function. The angular brackets denote
an ensemble average appropriate to the Hamiltonian (2.3).

The time evolution of variables is determined by

dA (t)
dt

=i [H,A (t)]=i&A (t) . (2.5)

With the above definition of the Liouville operator W,
one obtains the time dependence of variables in the form

A (t) =e' 'A (2.6)

A. Susceptibilities, correlations, and relaxation functions

The fluctuation dynamics of the two densities p and cr

are most conveniently described in terms of two complex
dynamical susceptibilities' (A =p or cr),

X„(q,z)=+i f dt 8(+t)e '([A( —q, t),A(q)])
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to be used later on.
The response functions (2.4) are analytic in the complex

z plane off the real axis and decay sufficiently fast for
large z to allow for the Cauchy representation

(A; IA,. )=X;,(z=0)=P&(t =0) (2.17)

in the vector space of dynamic variables [A,. j via the static
susceptibility

d CO &A'(q )
XA(q, z) =

7T N —Z
(2.7)

X; (z =0)=if dt([A (t),A ])

The spectral function X„"(q,co) being the discontinuity of
IA(q, z) across the real axis

A(q ~+~ 0) =&A (q ~)+~&A {q ~) (2.8)

S(q, co) =S (q, co)+0.245S (q,m), (2.11)

which is given by the sum of the density correlation spec-
trum Sz{q,m) and the spin-density correlation spectrum
$~(q, co) weighted by the ratio 1.2/4. 9 of incoherent and
coherent scattering cross sections.

%e consider the response functions {2.4) to be the basic
quantities. To investigate them we will employ a
dispersion-relation representation

2/—q /m
(2.12)

z —fI„(q)+zM& (q,z)
X&(q,z) =

is the frequency Fourier spectrum of the response function

X&(q, t0)= ,
' f d—te'"'(,[A( q, t),A—(q)]) . (2.9)

The even real part XA(q, co) and the odd imaginary part
Xq'(q, co ) of X„(q,to+ i 0) are connected via Kramers-
Kronig relations.

Furthermore, the response spectra gA" {q,co) are related
to the correlation spectra

S„(q,co)= f dt e'"'(5A ( —q, t)5A (q)) (2.10a)

=26{ co)X"(q,co) {2.10b)

via the fluctuation-dissipation theorem (2.10b) written
down here in its zero-temperature limit version. Note
that, e.g., in a scattering experiment with unpolarized neu-
trons, one can measure the dynamic structure factor

(2.18)

In Appendix A it is shown that the relaxation kernel
M„(q,z) has the same analytical properties as P„(q,z).
The spectrum MA"{q,~) is even in co and positive semide-
finite. Therefore, the real part

da) ™A(qCO )
Mg(q, a)) =2'& f0 7r co' co

(2.19)

being connected to MA"(q, co) via the Kramers-Kronig rela-
tion (2.19), is odd in co and varies linearly in m for small
frequencies.

=f t0'" 'X&(q, co)

= f cu
" 'Sg(q, co) (2.20)

of the relaxation, response, and correlation spectra. They
appear in the 1/z expansion of, e.g., the relaxation func-
tion

de A(q ~) 1 1
P~(q, z)= f = ——g C2„(q)

n=0

(2.21)

B. Frequency moments

For completeness and later use we list here some of the
frequency-sum rules,

C2.(q)= f" ~'"eA( qt0)'

in terms of a characteristic frequency Qz (q)
2

~2 ( )
q /m

XA(q, z =0) (2.13)
C2.(q)=(A(q)

I
W'"IA(q)) (2.22)

The expansion coefficients are easily identified as matrix
elements

IA (q, z) —XA (q,z =0)
(2.14)

i.e., Kubo's relaxation function. ' Obviously Pq has simi-
lar analytical properties as the susceptibility J'A and,
moreover, the spectra are intimately related to each other,

P~ (q, co) =X~ (q, co)/co . (2.15)

It is very convenient to write the relaxation function as a
resolvent matrix element

Pq(q, z) =(A (q) I
(W —z) '

I
A (q)) .

