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Double losses and overtones in electron-energy-loss studies of surface vibrations:
The rale of lateral interactions
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Within a simple model of an ordered overlayer of adsorbed molecules on a crystal surface, we

develop a theory of two-phonon losses in the regime of small-angle scattering, where dipole losses
dominate. Two features which correspond to a double loss and excitation of an overtone are identi-
fied in the model, and we study the role of lateral interactions on each of these. We find that the la-
teral interactions shift the overtone relative to the double loss; the overtone loss band may also have
both its width and shape influenced significantly. The implications of these results are discussed,
most particularly as they relate to estimates of dissociation energies by the Birge-Sponer extrapola-
tion procedure.

I. INTRODUCTION

Electron-energy-loss spectroscopy has proved a power-
ful means of studying the vibrational normal modes of
molecules adsorbed on the crystal surface. ' Most experi-
mental studies explore only inelastically scattered electrons
which emerge very close to the specular direction. In this
regime where the angular deflection of the electron from
the specular trajectory is small, the primary mechanism
which couples the electron to the vibration is its interac-
tion with the fluctuating electric field produced by the
time varying component of the electric dipole moment of
the molecule in the vacuum above the crystal. In this di-
pole scattering regime, a selection rule states that one ob-
serves only normal modes with oscillating dipole moments
normal to the surface.

In recent experiments, multiquantum vibrational losses
have been observed. ' For example, if one has an ad-
sorbed species with a vibrational normal mode of frequen-
cy coo, then two types of double losses may be observed.
The electron can interact with one molecule, to excite it by
the amount %coo, then excite a second distinctly different
one by the same amount, to lose the energy 2ficoo before it
exits from the surface. We assume for the moment that
the molecules are independent and noninteracting. On the
other hand, the electron may excite a single molecule from
its ground to second excited level to produce a loss at
2'(coo —5), where 6 is an anharmonic shift. If 2A is

greater than the linewidth, one sees two loss peaks, so the
value of the anharmonic shift may be inferred from the
data. The results reported by Schmeisser et al. are par-
ticularly spectacular since, by using impact energies which
coincide with negative-ion resonances of physisorbed
species, they observe not only double losses such as those
just described, but multiquantum losses near nfuuo, with n

as large as 8. The information obtained from such spectra
is valuable because through use of an extrapolation pro-
cedure known as the Birge-Sponer rule, the dissociation
energy of the bond activated in the vibrational loss may be
inferred.

The preceding comments assume the adsorbed mole-
cules are noninteracting, as remarked earlier. In fact,
many measurements are performed on dense overlayers,

where lateral interactions may produce shifts in the spec-
tra comparable to the relatively small anharmonic shift.
The purpose of this paper is to explore the role of lateral
interactions on both processes described above in the two-
quantum loss regime. We do this in a simple model of
small-angle deflections appropriate to electric dipole dom-
inated scattering. We conclude this section with a brief
outline of our principal conclusions.
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FIG. 1. (a) Schematic illustration of one process which contri-
butes to the double loss. Here two phonons are created in a
two-step process, with one phonon created at each vertex. (b)
The double loss, where a pair of phonons is created in one event.
(c) After the pair of phonons is created in the scattering event
depicted in either (a) or (b), they may interact via the anharmon-
ic terms in the surface-phonon Hamiltonian. Here we illustrate
scatterings induced by the quartic terms in the normal coordi-
nate.
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Within this paper we view the two basic processes
within the language of phonon theory, where anharmoni-

city is treated as a perturbation imposed upon the basic
two-dimensional phonons of the adsorbate layer, which

are described by a dispersion curve co, (q ~~)
in the presence

of lateral interactions. Here q~~ is the wave vector of the
surface phonon, which lies within the appropriate two-

dimensional Brillouin zone. Then the processes we exam-
ine are those in which an electron emits two phonons as it
reflects off the crystal surface. This may be done in one
of two ways, as illustrated in Figs. 1(a) and 1(b). As the
electron approaches the surface, it may emit two phonons
in two distinctly different scattering events in which a sin-

gle phonon is emitted each time. We show such a scatter-
ing process in Fig. 1(a). (Of course, the electron can also
emit one or both phonons as it exits the crystal. We show

only one process here. ) This is the double loss, viewed in
the phonon language. The electron may also emit a pair
of phonons in a single scattering event; we shall see that
with anharmonicity incorporated this becomes the double

loss, in the limit that lateral interactions are ignored. As
implied, inclusion of anharmonicity is crucial, and in the
phonon theory a key element is the fact that the two pho-
nons emitted may interact via anharmonicity, as illustrat-
ed in Fig. 1(c). The outline of this paper is as follows:
Section II discusses the description of the scattering pro-
cess, and leads us to a certain two-phonon Green's func-
tion which must be studied; Sec. III explores the Green's
function, within a certain decoupling scheme; Sec. IV
presents the results of numerical studies and our con-
clusions.

II. DESCRIPTION OF TWO-PHONON
SCATTERING PROCESSES

This section develops a theoretical description of near-

specular inelastic electron scattering, under the assump-
tion that it is the fluctuati-. ig electric dipole moment of the
adsorbed species that is responsible for coupling the elec-
tron to the interactions. We shall consider the simplest
case of an adsorbate with a single normal mode of fre-

quency cup (in the harmonic approximation), and with an

associated normal coordinate u. In a more complex and
realistic system, in addition to the two-phonon losses con-
sidered here, all of which occur near the frequency 2~p,
one may have combination bands near co, +cob, with co,
and ~b as the frequencies of distinct normal modes.
While we confine our attention to the simple case outlined
above, very similar considerations surely apply to such
combination bands.

