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Some properties of superconducting virtual-bound-state alloys
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Using the Anderson model in the nonmagnetic limit, we have calculated some properties of the su-

perconducting virtual-bound-state alloys. The calculated properties are the transition temperature

T„ the jump in specific heat at T„hC, the electronic density of states, and the tunneling conduc-

tance. Special attention is paid to the systematic variation of these properties with the resonance

width I . It is found that the initial slope of the normalized hC versus the normalized T, curve has

a maximum value of 3.638, which is the highest value reported in the literature for the impurity

problem. Our tunneling study suggests that for an electron-tunneling search of bound states in al-

loys with relatively large I, an ultra-low-temperature experiment is desirable.

I. INTRODUCTION

Recent work of Terris and Ginsberg' and that of
Salomaa and Nieminen have renewed interest in the study
of the superconducting virtual-bound-state alloys. In Ref.
1 an electron-tunneling search of the bound states in su-

perconducting Al-Mn was carried out with negative re-
sults. In Ref. 2, the Anderson model' was used to describe
the impurities. In this model, a d-electron state localized
on a transition-metal impurity atom hybridizes with the
conduction-electron states of the host material leading to a
localized resonance of width I. There is a Coulomb
repulsion U between localized resonances of opposite spin.
Whether the impurity behaves nonmagnetically or mag-
netically depends on the value of U/m. I . With U=O, one
has the nonmagnetic limit of the Anderson impurity. By
using this limit, it was shown in Ref. 2 that for a finite
impurity concentration, there is an impurity band within
the BCS energy gap. The possibility of such a band was
first suggested by Machida and Shibata.

On the theoretical side, a pioneering study on this topic
was done by Zuckerman. Other notable related works are
by Ratto and Blandin, Kiwi and Zuckermann, Kaiser,
and Shiba. ' The difference between the earlier studies
and that of Ref. 2 for U=O is that, whereas in most of the
earlier works the resonance width I was taken much
larger than the Debye cutoff frequency cuD, in the recent
investigation the region I -T, was explored in order to
clarify the existence of bound states.

Because of the recent interest in this problem, the
present study has been carried out. We have calculated
the transition temperature T„ the jump in specific heat at
T„hC, the initial slope of the specific-heat jump versus

T, curve, the electronic density of states, and the tunnel-

ing conductance by paying attention to their systematic
variation with respect to I . We find interesting behavior
in T, and AC, especially for small I . For example, the
maximum value of the initial slope of EC-vs-T, curve is
the highest for the impurity problem. We also make a

comment on the experimental research. A preliminary
study of the specific-heat jurnp has been reported earlier. "

II. TRANSITION TEMPERATURE
AND SPECIFIC-HEAT JUMP

Let us consider a random distribution of d-state impuri-

ties in a BCS superconductor. Describing the impurities

by using the Anderson model with U=O and neglecting
the impurity-impurity interaction, the single-particle
Green's function for the conduction electrons of the host
metal is

6 ( k, co„)=(to„e-ri+ b „r,)—
k

where to„=irT(2n+1} (with T as temperature and n as
an integer), e- is the Bloch-state energy, r; are Pauli spin

k

matrices, and the parameter U„=to„lb, „satisfies equation

co„n;I n

~N.~ r'+Z,'+~'„+21 ~„U„(1+U„')-'"

In Eq. (2}, b, is the impurity- and temperature-dependent
superconducting order parameter, n; is the impurity con-
centration, No is the single-spin density of electron states
at the Fermi level in the normal metal, I =nND( Vkd } is
the half-width of the d resonance with Vkd as the admix-
ture matrix element between d state and the conduction
electrons, and E~ is the displacement of the center of the
resonance from the Fermi level.

First we discuss the thermodynamic properties. The or-
der parameter satisfies the self-consistency equation

n

5=2rrTgNo g (1+U„)
n=0

where g is the BCS interaction constant and n =coD/2~T
with coa as the Debye cutoff frequency.

Now one has the BCS relation
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1/gNp =in(2'Y ~D/'lr~ep)

where T,p is T, (the transition temperature) in the absence
of impurities and 1ny, is Euler's constant. Also,

ln(2y, cuD /m T)= 2n T g (1/co„) .
n=0

Using these two relations in Eq. (3), we obtain

1n(T/T, p)=2nT g [(1/6)(1+U„) '~ —(I/co„)] .
n=0

(4)

For T near T„A becomes small and U„&&1. Then Eq.
(2) gives

where

y=n; I /nNp .