That is achieved by introducing the scalar product

(2.16)

and of a complex polarization —or relaxation kernel

MA(q, z). In Appendix A we derive (2.12) together with
the explicit expression for MA within Mori s projector for-
malism. " To that end we introduce yet another complex
function,

if one uses the fact that

Qg'(q, a)) =n(A (q) I
5(to —W. )

I
A(q)) .

Hence the n =0 moment is the static susceptibility

(A(q) IA(q))=X~(q)=X~(q, z =0),

(2.23)

(2.24)

which yields in the long-wavelength limit either the iso-
thermal compressibility

lim X&(q) =nKT ——(nCT)
q~O

or the Pauli paramagnetic susceptibility'

lim P~(q) =Xp,~;/n p
q~O

(2.25)

(2.26)

Here n is the equilibrium particle-number density, CT is
the isothermal sound velocity, and p is the spin magnetic
moment of the He nucleus. The f-sum rule Cz(q) yields
for both A =p and A =u,
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(A(q)
~
W'~A(q))=q'/rn,

upon using the general relation

(A
~

W
~

8)= ( [A,B]& . (2.28) /mX(q')=, —,
z —Q „(q)+zM„(q,z)

(2.36)
Thus the characteristic frequency Qz(q) entering (2.12) is
determined by the ratio C2/Co,

one can express ' the "polarization potential"

(2 27) function or something else. If one employs the
dispersion-relation representation of the reference suscep-
tibility

Qz( )
(A(q)

~
W ~A(q)) (2.29)

(A (q)
~
A(q ))

Of course, one can form combinations of other moments
with the dimension of a frequency, e.g., (C4/C'&)'~ which
has been discussed in the literature. ' We do not add to
this discussion' here since only Qz(q) enters explicitly
into the dispersion-relation representation Of the suscepti-
bilities at the level displayed in (2.12).

The last moments we need are the total syertml intensi-
ties of the scattering laws

&g(q)= f &g(q, ei)= f Xg'(q, ei) . (2.30)

Here S&(q) is the density structure factor

$&(q)=1+n fdr e 'q '[g(r) 1], — (2.31)

$~(q)=1+n fdr e 'q''g (r) .

The correlation functions

g (r) =gi(r)+g„(r)

and

(2.32)

(2.33a)

g (r)=gI(r) —g„(r) (2.33b)

are given as combinations of pair correlation functions for
particles with like spins, gI(r), and unlike spins, g„(r).
The latter are normalized such that gg „(r~ ao }= —,.
While there is at present sufficient information avail-
able' ' about S&(q), little is known about S (q). Ceperley
et al. ' have performed Monte Carlo calculations of static
correlations for Fermi liquids, but how close they are to
actual liquid He is not yet known.

C. Other representations of the dynainic susceptMi4ies

It is useful to make contact with general representations
of the susceptibilities Xz (q,z) obtained within other
theoretical frameworks. To that end we introduce a refer-
ence response function Xz(q, z) in terms of which the sus-
ceptibility Xz(q,z) can be written as

1+4(q z»~(q z)
(2.34)

Hence

f&(q,z)=X& (q,z) X& (q,z)— (2.35)

is given by the difference of the inverse susceptibilities
which makes it most suited for approximations. The
reference susceptibility so far is arbitrary. It can be the
response function of free particles as discussed by Takeno
and Yoshida ' or a quasiparticle or a screened response

which can also be measured by ~-ray diffraction while

$~(q) is the spin or magnetic structure factor

gq (q,z) =f„(q)+—2z [Mq (q,z) M„—(q,z)) (2.37)
q

in terms of a frequency-dependent part given by the
difference of the relaxation kernels and a static part

PA(q)=A(q z =0)=X~ '(q) —X~ '(q) (2.38)

given by the difference of the inverse static susceptibilities.