The Hamiltonian we consider consists of three terms,

~ (i)

v + ggp&»
A (1+@)

(2.2)

Here e is the electron charge, e is the dielectric of the sub-

strate (e~ao for a metal), A is the area of the surface, R
~~

is the location of the ith adsorbate in the layer parallel to
the surface, and the position of the electron in the vacuum

above the crystal is x=x~~+zz, with the vacuum in the
half-space z & 0.

The dynamic dipole moment Pj is a function of the
normal coordinate u of the dipole-active vibrational mode.
One has the Taylor-series expansion

Py ——e~u "+e*y(u "') + (2.3)

where e* is the dynamic effective charge [the influence of
the image charge is incorporated in the prefactor of Eq.
i2.2)] and y is a parameter with dimensions of inverse

length which enters the quadratic term. Earlier theories
of dipole scattering incorporate only the linear term in
their treatment of scattering by one-phonon events' and
in the discussion of multiphonon scattering. In the
present treatment the quadratic term will play a crucial
role, in that it allows the incoming electron to excite a par-
ticular adsorbate directly from the ground to the second
vibrational level. (This is the overtone feature in the loss

spectrum, if the molecules are regarded as uncoupled and

independent. ) Excitation of one particular molecule from
the ground to the second vibrational level may be achieved

by treating the linear term in second order, but the proba-

bility that such a "double excitation" of one adsorbate, via

this process, occurs is very small. The reason is, as dis-

cussed elsewhere, ' that the electron excites the molecular
vibration via the dipole mechanism when it is 50—100 A
above the crystal surface, under typical experimental con-
ditions. If it excites molecule i via the linear term in PJ"
when it is that far above the surface, it is overwhelmingly

probable that a second interaction will involve excitation
of a distinctly different adsorbate j&i. Thus in the limit

of independent adsorbates, we have the double loss as the
dominant feature produced by this process.

When Eq. (2.3) is inserted into Eq. (2.2), we have

V= Vi+ Vp, (2.4)

from interaction between the electron and the fluctuating
electric field in the vacuum produced by the vibrating
molecules. We invoke the dipole selection rule and sup-

pose that only the component of the electric dipole mo-
ment normal to the surface Pz is responsible for this field.
Then if P~' is the dynamic dipole moment of the ith ad-

sorbate, Vhas the form

H =Hph+H, +V (2.1)

where H„h describes the normal modes of the vibrating
adsorbate layer, with lateral interactions and anharmonici-

ty included. We shall not need the explicit form of Hph
here, though in our discussion we shall invoke certain as-
sumptions about its form. The second term H, describes
the electron in the vacuum above the crystal and its in-
teraction with the (static) lattice. Again, we need say little
about this term also. Finally, V describes the coupling of
the electron to the vibrating adsorbate. As in earlier
work, we suppose the dominant contribution to V comes

with V& and Vq linear and quadratic in u", respectively.
We shall treat V& in the second order of perturbation
theory and Vz in the first order, realizing that in the pres-
ence of lateral interactions the adsorbates are not indepen-
dent entities, so Vq in first order and V~ taken to second
order couple to the same final state of the system. Thus
we must calculate the two matrix elements and add them
together before calculating the total scattering cross sec-
tion. We begin by sketching the calculation of the contri-
bution to the scattered wave second order in V&, then we
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add on the first-order term from V2. The wave function

I g,
' ') second order in v~ may be written, in operator no-

tation similar to that used elsewhere,

I=+ f d r IN')
I
r)&r

I
&N'I, (2.6)

and note that

&N
I

&r
'

I Vi I
r) IM)=5(r' —r)&N

I Vi(r) IM)

(2.7)

to obtain the following form for the quantity
&M

I
&r

I f,' '), which is the probability amplitude for
finding the electron at the position r with the crystal in
the vibrational eigenstate

I
M ):

&M
I & r

I P,' ') =g J d'r G(r, r ';e, )

vi I 4o&,
ph+ e

— o) (Hph+Ire —Eo }

(2.5)

where Eo is the energy of the initial state. We have

I go) =
I
pl")

I
X), where

I
fq") describes the incident

electron wave, including its interaction with the rigid crys-
tal, and

I
N) is the vibrational eigenstate encountered by

the electron. Also Eo ——or+.Ez, with er as the incident
electron kinetic energy, and E~ that of the vibrational
eigenstate. One may insert in various places in Eq. (2.5}
the identity operator

Here G(r, r ';e} is the Green's function of the electron, as
it moves in the vicinity of the rigid crystal,

G(r, r';e)=&r f(H, e)—'I r'),
&.=&r+(E~ —Ex &

&.=&r+(Ew —E~)

is the energy of the scattered electron, and gl"(r) is the
wave function of the incoming electron. As in earlier
work, we suppose for simplicity that the crystal surface is
a perfectly smooth plane (the results obtained below are, in
fact, independent of this assumption). Then the Green's
function has the form

G(r, r', e)=f,e ' g(z, z', k
(2m)

(2.9)

and it will be convenient to write Vi in the form

V g f (q )e qll "lte ell (ut +u )
g 1/2

ll
q

ll

(2.10)

We retain only the terms which describe the emission of
two vibration quanta. Finally, one has

X &X
I V, (r ')

I
X')G(r r;e„) (I)

41 ( r )=exp(i k

and after some algebra, one finds that

. ~(s)

&MI &r IA'"&= —g g f'(q j~)f'(q jj)&M f~-, IÃ'&&X' fa „IX&e'""
A q

ll +ll

X dz' dz "g(z,z'; k
~
i,e, )e g (z', z";k ii, e„)e @1(z"), (2.1 1)

where
(n) (r)

and

(2.12a)

I

where for z) 0, g+(z)=exp(ik~z) and

(z)=exp( ikiz)+R'(e)exp(ikiz),

(s) (I)
q ii

-q i'i (2.12b)