Using Eqs. (4} and (5},we obtain

ln(T, p/T)=Bp(n;, T)+ 28~(n;, T)(b/2mT) +

where

tN
1

Bp(n;, T)=2mT g
„-O n

(8}

1U„=a
&

—+a

with

yn +
E~+(I +co„)

(5)
00 18, (n;, T)=(2n.T} g Za(+

an=0 a

(6) As shown in the Appendix, the quantities Bp(n;, T) and

8&(n;, T) can be written as

Bp(n;, T)= z z
Rel(t —+y 1 I +ia

2m. T
—lb( —, ) ——Imp —+I 1 I +ia

Q 2 277T
(10}

B)(n;,T)= — tb' '(
2 )+D2(2nT)Q"'( —, )

D3 (3) 1 I +ia
12rIT 2 2m T

T

—D6(2~T)
1 I +E'a

4 ~2~ 1 I'+ia ~, ~
1 I +ia

—tt( —,
'

)

where D; (i = 1,2, . . . , 6) are defined in Eqs. (A6),
a=(Eq+y)', lb'"'(z) are polygamma functions, 'z and Re
(Im) stands for the real (imaginary) part of the functions.

The equation for T, is obtained by setting 5=0 in Eq.
(8}and is

I.O

0,8
~c

~CO
0.6

ln( T&p/T& ) =Bp(n& T& ) (12)

The dependence of T, on the impurity concentration is
computed using Eqs. (12) and (10}. For the symmetric
case (E~ ——0} such a dependence is shown in Fig. 1 for
I /hp(0)=1. 0, 5.0, and 25.0. Here hp(0) is the zero-
temperature order parameter in the absence of impurities.

Let us consider the low impurity concentration behavior
in detail. For a low impurity concentration, Eqs. (12) and
(10}can be written as

0.4

0.2

0'
l.0 2.0 3.0

n;
4.0

Tz/Tzp= 1 —ngbp+O(n& ) (13)

where bp represents the initial slope of the T, /T, p-vs-n;
curve. Further,

FIG. 1. Normalized transition temperature T, /T, o vs the
normalized impurity concentration n; [=n; /n N&&d o(0)] for
I'=1.0 (curve a}, 5.0 (curve b), and 25.0 (curve c). Here
I'= I /d«&(0} with I' as the half-width of the resonance level and
hp(0} as the zero-temperature BCS order parameter. In all fig-
ures we have taken Eq ——0 (symmetric case).
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For ~(I +i')/2irT p
~

&&1, Eq. (14) gives

4y (I 2+E&)l/2
ho=

277 Tcp

I
ln

mNp(I +Ed)

r
arctan

d

b p
——lim Bp(n;, T)
n;~p Bni

I +tEd
z Ref —+

mNp(I +.Eg) 2 2~~~ p

I +iE~
(14)

(15)

T
'

X 1—
Tc

(19)

where we have used the value of b near T, obtained from
Eq. (8).

The specific-heat jump at T, is obtained from the rela-
tion

The difference in the Helmholtz free-energy density of
the alloy in the normal and the superconducting phases
for T near T, is calculated from the relation

&o a4
Bi(n;, T)

4 (2m T, )

4' T,= —Np 1+T& Bp(n& T)
ni~ Tc

For
~

( I +iEd )/2m T, p ~

&& 1, Eq. (14) gives

bp
——

q
A, (3)—4A(4)

irNp(2n T,p) 2' T,p

(16)

hC= —Tc Fg NBT2

and is given by

(20)

where

00

A, (l)= g (2n+1) '=, , |(" '( —, ) .
2'( —1)'(i —1)(

(17)

hC
ACp

Tc Bi(O~Tcp) Bp(n;, T, )
1+T,

Tp Bi(n;, T) '
BT,

(21)

where b, Cp is the value of bC for the pure superconduc-
tor, i.e.,

r 4rer 1/2

-exp —
2

ln
Tcp 2m'T p

(18)

There is no critical concentration. Such an exponential
decrease of T, was already pointed out in Ref. 9.