III. APPROXIMATIONS

A. Generalized RPA theories

m [Mz(q, co) —Mz(q, co)]=cofi (q) (3.1)

is purely real which violates causality. Furthermore, the
real part depends only linearly on frequency. That is
reasonable for small co in view of (2.19) but obviously
wrong for larger co. For the static part of the polarization
potential, the authors use fz(q)=f0(q) with fo(q), f i (q)
denoting four q-dependent generalized Landau parameters
discussed below. Then the susceptibilities have the form

Xg(q, z)
&~(q z)= (3.2)

z2
1+ f"o(q)+ , f"(g) X (q,z)—

q

where the reference response functions X&(q,z) are given
further below. The static polarization functions
f~p(q) [fo(q)] are taken as the Fourier transform of the
sum (difference) of the effective interactions f"(r) be-
tween particles of parallel spin and f"(r) between parti-
cles of antiparallel spin. These interactions being un-
known, the authors give arguments for a parameterization
of

fff(r) gfi for r &r," (3.3)

and similarly of f"(r), and the assumption that for

The starting point of all mean-field type calculations is
the representation (2.34). The standard RPA, for example,
is obtained by using for Jz(q, z) the Lindhard response
function Xo(q,z) of an ideal Fermi gas of quasiparticles of
effective mass m' (number-density and spin-density sus-
ceptibilities of an ideal Fermi gas are the same). Further-
more, the frequency dependence of f„(q,z) is ignored, i.e.,
Mq(q, z) —Mq(q, z) =0, and the mean field g„(q) is fixed
by the experimental structure factor via the fluctuation-
dissipation theorem. This was done by Stirling et al. to
interpret their experimental data. Later Glyde and Khan-
na, Aldrich et al. , ' and Yoshida and Takeno have tried
to extend the Landau theory to finite q, co.

In the approach of Aldrich and Pines commonly
known as the polarization-potential model, it is assumed
that
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0
r & r, =3 A an attractive van der Waals interaction can be
used. Also

f~o(r) =[f"(r)+f"(r)]/&

was assumed to have the same form as (3.3), namely

f~o(r) =a~[1—(r/r~)']

for r & rz. The latter was fitted to large-q neutron scatter-
ing experiments and a& was taken from the experimentally
determined Landau parameter f~o(q =0). The options for
the choices of the parameters determining f"(r) and fo (r)
are even less unique and the authors discuss various values
and their implications.

The function f ~ (q) was set equal to zero while f ~ (q) is
determined according to m'(q) =m +f~~(q) by the wave-
number-dependent effective mass m'(q) of He which was
extracted from neutron scattering experiments. For the
reference susceptibility, the authors take

M~(q z)
l t ~ ~.= g q~ a(q k)0a(q z k, k ')

k, k'

Xy& ~(q z;k, k '), (3.6)

where the two-mode relaxation function

Ptt(q, z;k, k ')=(8(q, k)
~

(W —z) '
~
B(q, k '))

(3.7)

is evaluated by factorizing four-point correlations
(5A(t)5A'(t)5ASA') into products of two-point correla-
tions. The vertices are given by

density mode and a density mode. Similarly, a spin-
density mode can decay into another spin-density mode
only by emitting a density fluctuation. The various ker-
nels due to the decays p~pp, p~ocr, and 0~up can be
written ' approximately as

+A (q ) A (q)~o(q ) +&~""(q
& (3.4)

tt(q, k)= g(QW'A(q) ~8(q, k'))[(8 ~B) ']-, -.
a combination of a weighted Lindhard function +0(q,z),
wherein the mass is replaced by the effective one, m'(q),
and a real part Xq""(q) reflecting multiparticle excitations
in a frequency-independent approximation.

The results of the polarization-potential theory give a
fair description of the experimental neutron scattering
data. That applies also to the approach of Yoshida and
Takeno. Therein the Lindhard response was taken as the
reference susceptibility, and for the difference of the relax-
ation kernels ~&(q, t) entering the polarization potential,
the authors used a phenomenological Gaussian ansatz
while the potential for spin-density fluctuations was taken
to be static. Lastly, we mention that Beal-Monod, upon
using a paramagnon model for spin-density fluctuations,
found the neutron scattering data to be consistent with a
Stoner enhancement factor of 0.9. From this finding,
which seems to be in agreement with what one obtains
from the static spin susceptibility, one concludes that
liquid He at low temperatures T«TF is nearly fer-
romagnetic.

k'

(3.8)

The normalization matrix

{8( q, k )
~

8 ( q, k ') ) = J Pt't ( q, co; k, k ')