The explicit form of g(z, z', kiiE') has been presented
some time ago. We only require its form for z and z' in

the vacuum above the crystal, in the present work. If kJ
is the magnitude of the component normal to the surface
of the wave vector of an electron of energy e, then for z
and z' & 0 one has

g(z z 'k)[e)=&
k [Q (e,z)f (e,z')8(z —z')

(e,z)g+(e, z')8(z' —z)],

(2.13)

where R(e} is the amplitude of the reflected wave of an
electron which strikes the surface with energy E and wave

vector kii ~

The next task is to perform the integrals on z' and z"
which appear in Eq. (2.11). This is a tedious matter and,
in fact, in an early paper which ignored both the role of
lateral intractions and anharmonicity, a detailed discus-
sion is given of this step and the physical meaning of the
various terms that enter the final expression. Thus we
shall only quote the final result. As before, we assume the
dominant contribution to the cross section comes from
those events in which the electron is scattered in the near
forward direction off of the vibrational modes; then elastic
back reflection off the surface allows it to emerge near the
specular direction. As earlier, we neglect the energy and
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angle variation of the amplitude for backscattering off the and

surface, so R(e) is replaced by R(eI) everywhere. If
v '"= v

ll
'+zul ' is the velocity of the incoming electron,

two quantities which enter the final expression are

a--. =—Ui"qjI+i [(E„E—M) v
II

'q II] . (2.14b)

(I)
a „=—Ui 'qI'I+i[(E~ E~—) —vII

.
q II]

Here Ez, E~, and E~ are the energies of the various vi-
brational eigenstates which enter Eq. (2.11). Then Eq.

(2.14a) (2.11) gives

R (ei) . ~(s)

&M
~

& rr P &= — P P g Pq jI)Pq I'j)&M ~a, ~N'&&N' ~Ia „ IN&e'

peal

~ t ~ p
«I

sk(s)~
ge 1 1 1+ ~ +a „(a „+a,) a „a, a, (a, +a „)

q II II II II II II

(2.15)

e now make one approximation. So far, we have said little about the nature of the vibrations of the adsorbate layer.
We envision, for simplicity, a system such as adsorbed CO, where the vibrational frequency ~p of the isolated species is

very large compared to any shift provided by lateral 1nteractlons, or that provided by anharmonlclty In this limit 1t 1s

reasonable to replace the energy differences Ez —Ez and EN —EM by simply cop, a good approximation to energy differ-
ence between these states (we use units with %=1). This allows one to perform the sum over intermediate states E' which

appear in Eq. (2.15), and after some algebra the result may be shown in the form

2R(e ) (Ui ) gll&IIP(q II)I (q I'I')&M
I

a', a .,
I

N&
II II

' p
—'ll qll'+(ui &ll'

(I). i 2 (I) i 2

(s)
exP(i k

ll
r

l I

+ik z' z)

(cop —v
II

'
q II

) + {uz 'q I'I')

(2.16)

For this expression it is a straightforward rnatter to derive the final scattering cross section for the two-phonon excita-
tion. However, as shown earlier, the term V2 in Eq. (2.4) scatters the electron from the same initial to the same final
state. We thus must include this contribution to the scattering amplitude before we proceed. The derivation proceeds

along very similar lines, so once again we shall only quote the result. It is convenient to let QII
= q II+ q 'I', so that the

wave vector of the scattered electron becomes k ~II'= k
II

' —QII, when projected onto a plane parallel to the surface. If we
call

r 1(,
' '

& the total scattered wave function, with both contributions included, then we have

&M
r

&
r

@tr)&
{I)

2UI R (ei) +
'k

II
~

Ii
iki'z

(I) 2 ( I) 2 {I) 2
(I ) ( I )

~II+( o II qII) ][(" IQII qlII)+ o "II QII+"II

Il) 1(q)1(QII qII)&M I
a- a- — iN&

~0[{VI. QII+(2~0 —"II 'QII) ]

(2.17)

We have introduced (including A) the dimensionless parameter

( 1+e)yfico p

4m.n, see*
(2.18)

(2.19)

where this statement provides a definition MM~{QII), which we shall write in the form

The final step is to use the wave function above to calculate the scattering cross section. Upon converting the sum on

QII to an integration, Eq. (2.17) may be written

. ~(s)

&M
[ & r

r ig '& = —
2 f d'gIIMM~{QII)e 'e

(2n )

M„~(QII)=—g rn (qII, QII)&M
~

a' a'
I
N & . (2.20)
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SMN =
(s} (I)

where it is understood that Q~~ is given by k~~
—k~~, and d Q(k, ) is an element of the solid angle for the scattered elec-

tron.
We now require an average over the initial vibrational state

j
X) and we also wish to sum over the final state

j
M), to

ultimately obtain an expression for the scattering efficiency per unit solid angle. If Pz is the probability of finding the
initial state

j
X) in the statistical ensemble, use of Eq. (2.20) then gives

j
R(et) j

'm (u"') cos&t
dQ(k, )m (q ~~Q~~)

M (2~) A MX
S=g QPtv Svtv ——

Using techniques described elsewhere, one may now form an expression for the total scattering efficiency SM&, which is

the fraction of electrons that scatter off the surface after encountering it in the initial vibrational state
j
N ), and leaving

it in
j
M ) after exiting. If 0t is the angle between the wave vector of the incoming electron and the normal to the sur-

face, and m is the mass of the electron, then

A
j
R(et)

j

m'(u' ') cos0t f dQ(k, )
I
MMv(Q i) j

(2.21)
(2')

&m(q~~ Q~~)P~&&ja-

(2.22)

Upon noting that fdtu5(tu Etit+Etv) =—I, then using the Fourier representation of the 5 function, Eq. (2.22) may be

given in the following form:

jR(et) j m (u' ') cos8tS=
(2m. ) A

X g f dQ(k ) f dtu f dt m*(q j~, Q~~)