For given values of I /2mT, p and E~/2nT, p, Eqs. .(15) and
(16} can be used to evaluate the initial slope bp One.
should note that bp becomes smaller for sufficiently small
I'. In Fig. 1 we have only shown the curves for I /b, p(0)
not less than 1.0.

For a large impurity concentration, Eqs. (12) and (10)
give

Bi(0,T,p) =1+n;bi+0(n; ),
Bl ni~Tc

where

(23)

ECp ger NpT, p——/[ —tP' '( —, )/2] .

In the literature, the specific-heat jump has not been stud-
ied except for the limiting cases. ' Equation (21) with
(10) and (11) is a general expression for b, C.

For a low impurity concentration we can write

BBp(n;, T, )
1+T =1+n bpi+0(n } (22}

aT,

dBp(n;, T, )

aT.bp) ——2T,p lim
n ~pI

b ) ———lim
n; p

a
Bn;

Bi(n;, T, )

Bn; Bi(O, T,p)

r I +iEd
Im q'" —+

rrNp(rrT pEd ) 2 27rT p

(24)

3 2 16mT, I „, , 2vrT, I 1 (, ) 1 I +IE
I'+Ed g"'( —,

'
) (I '+Ed)' Ed (I +iEd)'

4~'T.'o
Re

d

3i 2I iI
(I'+iE ) E (I +iEd)3 E~(1 +i'E )

I +iEd
2 2irT p

(25)

In writing Eqs. (24) and (25) we have used Eqs. (14), (11),and (A6). Equations (21)—(23) give
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FIG. 2. I' dependence of the initial slope of the normalized

jump in specific heat vs the normalized transition temperature
curve. The quantity C is defined in Eq. (33).

0.6 0.8
T.»co

FIG. 3. Normalized jump in specific heat at T, vs T, /T, o for
I =1.0 (curve a), 5.0 (curve b), and 25.0 (curve c). The dashed
line denotes the BCS result.

EC/T,
=1+n;(bpt+bi)+ .

0 cp
(26)

Thils bpi +0 I represents the initial slope of the (b C/T, )/(b Cp/T, 0)- vsn; curve. For
I
(I +iEd )/2wT&p I » 1 Eqs.

(24)—(26) give

hC/T, =1+; , , + ~ .' ~XQ(12+x,')

)
2A, (6) I
A, (3) 2rrT, Q

For Ez ——0, Eq. (27) agrees with Eq. (4.21) of Ref. 8. For
I
(I +i')/2nT, 0 I « 1., Eqs. (24}—(26) give

bC/T,
+ J ~ ~

A CO/T, O

(27)

{28)

Comparing Eqs. (27) and (28), one notes that the initial
slope of the h, C/T, vs n; curve-is-positive in the first case
but is negative in the second case.

It is also interesting to study the initial slope of the
bC/bCQ vs Te/Teo cur-ve -defined by

(b,C ACQ)/n; EC—pC'= lim
n; 0 (T —Tp)/n TQ

8A,(6)
[A,(3)]

Eg+ I
+O -'2

Tc0

6A,(4Q,(5)
[A,(3)] 2' TcO

3A,(5) 8A,(4}
2[A,{3)] &(3)

(32)

Using Eqs. (13},(26},and (29), we obtain

C*= 1 —(bpt+bi )/bp .

The maximum va1ue of C* given by above equation is
3.638. It is the highest value reported in the literature for
the impurity problem (see Table I). The detailed depen-
dence of C' on I /b, p(0) is shown in Fig. 2.

The variation of b,C/b, CQ with T, /T, p is computed us-

For
I
(I'+iE~)/2n T,p I

&&1, Eqs. (29), (15), and (27) yield TABLE I. Maximum value of the initial slope C .

Model

(E2+ I 2)1/2
C'=1 — ln 4y,

7T Tc0

r
arctan +

cf

In this case C' is less than 1. For
I
(I'+i')/2rrT, Q I« 1, Eqs. (29), (16), and (28) give

BCS Value
Abrikosov-Gor'kov'
Shlba-Rus1Ilov
MullerHartmann-Zittartz'
(Kondo effect)
Present

'Reference 13.
References 10 and 14.

'Reference 15.

1.000
1.436
2.219
2.481

3,638
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ing Eqs. (21) and (10}—(12). For the symmetric case
(Eg ——0), EC/SCp-vs-T, /T, p curves for I /bp(0}=1.0,
5.0, and 25.0 are shown in Fig. 3.

