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Theory of far-infrared absorption in superconducting composites
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A simple model is described for the frequency-dependent conductivity of normal-superconducting

composites. The superconducting component is characterized by the Mattis-Bardeen conductivity,

and the composite conductivity is determined via the effective-medium approximation. Near the

percolation threshold p, there is strong absorption below twice the superconducting gap. Scaling ar-

guments indicate that our results have validity beyond mean-field theory. The model is in qualita-

tive agreement with recent experiments on granular NbN films.

I. INTRODUCTION

Composite superconductors behave very differently
from ordinary, bulk superconductors. ' For example,
their resistive transition is broadened over a large fraction
of a kelvin instead of being abrupt and nearly discontinu-
ous, their specific-heat anomaly at the transition is of a
different shape than in bulk superconductors, ' and they
have upper critical fields which depend on temperature in
a unique way. " Numerous models have been proposed to
explain various aspects of this behavior. They draw on
percolation theory, ' ' and analogies with the classical
two-component spin models, ' ' especially (in quasi-
two-dimensional films) with the vortex-unbinding transi-
tion originally proposed by Kosterlitz and Thouless and
Berezinskii for superfluid He films. ' The connection
between these phenomena is fascinating, and still being
unraveled.

In this paper we present a simple model for the far-
infrared properties of composite superconductors that
leads to a conspicuous absorption below twice the super-
conducting energy gap 5, or equivalently, a substantial
real part in the effective frequency-dependent conductivity
of the composite below this energy. The size of this real
part is predicted to be greatest near the percolation thresh-
old, that is, the volume fraction p, of superconductor at
which it first forms a connected cluster extending
throughout the sample. We calculate the effective con-
ductivity of a normal-superconducting (N S) composite-
using the efftx:tive-medium approximation ' (EMA) and
find results in excellent qualitative agreement with recent
experiments in granular NbN films. The general
features of our results do not depend on the EMA and we

present arguments why they should still persist in a more
exact treatment of percolation, showing that our predic-
tions are consistent with an earlier scaling treatment of the
percolation transition in the finite-frequency regime.

II. FORMALISM AND RESULTS

A. Dilute limit

The essence of the enhanced absorption can be under-
stood very simply. We consider a superconductor with a
single inclusion of normal metal. The complex

frequency-dependent conductivity of the superconducting
host, o, (co), may be modeled by the well-known Mattis-
Bardeen form,

iGp
cr, (co) = +~,'(co),

where at temperature T =0, Go ——c„'r(nb, /ii)i. Here cr'„ is
the frequency-independent and real conductivity of the su-

perconductor in its normal state, and Reer,'(co) vanishes

except above 2b, /fi. We take o„, the conductivity of the
normal component, to be independent of frequency in the

range of interest and real. If an electric field E is applied

to the superconductor, then the field E;„within the ellip-
soidal normal inclusion is uniform (neglecting displace-
ment currents; this neglect is discussed below) and given

by

E;„=E,„,[(g + 1}o,]/(cr„+go; },
where g is related to the effective depolarization factor for
the ellipsoid (g =2 for spheres, g = 1 for highly prolate el-

lipsoids with field perpendicular to the long axis). Since

E;„ is nonzero, and since the current within the normal in-
clusion is in phase with the field, there will be dissipation
and hence a real component to the effective conductivity
cr'(co) of the composite as a whole, even for frequencies
below 2h/A. The magnitude of the dissipation is

Re( J E'/2) integrated over the volume of the composite,
J being the current density.

If we only include the first (London) term in Eq. (1),
(i.e., we assume frequencies below the gap), this dissipation
gives for the real part of the effective conductivity,

(I —p)(g + I )'tT„G ti
Reer, ( )=coc7i(co) =— (2)

co 0~ +g Gp

where p is the volume fraction of superconductor. In the
limit of very low frequency, this leads to a dissipation pro-
portional to cr„, the conductivity of the normal metal,
while at other frequencies, the dissipation has a Lorentzi-
an shape centered at zero frequency and of halfwidth pro-
portional to Go/o„. This dissipation is soinewhat similar
to the excitation of quasiparticles in bulk superconductors
at finite temperatures, which also leads to below-gap ab-

sorption. In the present case, however, the below-gap ab-
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t72(to)/CT Go(~p) /cr to «r p &p

where hp =p —p„and s and t are the usual percolation
critical exponents, ' ' ' ' s =t =1.3 in two dimensions,

s = t = 1 in the EMA, and O.„is the dc composite conduc-

tivity in its normal state. In writing Eq. (7) we have as-

sumed o„' &&tr„and hence a „=o„'(Ap)'. Equation (6) im-

plies that tr&(0)/o„becomes comparable to unity when

hp —(o„/a „)'~'. Thus the below-gap absorption becomes
comparable to that above the gap only very close to p,
when the normal constituent is poorly conducting. This
effect is already seen in the EMA. At this value of hp,
the halfwidth hto is approximately orb, /fi, comparable to
the optical gap, as again predicted by the EMA. Also, as
in the scaling picture of Ref. 30, the inductive part of the
conductivity (i.e., the magnitude of G, the strength of the
5 function) diminishes as

~
hp

~

' near the threshold, and

thus becomes notable at ever lower frequencies as p ap-
proaches p, . Since o „ is also proportional to

~
hp

~

', we

have that G~cr„~R&' where Rp is the resistance per
square of the composite in its normal state.

Effects analogous to those predicted above are likely to
occur not only in "classical" N-S composites but also in

disordered networks of Josephson junctions and normal

links, which might make a better model for some experi-

mental systems than a macroscopic composite. In the lim-

it of a small ac voltage drop across a single Josephson
junction, the junction would have (i) an inductive conduc-

tivity, arising from zero resistance, and (ii) a "photon-
assisted hopping" contribution from excitation of Cooper
pairs across the junction and across the optical gap. Con-

tribution (ii) would not contribute to the real part of the
conductance except above a threshold frequency. Thus
the junction would have a conductance similar in form to

the Mattis-Bardeen conductivity, and a normal-Josephson
network should exhibit a complex effective conductance
similar to that predicted here.

IV. SUMMARY

We have presented a generalization of the Mattis-
Bardeen conductivity to the case of N-S composites. The
calculation leads to the prediction of a strong absorption
in such composites below the optical superconducting gap,
2h/R, particularly near the percolation threshold. We
have calculated the zero-temperature complex conductivi-

ty of such a composite both in the dilute limit and within

the EMA and found qualitative agreement with recent
transmission measurements. Near the percolation thresh-
old for superconduction the composite was found to ex-

hibit a considerable enhancement in absorption relative to
the normal state. Finally, we have obtained the scaling
behavior of the complex conductivity near the percolation
threshold. More detailed experimental tests of the
behavior described here would certainly be useful in veri-

fying these predictions, and, in particular, with better
characterized materials composing composites of well-

known volume fractions.
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