Xm (q~~, Q[~)(a, (0)a, (0)a (t)a (t))e~
I

(2.23)

which can be decomposed to give the scattering efficiency per unit solid angle, per unit frequency range dc@,

d S/dA(k, )dao, where %co is the energy lost by the electron (i.e., when co &0, the energy of the scattered electron is less
than that of the incident electron). One finds

d S
dmdQ(k, )

j
R(et)

j
m (u' ')'cos8t

(2a) A

&& f dt e ' '(a-, (0)a, (0)a (t)a (t)) .
~

II II II II ~
II

q
II

(2.24)

In an earlier treatment of electron scattering by multiphonon processes, which contained an explicit discussion of two-
phonon scattering, Evans and Mills ignored direct coupling to the two-phonon manifold provided by the term V2 in Eq.
(2.4). Thus to recover their results, one begins by setting y=0. Evans and Mills also ignored both anharmonicity and la-

teral interactions, so to reproduce their results, one also takes a (t) =exp(icoot)a with mo independent of qll. Then
qll

one recovers the earlier results from Eq. (2.24); note the original derivation contains an error in the form of an overall
factor of 2.

While our derivation allows for interference between the two contributions to the cross section, in fact examination of
the definition of m ( q ~~, Q j~) shows one contribution to be purely imaginary and one to be real. See Eq. (2.17) and note the
factor of i in front of the quantity r. Thus we write

d S d S"' d S' '

+
dg(k )d~ dQ(k, )den dQ(k, )dec

(2.25)

One has

I (q~~)=[4treee (/I+)e](n, 2/M tu)u'

with n, as the number of adsorbate molecules per unit area, and M as an effective mass of the vibrating molecule. We de-
fine
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~ll ~ = v~ ~ll + ~-vll qll

and the two contributions to the cross section can be written as
'4

d~g~~~ 2m jR(e, ) ~'n, m'(v' ') cos'et

d Q(k, )dco AM cop 1+a

q q D(q ll, top)D(q jl, top)D(Qll —qll, top)D(Qll —q jl, cilp)

+ ce

dt e ' '(a-,(0)a, (0)ae (t)a - (t) ),
ii

(2.26)

d'S'b'

d Q(ks )dco

'42'
j R(et ) j n, r m (v' I) cos28t

AM cop 1+a
2 + 00

X g dte '"'(a-, (0)a, (0)a (t)at (t)) .
[D ( Q ll, 2cvp) ]

(2.27)

The results in Eqs. (2.26) and (2.27) are the principal re-
sults of the present section. Our next task is to obtain an
expression for the correlation functions that appear on the
right-hand side of these equations. The result in Eq. (2.26)
will emerge as the cross section for the double loss, in the
appropriate limit, while that in Eq. (2.27) will describe
overtone excitation. The full expressions for the correla-
tion functions are required before the dependence of each
contribution on n„ the adsorbate density, becomes clear.

III. LATTICE DYNAMICS OF AN ARRAY
OF ANHARMONIC MOLECULES

In this section we turn our attention to the calculation
of the response functions which appear on the right-hand
side of Eqs. (2.26) and (2.27). We do this for a model of
an ordered overlayer of molecules, each of which is anhar-
monic, which are then linked by lateral interactions. The
model Hamiltonian is thus written

H =H]+Hp, (3.1)

where H2 is the lateral interactions, and Hi describes the
lattice of anharmonic molecules,

H) —— +PI +g V(u() .
2M I (

(3.2)

We shall turn to H2 shortly, but first we will concentrate
on H&.

A convenient choice of the potential V(u) is the Morse
potential which, if u is the normal coordinate of the mole-

cule, has the form

V(u) =D [1—exp( —au)] (3.3)

AQ„=%cup(n + —, )—ficopx, (n+ —, ) (3.4)

where D is the dissociation energy of the molecule and a is
a parameter which may be determined, in principle, from
the vibrational spectrum. For example, the normal-mode
frequency cop calculated in the harmonic approximation is
cop ——a(2D/M)' . The vibrational energy levels of the
Morse potential may be found in closed form. If Q„ is the
frequency of the nth vibrational level, then

where x, =ficop/4D, and we have bound levels for all in-

tegers n & n~, where n~+ —, =2D/ficop.
Before we proceed with the analysis, we pause to discuss

the primary issue that motivates this analysis. In this
model, with neglect of latera1 interactions, the frequency
of the fundamental vibration is Q~ —Qp=(1 —2x )top,

shifted from cop by the anharmonicity represented by x, .
Of course, from Q) —Qp one cannot deduce values for
each of these two parameters. Now the double loss occurs
at the frequency 2(Q~ —Qp), and the overtone frequency is

Q2 —Qp, so if these two features appear as distinct in an
electron-energy-loss spectrum, then we have

2( Q ]
—Qp) —Q2 —Qp =2x cop .

The splitting between the features, combined with
knowledge of the fundamental vibration frequency, allows
one to infer the value of x„and hence the dissociation en-

ergy D. It is of considerable interest to compare dissocia-
tion energies of chemical bonds in the gas phase and in ad-
sorbed species. We have just described a primitive version
of a procedure known as the Birge-Sponer extrapolation'
that has been used in gas-phase studies of molecules. In
surface studies, in the absence of negative-ion resonance
(present for physisorbed species ), and in electron-energy-
loss spectra, one frequently sees only the double loss and
simple overtones at best, so only the two-phonon manifold
is accessible to study.