III. DENSITY OF STATES
AND TUNNELING CONDUCTANCE

In this section we consider the electron-tunneling prop-
erties. The normalized electronic density of states is given
by

note the decrease in the first gap with an increase in n;

However, as is already known in the literature, there is no

gapless superconductivity in the present model.
The bound states are usually searched by doing a tun-

neling experiment. For a N-I-S tunnel junction (N, I, and
S stand for the normal metal, insulator, and the supercon-
ductor containing impurities}, the normalized tunneling
conductance is given by

N (ni) U

( U2 1)i/2 (33)
(dI /d V}ns

(dI/d V)~~

1 "~ Neo 2 co+V
sech

4T
~

Np 2T

where the equation for the function U is obtained from
Eq. (2) by replacing U„with i U—and co„with ice—(with
pi as the frequency). The changes in the density of states
and the impurity band with a change in I are shown in
Figs. 4—7, where we have taken zero temperature and
I /h(0}=0.2, 1.0, 5.0, and 25.0, respectively. In each fig-
ure, various curves correspond to different values of the
normalized impurity concentration n;. Here b(0) is the
zero-temperature order parameter of the alloy and

n; =n;/nNph(0) We h.ave taken E~=0. We note a sys-
tematic increase in the first gap as I' is increased. We also

I

(34)

At a finite temperature, N(pi)/Np vs co/b, is obtained as
noted earlier. In order to get g( V), the order parameter b,

at various temperatures and impurity concentrations is re-
quired. At a nonzero temperature we compute b, using
Eqs. (4} and (2). At T=O, we use Eq. (2) and

b, (0} p
~ Pin

hp(0) "o 5(0)
1 1

(U„'+1)'~' [[pi„/&(0)]'+ lI' ' (35)

4.0

N((u)

Np 4.0

3.0- N(~)
No

3.0-

2.0.

2.0-

I.O-

bc I.O-

0 0.5 I.O

a(0)

FIG. 4. Normalized electronic density of states N(co)/Np vs

the normalized quasiparticle energy co/5(0} for I'=0.2 and

n~ ——0.1 (curve a), 0.5 (curve b), and 1.0 (curve c). Here 5(0) is

the zero-temperature order parameter of the alloy. %'e have tak-
en T=O.

0.5 I.O

a,(0)

FKJ. 5. N (co)/No vs co/5(0) for I =1.0. The values of n; for
various curves are same as in Fig. 4.
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4.0

N(~)
Np

N(~)
Np

3.0- 5.0-

2.0- 2.0-

I.O- I.O-

I

0.5
I

I.O

n(0)

I.5
I

0.5
I

I.O

O(0)

FIG. 6. N(co)/Np vs N/6(0) for I =5.0. The values of n; for
various curves are same as in Fig. 4.

FIG. 7. N(~)/Np vs co/6(0) for I =25.0 and n; =0.5 (curve

a), 1.0 (curve b).

Our results for g ( V) versus normalized voltage V/h(T)
for I /b, (0)= 1.0, n; =0.1, and T/T, o 0.0, 0.05, 0.1, 0.——2,
and 0.4 are shown in Fig. 8. We can see how the structure
is washed out as the temperature is raised. The value of I'
for the materials investigated so far is considered to be
fairly large. The tunneling conductance curves for a much
larger value of I, i.e., I /b, (0)=25.0, are shown in Fig. 9.
We have taken n; =0.01 and T/T, o——0.0, 0.0005, and
0.002. Here the second gap is resolvable in curve b. We
emphasize that the ultra-low-temperature measurement is
essential for the search of the bound states in the present
system with large I . Recently, a temperature of 200 mK
was used by Bauriedl, Ziemann, and Buckel' to observe
impurity bands in superconductors with magnetic impuri-
ties.

IV. SUMMARY AND DISCUSSIONS

states for various values of I . The tunneling conductance
and its temperature dependence have been shown.