(3.9)

is determined by the relaxation spectrum obtained with
the above factorization approximation. Since the frequen-

cy integral is somewhat insensitive to the detailed spectral
distribution, we calculate the above moment for un-

damped two-mode fluctuations.
We now demonstrate the evaluation of the remaining

first matrix element in (3.8) for

(QW p(q)
~

o{k)cr(q —k))

S (k)+ S ( —k)
m m

B. Mode-coupling theory —Q~(q)(p( q )
~
o( k )tr( q —k ) ) (3.10)

While the polarization-potential approach describes the
experiments fairly well, it does not seem to be possible at
present to provide a microscopic picture for the various
parameters in the theory. Therefore, we develop in this
section a semimicroscopic theory of excitation in normal
liquid He which is free of fit parameters. To that end we
use the exact dispersion-relation representation of the two
susceptibilities X&(q,z) in terms of the relaxation kernels

Mz(q, z) (A7). The latter we evaluated self-consistently
within a two-mode decay approximation.

The two-mode excitations considered are described by
products

as an example. The other cases are similar. The static
three-point susceptibility

(p(q) ~o(k)o'(q —k))= J —
X~ (q, co;k)

(3.11)

is evaluated by using a two-pole approximation for the
above spectrum,

—Xp' ( q, co; k ) = C5[to —Qp(q)]

8(q, k) =5A (k)6A'(q —k) (3.5) +D5[co—II (k) —II (q —k)]
of two density modes, two spin-density modes, and one
density and one spin-density mode. Therefore A and A'
stand for p or cr. Spin-rotation invariance of p and 0 al-
lows decay of a density mode into two density modes and
into two spin-density excitations but not into a spin-

—(co~ —a)) . (3.12)

The constants C,D are determined by two spectral mo-
ments of Xz'«, namely
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and

q k {- q(q —k)
m m

2CQ&(q)+2D[O (k)+0 (q —k)]

=(W p(q)
~

o(k)e(q —k))

(3.13)

In the last line we used the convolution approximation
for the equal-time three-point correlation function. We

also replaced in the vertices the characteristic frequencies

0& (q) by their zeroth-order approximation

2'' 2S() (3.15)
2mS, (q)

C+D= (p*(q)o(k)0(q —k})

=S&(q)S~(k)S ( q —k ) .

Combining everything, we find that the spectrum of the

density relaxation kernel in the mode-coupling approxima-
(3 14) tion is given by the sum of two contributions,

M "(q,co) =M" {q,co)+M" (q, m),
I

Mz' (q, cu) = f dp p f dk k V; (k,p, q) f P&'(p, co')P;"(k,co co'), —
32+3nqco q —pl

' ''
o

(3.16)

(3.17)

where the first, i =1, is due to decay into two density modes (P]——P&) while the second, i =2, reflects decay into two

spin-density excitations {Xz——X ). On the other hand, the spectrum of the spin-density relaxation kernel is determined in

mode-coupling approximation by the decay channel o.~pa, allowed by spin-rotation invariance

d
M "(q,co) = f dp p f dk kV3(k, p, q) f p "(p,co')P "(k,co —co') .

16m' nqco I e —p I

(3.18)

The vertex functions are

V) = [& (q)+ (ep)+ (ek)]

2 +p 2 k 2
q

2 +P 2
p

2

2q 2S (p) 2q 2S (I )

V~= [ep(q)+e ( )p+e(k)]

q+p —k q +k —p
2q S (p) 2q S (k)

V3= [e (q)+ez(p)+e (k}]

q2+2k2q2+k22
2q S (p) 2q S (k)

(3.19a)

(3.19b)

(3.19c)

Meyer" and Hallock' while for S~(q) we used the Monte
Carlo result of Ceperely et al. ' Note that besides the two
functions Sz(q) and S (q) shown in Fig. 1, the only other
input into our theory is the density n =1.634&(10 cm
and the bare mass m of He atoms.

The integrations were done using the standard Simpson
method. We started the iteration procedure for solving
the above-described set of nonlinearly coupled integral
equations with M&(q, z) =0=M (q,z). Then the spectral
functions X&(q,co) of the fifth iteration agreed with those
of the fourth iteration within less than 5%. At this stage
we added to the mode-coupling relaxation kernels

[(3.16}—(3.18)] that one of an ideal Fermi gas of mass
m'=3m to account for the free-gas relaxation of collec-
tive fluctuations. With the new kernels

The set of equations (2.12), (2.19), and (3.16)—(3.19) is a
closed system of nonlinear coupled integral equations. Its
self-consistent solution is described below.