The principal point of this paper is now the following.
The above discussion assumes that the molecules are in-
dependent; it is surely a correct assumption in this limit,
though one may raise questions about quantitative appli-
cability of the Morse potential in the analysis. If trans-
verse interactions are present, then there is no longer a
clear meaning to the notion of the double loss and the
overtone excitation; excitation of one molecule, e.g. , mole-
cule A, excites the entire system, so if the electron later ex-
cites molecule 8 in the double-loss mechanism, this entity
has already been excited to some degree by the first
scattering of molecule A. Similarly, when a particular ad-
sorbate is excited from n =0 to n =2 in the overtone pro-
cesses, necessarily the excitation will extend to its neigh-
bors if lateral interactions are present. In typical systems



DOUBLE LOSSES AND OVERTONES IN ELECTRON-ENERGY-. . . 2395

where our model applies (adsorbed CO may be an exam-

ple), shifts produced by lateral interactions are quite small,
typically a few tens of wave numbers. If h~ is such a
frequency shift, then hen/cop-10, and in this sense the
lateral interactions are very weak. We shall soon appreci-
ate, however, that the dimensionless parameter which de-
scribes their role is not hen/cop, but rather the ratio
x cop/Eco the ratio of a typical anharmonic shift to the
strength of the lateral interactions. Both parameters are
small, in fact, and the ratio is often of order unity. We
now turn to the remaining details of our analysis.

Rather than employ the full Morse potential displayed
in Eq. (3.3), it will be more convenient mathematically to
replace the anharmonic part of V(u) by the sum of a term
cubic in u, and one quartic. Thus instead of Eq. (3.3), we
shall employ the form

Mcopu
2 2

V(u)=
2

1 —x,
u 7 u+ axe

up 12 '
up

(3.5)

In Eq. (3.5), the parameter up ——(2Mcop) ' is the rms
displacement of the oscillator in its ground state, calculat-
ed in the harmonic approximation, and the parameters x,
and a are both dimensionless measures of the strength of
the anharmonicity. With a= 1, Eq. (3.5) agrees with the
Morse potential expanded through quartic terms. If

x, &&1, as will be usual in the situations of interest here,
the level shift produced by the anharmonic terms in Eq.
(3.5) agrees precisely with that in Eq. (3.4) for a=1, if the
calculation is carried through only to first order in x, . '

Thus for small x„Eq. (3.5) reproduces the Morse-
potential results, and by allowing a to differ from unity,
we have a potential of more flexible form.

For the form of the lateral interaction between mole-
cules, we take

H2 ———,Mg g cop(5)(ttt —ttt +s)

I 5~p
(3.6)

where co&(5) is a measure of the strength of the coupling
between a molecule at 1 and a molecule at 1+6. If one
wishes to model dipole-dipole interactions between adsor-
bates, then this mathematical form is not appropriate. In
the end, only minor technical modifications of the formu-
las derived here are required if one wishes to model the
dipole-dipole interactions. We shall give an explicit
prescription for this at the end of this section.

The correlation functions which appear in Eqs. (2.26)
and (2.27) are calculated as follows. Let u (1), the displace-
ment of molecule 1, be expanded in boson annihilation and
creation operators, in the standard fashion:

1
u (1)=, (a(+a( ),

( 2Mcop )

and consider the Green s function

D(14,I3, lq, l, ;t) = i B(t)([a—t (0)at (0),at (t)at (t)]) . (3.8a)

Here 8(t) is unity for t )0 it vanishes when t &0. From knowledge of this function, the required correlation functions
may be constructed. To do this, first let

—sq(l 1

a =, ~ a(e
(N, )

a =, , @~a(e
qil (N ) (

and introduce the function

F- (qII, q II, t)= iB(t)(—[a-, (0)a-, (0)a- (t)a- (t)]),
q ii

which is related to Eq. (3.8) via a Fourier-transform procedure:

(3.8b)

(3.8c)

(3.9a)

F- (qII, q jI,'t) =
N, -

1 1, 1 2, 1 3, 1 4

exp[iQII ( I
~

—14)]exp[iq II. (14—13)]exp[—iqII (1,—1z)]D(14 13 12 1~ t) .

(3.9b)

If F- (ql~, q il', t) is Fourier transformed with respect to time in the standard fashion,

F (qII, q jI, t)= f F- (qII, q jI', Q)e
Q

il
—oo 277 Q ii

then one may establish the relationship

f dt e ' '(a-, (0)a, (0)a (t)a (t)) =i [1+n(co)][F- qll q II
~+i rt) Fqll q-

q ii
q ii ii Qii-qll

(3.10)

(3.1 1)

To determine D(14,13', 12,11',t), we use an equation-of-motion method, with anharmonic terms treated by means of a
decoupling scheme that yields the correct form of this function (in a sense described below), in the limit of vanishing la-
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terai interactions. Throughout the analysis, in the interest of simplicity, we shall assume ~p is large compared to both
x alp and the strength of the lateral interactions, as measured by the value of p32(5). Thus when Eq. (3.7) is inserted into

Eq. (3.6), one may ignore the influence of the terms which involve aIa~+~ and aI aI+&, compared to those from aIaI+~
and aI aI+g.

The equation of motion for D(14,13,E21],'t) then has the general form

I +2cop+ 2 g Apl(5) D(14,13,'12, ll, t) —g kp3(5)[D(14, 13,12 +5,1I,t)+'D(14, 13 I«2, 1I +5;t)]~ a
at 5 5

5(t)(5I I ~al I, }+5II (al I, }+5l,l (al I }+5l I (al al }) IB( )([al (0)al (0) [al ( )al, (t) VA]]}

(3.12)

where

[~2(5)]'
hco(5)—:

Q)p
(3.13)

and Vz contains the anharmonic terms, as described by Eq. (3.5) in combination with Eq. (3.2).
We shall need to introduce a decoupling scheme and various approximations to treat the terms on the right-hand side

of Eq. (3.12). In the limit fuup &&k&T, relevant to the internal modes of simple molecules on a surface at or near room
temperature, the averages (al al } may be set to zero, and in the limit pip))kp32(5), one may approximate (al al } and