In most of the earlier studies, I was taken larger than
coD. With this assumption, Kaiser employed the approxi-

4.0

g(v)

5.0-

2.0-

Using the Anderson model in the nonmagnetic limit, we
have calculated some properties of the superconducting
virtual-bound-state alloys. The general expressions for the
impurity dependence of the transition temperature T, and
the jump in specific heat at T„AC, have been given. Spe-
cial attention is given to the systematic variation of these
quantities with respect to the resonance width I . As for
the numerical results, we have only shown those for the
symmetric case (E~ ——0) in this paper. For smaller values
of I, say I (T„we have found interesting behavior. The
maximum value of the initial slope of the EC vs T, curve--
is the highest reported in the literature for the impurity
problem. Our results may help recognize materials with
I —T, . We have also calculated the electronic density of

I.O-

I.O
V

6(T)

FIG. 8. Normalized tunneling conductance g( V} vs normal-
ized voltage V/h, (T) for I =1.0, n;=0.1, and T/T, o

——0.0 (curve
a), 0.05 (curve b), 0.1 (curve c), 0.2 (curve d), and 0.4 (curve e).
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20.0-

iS,O-

IO.O-

'11
I

I

I

I

I

I

system is nonmagnetic, we should also consider the in-

duced pairing of the d states represented by the parameter
bd. ' In this case the U„equation is modified, and we
cannot get simple forms for B(3(n;, T) and Bi(n;, T) as in

Eqs. {10) and {ll}. However, we have verified that the
qualitative nature of the results presented here remain un-

changed.
Now we comment on the experimental search for the

bound states in superconductors with nonmagnetic Ander-

son impurities. For this purpose, low-I materials are
needed. Our bC-vs T, cu-rve may help identify such al-

loys. For A1-Mn, as correctly reasoned by Terris and

Ginsberg, ' I lT, is too large. For a tunneling search of
the bound states in alloys with relatively large I, an

ultra-low-temperature experiment is desirable.
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IOI0.99 I.O

h{"T)

FIG. 9. g ( V) vs V/6( T) for I =25.0, n; =0.01, and

T/T, p
——0.0 (curve a), 0.0005 (curve b), and 0.002 (curve c).

0.98

mate form for the denominator in the right-hand side of
Eq. (2) and used the cutoff con in Eq. (4) to guarantee the
convergence. Such an approach was also taken in other
studies. ' ' In this paper we have used the exact form for
Eq. (2) and assumed I &coD implicitly. One should be
careful in the discussion of large-I behavior. In case of
I & AD, we can reproduce Kaiser's result by replacing the
divergent term ln(E~+ I' )'~ by lncoD, and so on.

In the present paper we have considered the nonmagnet-
ic limit, i.e., U=O. When U&0 but is still small as the

APPENDIX: DERIVATION OF EQS. (10) AND (11)

Using Eqs. (6) and (9), we get

B()(n;,T)=2m T g
p (4)„A +y]

(Al)

A'[2yl a)„+A (A +y)]
B (n);, T)= (2 Tir)

n =o ~.'(A +y)'

where

(A2)

A =Eq+(I +co„) (A3}

Resolving into partial fractions and performing the sum-
mations, Eqs. (Al) and (A2) give

~ r

B()(n;,T)=
2 2

Re f —+y 1 I +ia
r'+a 2 27TT

—1()( —, ) ——Im l(
—+1 I +ia

a 2 277T

B,(n, , T}= lb("( —,)+D,(2irT)f' ( —, )
1

D3 (3) 1 I +ia
12ir T 2

D4 (3) 1 I +('a
D (2 T)y()) 1 ~+(a

—Ds(2n T) f —+z 1 I +ia —((()( —, ) (A5)

with
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3
I ga —y SyI'(I +a —y) D y I

I' +a (I +a ) 4a (I +ia)

D= 2I" 2a —y-ty z lya
4a (I +ia) I +ia

ya
I +ia

Sa (I'+ia)

I

8 4 12 z 5
Siya(2a y—) 6ya 3 z 4a —y—I sa —12ya +5y-'—

2 +3$CX
I +ia (I +ia)' I +ia

2l pA

(I +ia)

(A6)

I' (8a —12ya +5y } 1+
Sa (I +ia) I"+i a + 12ya (2a —y)

(I ~ia)
Siy'a'

(I +ia)

8a4 —4ya'+ y 3i ya(4a y—)+ 30'
I +ia (I +ia)

4y a
(I +ia}

In the equations above a=(Ed+y)', lb'"'(z} are polygamma functions, ' and Re (Im) stands for the real (imaginary)
part of the functions.
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