M(q, z)=M(q, z)
~ ~„,„~~;„s+Mo(q,z),

the iteration procedure was continued. While the density

IV. CALCULATION AND RESULTS

In an iterative procedure, ' we evaluate the new spec-
tra of the density (A =p) and the spin-density (A =0 )

response functions

coMq'{q, o))q /m
Xg'(q, co) =

[co'—Qg (q)+ AM,
'
(q, co)]'+ [a)M„"(q,a) )]'

(4.1)

with the relaxation spectra M„"( cd) [(3.16)—(3.18)] [ob-
tained from the Xz (q, co) of the previous iteration] and the
real parts Mz(q, co) obtained via the Kramers-Kronig rela-
tion (2.19). Instead of determining Qz(q) (2.13) from the
old spectra Xz(q, co), we found it more convenient to
choose Qz(q) at each iteration step such that the experi-
mental equal-time structure factors Sz (q) (2.30) were
guaranteed by (4.1).

For Sz(q) we used the experimental result of Achter and

C:
O

0.8

0.4

1.0

q (A'j

2.0 3.0

FIG. 1. Static structure factors of the particle-number density

S~(q) (solid line) and of the spin density S (q) (dashed line).
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FIG. 2. Relaxation kernels of particle-number-density fluc-

tuations M~(q, co) and of spin-density fluctuations M (q, co) for
two representative wave numbers. Solid lines denote imaginary

parts and dashed lines denote real parts of the mode-coupling
contributions to M&(q, co) resulting from the last iteration. The
relaxation spectra Mo'(q, co) of the ideal Fermi gas of mass
m~ =3m are shown by dots.

fluctuation spectrum remained unchanged, another itera-
tion was necessary to stabilize also the spin-density fluc-
tuation spectrum to within an accuracy of better 5%.

The calculated mode-coupling contributions to the re-
laxation kernels Mz(q, co) resulting from the last iteration
are plotted in Fig. 2 for two representative wave numbers
as functions of ~. The free-particle contributions to the
relaxation kernels which are shown there as well are obvi-

ously very small compared to the mode-coupling part.
The spectra of both kernels, M&'(q, co) and M "(q,co), in-
crease first, attain a maximum, and finally fall off to zero
for large co with some minor superimposed structure. This
behavior is dictated by the two-mode decay kinematics.
The maximum in Mz'(q, co), e.g., around co=30 K is due to
decay into two density fluctuations of which each is local-
ized in the m-q plane in the region of maximal density of
states around the maximum of the dispersion (at co=15 K,
c.f. further below) where the slope of the dispersion van-
ishes.

Similarly, the maximum in the spin-density damping
spectrum M "(q,co) at co=20 K is produced by decay into
density fluctuations of energy co=15 K for which the
available phase space is maximal, and into a spin-density
fluctuation near co~0 for which also the density of states
is maximal. Note that the decay spectrum M "(q,co) is

overall smaller than M&'(q, co) since the pp decay channels
are not available for spin-density fluctuations.

As an aside we remark that one gains an easy, qualita-
tive insight into the structure of the two-mode decay spec-
tra [(3.17) and (3.18)] by replacing the spectra X4'(q, co) in

the convolution integrals by 5 functions centered at the
corresponding dispersion I„"(q,cu)-5[co —e„(q)]. Then,
leaving the vertices aside, the decay spectra [(3.17) and
(3.18)] measure two-mode density of states whose size is
determined by one-mode density of states [Be„(k)/Bk]
and phase-space kinematics due to momentum and energy
conservation for the decay partners.

We found numerically that the decay of density fluctua-
tions into two spin-density fluctuations, i.e., M&'(q, co), is

2

negligible compared to the decay into two density fluctua-
tions, i.e., M&' (q, co). The main reasons are that the vertex

PI

V2 (3.19b) is small compared to the vertex V] (3.19a), and,
in addition, the phase space for two density excitations is
for the considered frequencies larger than that for two
spin-density fluctuations. This blocking of the decay
channel p~o.o. implies that number-density fluctuations
are almost decoupled from spin-density fluctuations (but
not vice versa).