(al al }by 5I I and 5I I, respectively, so we have

i +2p—lp+2+ apl(5) D(14,13,12,1I , t) —+'13p3(5)[D(14,13,12+5,1I,t)+D(14,13'!2yl, ~5;t)]a
at 5 5

=5(t)(5I,I,5I,I, +5I,I,5I, I, ) iB(t)(—[aI (0)al, (0),[al, (t)al, (t), V„]]) . (3.14)

To discuss the treatment of the anharmonic terms, we
must separate Vz into cubic and quartic terms, and con-
sider each separately. If we consider the quartic terms
first, and denote their contribution to Vq by Vz ', then

7(M~o)
[al al i V~ ]= ttxeplo ~ 22 1 6v2u p

X[al u'(ll)+u'(13)a(, ] . (3.15)

We may introduce a decoupling approximation on this
term directly, after it is inserted into Eq. (3.14). One does
this by using Eq. (3.7), assuming Lop &&kz T, then examin-

ing the action of each term as it operates on the ground
state of the harmonic oscillator array. The case where

l~&12 must be considered separately from the case where

li ——12. As an example, one term encountered is propor-
tional to a~ aI al a~ . For l&&12, after the ground-statet t

wave function is acted upon by aI, the oscillator at site l2
I

remains in its ground state, so aI aI operating on the re-
2 2

suiting wave function gives zero. On the other hand, with

l2 ——l~, this operator now becomes al aI and this operates
1 1

on the first excited state of the oscillator, so the operator
is replaced by unity. Thus the combination a~ aI aI QI is

2 2 2 1

replaced by 5I I aI al, and the remaining terms are treated

I

in a similar fashion. This procedure does assume
he@(5) &&cop (weak lateral interactions) so when the oscilla-
tor at E& is excited by the operator aI, to a good approxi-

mation the oscillator at Ez&E] remains unexcited. But the
procedure makes no assumption about the relative magni-
tude of x,cop and hen(5). When a similar approximation is
introduced for each term in Eq. (3.15), we find a result
which may be written

[al,al, V„]=-—,ax, plo(1+ 5l, l, )al al, .t t [4] 7 1 t t

We next turn to the cubic terms. The treatment of these
is a bit more involved, and again our approach will be
aimed at producing relatively simple final results suitable
for our particular purpose. One finds

(3.17)

Since each term in Eq. (3.17) involves an odd number of
boson operators, the decoupling scheme described above is
not suitable. What we shall do is insert the full form of
Eq. (3.17) into Eq. (3.14), and note that we then encounter
a new set of Green's functions. We find the equation of
motion for each member of this set, and decouple at this
stage. We shall show how this is done for one example.
Consider

G(14,13,13,lt, t) = i'B(t)( [al (0)al (0),al—, (t)al (t)al, (t)]}, (3.18)

and calculate the equation of motion of this function; for this moment we ignore the influence of both lateral interactions
and the quartic anharmonic terms. The reasons for this will be clear shortly. One finds
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3tpp+i —G(14,13,12,1~ , t) '= i—B(t) ,'M—to~,' [ ([at (0)at (0),at, (t)at (t)u (l„t)])

+([a, (0)a, (0),at (t)u (1&t)at (t)])

+([at (0)at (0),u (12,t)at (t)at (t)])] . (3.19)

The right-hand side may be decoupled in precisely the same way as the terms in Eq. (3.17) introduced by the quartic con-
tributions to the anharmonic terms. After this is done, we have

3~p+l G (1~.,13', t2, 1),t) =x~ a)p(3+ 4 5l l )D (14, l3 F12)It],t)
at 1 2

(3.20)

One now Fourier transforms both sides of Eq. (3.20) with respect to time, and notes from Sec. III that in the limit of
small anharmonicity, all features of interest will lead us to evaluate the Fourier transform near Q= —2cop. Thus we sim-

ply replace Q by —2cop to obtain

G(I4 13 lfpl], Q) =x,' (3+ —,5l l )D {14,13', t2, 1&', Q) {3.21)

The point is that the denominator 3cop+Q is never evaluated near its zero at Q= —3mp, so this simple approximation
suffices. Inclusion of lateral interactions in the equation of G(l4, 13,12, l&, t) will lead to, in essence, a small correction to
this denominator, and thus may be ignored to good approximation. Inclusion of the quartic anharmonicity will lead to
corrections to the right-hand side of Eq. (3.21) smaller than the term retained by the factor of x„when one examines the
structure of the decoupling scheme.

When the results of the above decoupling procedure are completed, we find the following equation of motion for the
Green's function of interest:

2(1 A)top—+2, +btp(5)+Q D(14,13,12,1(',Q) —gbtp(5)[D(14, 13,12+5,1(',Q)+D(14, 1 1312(+5;Q)]

where

A. = 4 x, (1——„a) .15 7

l213 l114+ l2l4 l/l3+ ~p~/ l 4~ 3~ 2~ ] &

(3.23)

It is a straightforward matter to solve Eq. (3.22) in closed form. First note that in the absence of lateral interactions,
one has

l2l3 l) l4 + l214 lf 13

D(l4 13 12,1),Q)=
2(1—k)cop —4up6l l +Q

(3.24)

If l&&12, this has a pole at Q= —2cop(1 —k); for a=1, one has A, =2x„so this describes a loss at the frequency
2(Qi —Qp), in our earlier notation. This is the double loss, as illustrated in Fig. 1(a), where the electron excites two dif-
ferent, now decoupled, molecules. For 1&

——12, the pole shifts to 2(1 ——,
'

A, )cop, and with X=2x, this equals Qz —Qp, the

frequency of the overtone of one isolated molecule. Clearly, our decoupling procedure reproduces the exact results in the
limit of vanishing lateral interactions.