Let us discuss now the spectral functions X&'(q, co) and

1"(q,co) for number-density and spin-density fluctuations.
They were obtained self-consistently within the mode-

coupling approximation to the relaxation kernels Mz(q, co)

by the above-described iteration procedure. Figure 3

shows Xz'(q, ~) (solid curve) and 7"(q,co) (dashed curve) for
two representative wave numbers q =0.6 and 1.0 A
The sharp resonances denote zero-sound and spin-
fluctuation excitations, respectively, with relative spectral
strengths shown by precentages in the figure. In Fig. 3(b),
g&'(q =1.0 A ', co) shows a peak below the zero-sound
mode at the spin-density frequency co=a (q), but the asso-
ciated spectral weight is negligible. For q=0. 6 A
there is a shoulder at co =e (1)=4 K.

The energy of the zero-sound mode is plotted in Fig. 4.
In this figure the continuous curve marked 1 is the plot of
e&(q) =q /[2mS&(q)] obtained from the structure function
given in Fig. 1. The solid curve at lower energy is the
self-consistent result of the mode-coupling theory. The
neutron scattering experimental data as reported by Skold
and Pelizzari are shown by closed circles if the spin-
fluctuation peak in the total cross section is fitted by a

paramagnon model, and by closed squares if the spin-
fluctuation peak is fitted by a free-Fermi-gas model.

Open circles show the result obtained if the peak positions
are estimated by eye. The maximum difference between

experimental peak position and our calculated values is

less than 20%. Whereas the experimental dispersion of
the zero-sound mode saturates around 0.7 A ', the
theoretical curve flattens at larger-q values. The relative
spectral weight fz(q) of the zero-sound mode is shown in

Fig. 4. The experimental values of fz(q) depend whether
the spin-fluctuation peak is fitted by a paramagnon model
(closed circle) or by the free-Fermi-gas model (closed

square). Our theoretical results (solid curve) are closer to
the latter.

The energy of the spin-fluctuation excitation e (q) and
its spectral strength f (q) are plotted in Fig. S. The values

of e~(q) as reported by Skold and Pelizzari are also shown

by closed circles. Neutron scattering results for f (q) are



K. N. PATHAK AND M. LUCKE 28

40
(a)

25—

30-
74% 20

IO
O

3
CI

I

20 I. --- —7950/
I

I

I)

10-

I ~i

q = 06A" -20

A
O

3
CT

10 x

t5

CL
4J

IO

I.OO ——

0.5
q(A )

I.O 1.5

50

0 I I I I 0
0 10 20 30 40

e (K)

(b)
40

0.75—

CT

0.50—

IQ-

~ 30

O

3
CT'

:~20X

0

q =1PA
— 30

O
20—

3

10

I

40 50

60 o/0

II-- --- —55%

I)
II
II
) 1~

]\
Il

)
~I I

I

I
I

I

I

t

I

t

t

I3
10 20 30

& (K)

025—

05
Q(A )

I.O l.5

15-

10

D
4J

FIG. 4. Zero-sound energy e~(q) and its spectral strength

fz(q) vs wave number. The upper curve marked I de-

notes E'p(q) =q'/(2mS~(q) ). Experimental results as described in

the text are shown by circles and squares.

FIG. 3. Dynamic number-density and spin-density suscepti-
bilities vs frequency for two representative wave numbers. Solid
lines denote P~(q, co), dashed lines denote P "(q,co). Percentages
show the spectral strength of zero-sound and spin-fluctuation
excitations.
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not available for comparison.
Finally, the characteristic restoring forces Qz(q) (2.13)

are plotted in Fig. 6. Note that so far no information was
available about the static susceptibilities

Xg(q, z =0)=q'/[mQ„'(q)] .