When the lateral interactions are nonzero, one may proceed by writing

D(14,1,;l„l,;Q)=, g g exP[iQ II
(1,+ 14)—iQII (1,+ 1,)]

N, -
&

II
~ II

q II q
II

XexP[t q II 3 4 t qll' 1,—1~)]D (3.25)

Then from Eq. (3.22), one finds

where

- - qii qii Q) =~- - A- (qii qii Q&~
II

~ II ~
II

(3.26)

2)4)
A- (qII, qjIiQ)=(5 - +5 -,) (qII, Q)+ (qII, Q) (qII, Q)[1—~p(QII, Q)]

qll'~ll qll ~II
(3.27)
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Here one has

s (q~~ n)=
~«ll+ qll)+ ~(QII —qll)+"

(3.28)

S(Q~~, Q)= gs (q~~, Q),
Ns-

(3.29)

The expressions summarized in Eq. (3.26) are the prin-

cipal results of this section, and they may be used in con-
junction with the results of Sec. II to explore the role of
lateral interactions on the two contributions to the loss
cross section. We shall summarize the results of our study
in Sec. IV.

The particular model of lateral interactions employed
here is not the only form that may be appropriate; indeed,
in the situations where the influence of lateral interactions
on adsorbate vibrations have been delineated in a quantita-
tive fashion, it is the dipole-dipole interaction between ad-

sorbates which dominates. The formulas above are readi-

ly modified to apply to this case; one simply uses a slight-

ly different form for the renormalized phonon frequency

co(q~~) in Eq. (3.30). Since the dipole-dipole interaction is

geometry dependent, we need an explicit example to see
how this is done. Consider a lattice of diatomic molecules
such as CO, and suppose the molecules rest with the inter-
nuclear axis vertical to the plane of the surface. The
dipole-dipole interaction may then be written in the form
for a model analogous to that in Sec. II, where the dipole
and its image interact with its neighbors,

2

Then in place of Eq. (3.30), we have

(3.31)

1 2e*e 1
pi(q[[)=pip( —&)+ y cos(q~~'5) .

Mpip I+a
~ 5~0

(3.32)

A principal difference between Eqs. (3.32) and (3.30) is

that for q l~
-=0, ~(q l~) is upshifted from ~&(1—A, ) by the

dipole-dipole interactions, an effect evident in both
electron-energy-loss and infrared studies of adsorbed CO.
We note it is possible to transform the slowly converging
dipole sum into Eq. (3.32) into an alternative form which
converges very rapidly. "

IV. RESULTS AND DISCUSSIONS

The purpose of this section is to discuss implications of
the results of Secs. II and III. A full study of the energy-
and angle-dependent cross section is a formidable task,
but, in fact, certain simplifications may be introduced
which allow essential features to be isolated. We consider
first the overtone contribution to the cross section, then
we turn to the double loss.

and finally co(q) is a renormalized phonon frequency,
which in our model is given by

qll) —pip(1 —A, )+ g bee(5)[1 —cos{qll 5)] (3 30)

The time integral on the right-hand side of Eq. (2.27), in

combination with the sums on q~l and q ll
and the factor

of 1/A, may be expressed simply in terms of the function

S(Q~~, Q) defined in Eq. (3.29). If we call this combina-

tion P'(Qll, pi), then

4n,
P'(Q~~, co) = [1+n {pi) ]Im

0

1

1 —MP (Q~~, p—i+ i ri)

(4.1)

~-, qadi qii'" =A-, „-'Qii —
qadi

—-'Qii+qll II

(4.2)

and the right-hand side, through the use of Eq. (3.27), con-
sists of two terms. The first, proportional to the factor5,+5 -,, describes a scattering in which two

II II II' ll II

phonons are created in sequence, and each one propagates
off without interacting with the other member of the pair.
Of course, as one sees from Eq. (3.30), each has its fre-

quency renormalized by the anharmonicity. The second
term describes contributions in which the two phonons,
after being created, interact with each other via anhar-

monicity (final-state interaction). From the expressions
given in Sec. III, taken in the limit of small lateral interac-
tions, the ratio of the second contribution to the first con-
tribution to the cross section can be shown to be the order
of A. (a()N()/U' '), where A, is the anharmonic coupling pa-
rameter defined in Eq. (3.23), and ap is a mean distance
between molecules, defined by writing ma[] ——n, ', with n,
the density of molecules per unit area. The ratio is very
small, less than 10, and final-state interactions contri-

Upon noting that the factor r in Eq. (2.27) is inversely
proportional to n„ the prefactor in Eq. (2.27) then scales

linearly with the coverage n, .
As in earlier discussions of dipole scattering, the

denominator [D(Q~~, 2pip)] in Eq. (2.27) causes the cross
section to be peaked strongly around the specular direc-

tion, with values of momentum transfer
I Q~~ I

2-=pip/U' '

as the most important. For typical experimental condi-

tions,
I Qll I

-=10 cm ', and since the function A(Qll, p~)

varies slowly with Q)~ this close to the center of the Bril-

louin zone, we may replace P'(Q~~, ro) by its value at

Q~~=O. Once this is done, if desired, one may integrate
the scattering efficiency over the solid angle, exactly as in

earlier studies, to obtain an expression for dS' '/des, the
scattering efficiency per unit frequency. Except for the
multiplicative prefactor, which is an expression of the dif-

ferent coupling mechanism, the energy variation of the
cross section and its dependence on the angle of incidence
is identical to earlier results obtained in the study of one-

phonon processes. [See Eq. (42) of Ref. 2. When one cal-
culates 1{@,one should rePlace Pip by 2Pip. ]

The calculations presented shortly will be based on a
numerical evaluation of the right-hand side of Eq. (4.1),

for a model described below. This will be done at Q~~=0.
Note from the preceding paragraphs that the energy varia-

tion of dS' '/den is virtually identical to that expected for
a one-phonon loss process, provided co[] is replaced by 2'[].