0.75-

0.50-

0.25—

V. SUMMARY AND CONCLUSIONS
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We have expressed the dynamic density and spin-
density response functions for liquid He within a
dispersion-relation representation in terms of their static

FIG. 5. Spin-fluctuation excitation energy e (q) and its
strength f (q) vs wave number.
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APPENDIX: DISPERSION-RELATION
REPRESENTATION OF P~ (q, z)

~ 20

Here we generate the dispersion-relation representation
(2.12) of the dynamical susceptibilities P„(q,z) with Mori s
projector formalism. " Taking matrix elements of the gen-
eral resolvent identity

P(W z) 'P—[z —-W+Q(QWQ —z)-'Q]P = P—
(Al)

10 between the "states" A(q) (in our case A =p or A =0)
onto which the projector

P= (A(q)) (A(q )
(

(A2)

0.0 0.5 1.0 1.5

q(A "I

2.0 25

projects, we obtain

P„(q,z) z+ (WA(q )
~
(QWQ —z) '

~

WA(q ))
Xg(q)

FIG. 6. Characteristic frequencies Q&(q) (2.13) corresponding
to static susceptibilities P~(q) and P (q) vs wave number.

susceptibilities and two relaxation kernels. The dissipative
parts of the complex kernels depending on frequency and
wave number are approximated by two-mode decay pro-
cesses, and the decay vertices are expressed in terms of
structure functions. The real parts are evaluated via
Kramers-Kronig relations.

It is found that density excitations can decay into two
density modes and into two spin-fiuctuation excitations.
A spin-density fluctuation, on the other hand, is allowed

by spin-rotation symmetry to decay only into a combina-
tion involving a density mode and a spin-fluctuation
mode. The above approximation leads to two coupled
nonlinear integral equations which have been solved by
iteration and which determine in a self-consistent way the
two dynamic susceptibilities. Owing to a small vertex de-

cay of density fluctuations into two spin-fluctuation
modes is negligible compared to decay into two density
modes. Therefore, number-density fluctuations are practi-
cally decoupled from spin-density fluctuations. The relax-
ation mechanism of the latter, however, is determined by
the decay coupling to two-mode excitations involving
number-density fluctuations and spin-density fluctuations.

Our theory goes certainly beyond RPA. It needs as in-

put only the static structure factors. In view of this fact,
we consider the agreement with neutron scattering results
to be good. In particular, we obtain well-defined density
excitations for not too large wave numbers. Since an ex-
plicit coupling of zero-sound modes to multiparticle-hole
excitations is not contained in our present framework, e.g. ,
via a separate decay channel, we conclude that this cou-
pling is small.

X„(q)=X„(q,z =0)=(A (q )
l
A(q )) (A4)

normalizes P=P . In (A3) we made use of the ortho-
gonality of W

~

A) and
~

A).
Repeating the analogous procedure for the reduced

resolvent (QWQ —z) ', one arrives at the formula

Qq(q)

z +Mq (q,z)
(A5)

The characteristic frequency Qq(q) for fluctuations of the
density A ( q ) is given by

(A (q )
I

~'
I A(q )) q /m

(A(q ) ~A(q ))

and the kernel

(A6)

Mq(q, z)=—(QW A(q) ~(W' —z) '
~
QW A(q ))

is the relaxation function of the anharmonic part of the
generalized force W A ( q ) acting upon the density
A(q )—the harmonic part being proportional to A itself is
projected out by Q. The dynamics of the above force in
(A7) is generated by the operator W'=Q'WQ' which is
restricted via the projector Q' to the subspace containing

neither single-mode density fluctuations A(q) nor single-

mode current fluctuations WA(q ) . From (A5) or even
more directly from a comparison of (A7) with (2.16), one
concludes that the relaxation kernel Mz(q, z) has the same
analytical properties as the relaxation function P„(q,z).

= —X& (q) . (A3)

Here Q =1 Pprojects —onto the orthogonal complement
of A(q ) and
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That leads, e.g., to a Cauchy representation

d en M~"(q ~)
Mq(q, z) =

co —z

with the spectral fonction

Mq'(q, co) =n.—(Q W A ( q )
~

5(co —W')
~

QW A ( q ) ),
q (A9)

which is even in co and positive semidefinite as q)q'(q, co)
(2.23). The dispersion-relation representation (2.12) of the
susceptibility Xz(q, z) follows directly from (A5) and the
definition (2.14) of Kubo's relaxation function q)„(q,z).
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