We now turn to the double loss, as described by Eq.
(2.26). We note from Eqs. (3.9), (3.25), and (3.26) that



28 DOUBLE LOSSES AND OVERTONES IN ELECTRON-ENERGY-. . . 2399

bute negligibly to the cross section.
The physical reason for this is the following. In the di-

pale scattering regime, the electron is a distance the order
of d —=v' '/cop above the surface when it scatters off a mol-

ecule, exciting a vibration in the process. ' It thus "sees"
all molecules which lie below it, within a circle whose ra-
dius is the order of d. Since two phonons can interact
anly when they are an the same site, e.g., the probability

I

that the two phanons created in this fashion will scatter
off each other is proportional to (ao/d), the factor which
enters the above estimate. Note that when large-angle de-
flections are studied, as in the work af Demuth and co-
workers, final-state interactions may enter the double-loss
contribution to the cross section importantly.

With final-state interactions ignored, the double-loss
contribution becomes

d2g[~j

d Q(ks )da)

'4
4rr~R(ei) ~'n, m (v' ') cos'8 I

[1+n(co)]
M cop 1 —e

(4.3)

d'S"'

d Q(k, )de

VI) I Q))
—

q)) I

&
1

«))-q)) +

When the dipole excitation form factor in Eq. (4.3) is considered as a function of q)), for Q)) fixed, then for

qII &&cc)p/v it falls off as q II
~ We may thus evaluate the remainder of the integrand at qII

——0 and, in fact, we may

set Q)~
-—0 also, since here we are interested only in near specular scattering. Then if we replace ig by i I , with I finite to

simulate damping of the molecular vibrations, one finds
2

~

R(eI)
~

n, m (v' ') cos (OI)
[1+n(co)]

m.M co 1+@

rdi rx &" d
2 2

(q (v )D (Q q
)

) [2' (1—A) —(v] +I
(4.4)

d S"'
d Q(k, )dao

Note that the prefactor in Eq. (4.4) is proportional to the square of the coverage n, as expected.

If one integrates both sides of Eq. (4.4) over the solid angle d Q(k, ), then as described elsewhere one may convert this
to an integral on dig)). The prefactor of the Lorentzian-loss feature then separates into the product of two factors, each
of which describes the probability that a single vibrational quantum is excited. Once again, this is expected once one ap-
preciates that final-state interactions may be ignored. Note, then, that the energy variation of the overtone and double-

loss contributions to the cross section are thus very different. We have seen that the former is the same as that for excit-

ing a single vibrational quantum, and the latter is essentially the square of the overtone contribution. Since dipole excita-
tion cross sections vary strongly with energy, to fall off with increasing energy when 1(E & t(„with 1(~ ——ficoo/2E(l) and

1(, the spectrometer cutoff angle, these different energy variations may allow unambiguous identification of the two con-
tributions to the cross section. We shall appreciate shortly that in the presence of lateral interactions, this may prove dif-

ficult to do, with data taken at only a single impact energy.
At least for the case of normal incidence, it is possible to perform the integration over q II

in Eq. (4.4) to find an expli-

cit expression for the angular variation of the cross section for the double loss. One has

~R(el)~ n, m
[1+n (co)]

M2( (I))6 2

COp

X 1+8
g& v(l)g

COp+' [I) ln 1+
v(I)g

—3 —10
v(I)g

II

(4.5)

where at normal incidence, Q))
=k' )68, with k' ' the

wave vector of the incident electron and 68 the angular
deflection, assumed to be small. As Q))~0, the scattering
efficiency remains finite, since the quantity in large curly
brackets in Eq. (4.5) vanishes.

We now turn to our study of the influence of lateral in-
teractions on the two-phonon loss spectra. At least in the
dipole regime, and for our model of the lateral interactions
[Eq. (3.6)], the double loss is simply a Lorentzian structure
centered about the renormalized frequency 2cop(1 —A, ), and
this is uninfluenced by the lateral interactions. If we in-

elude lateral interactions of dipolar form, the double loss
remains centered around the 2'(qI ——0), but there will be
a coverage-dependent shift of this requency, as discussed
elsewhere. ' Our principal interest here will then be in
the study of the overtone contribution to the spectrum, as

displayed in Eq. (4.1) with Q)) =0.
In Figs. 2 and 3 we display a series of numerical calcu-

lations which illustrate the basic trends produced by the
presence of anharmonicity. These calculations have been
carried out for a square lattice of adsorbates, with
nearest-neighbor coupling. Then the phonon bandwidth
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FIG. 2. Numerical calculations of the overtone contribution

to the scattering cross section. For these calculations we have

taken coo ——1500 cm ', W=200 cm ', and I =10 cm '. Note in

(a) that when x, =0, the overtone spectrum mirrors the two-

phonon density of states. Note also that as x, increases, the

overtone peak shifts down in energy. As the overtone peak
shifts down below the onset of the two-phonon continuum, it be-

comes sharper, reflecting the production of a two-phonon bound

state.

W is given by W=shco, with hen defined in Eq. (3.13).
The calculations in Fig. 2 take ~p ——1500 and W=200
cm ', and the effect of lifetime broadening has been intro-
duced phenomenologically by replacing the infinitesimal g
in S(QII,A+i ri) by a finite number I . The calculations in

Fig. 2 take I"=10 cm '. From the figure one may appre-
ciate the structure and asymmetries introduc d into the
line shape by the combination of lateral interactions and
anharmonicity.

When x, =—0, the process in Fig. 1(b) leads to the
creation of a pair of noninteracting phonons, and the spec-
trum is then simply a mirror of the two-phonon density of
states. For our model this has a prominent peak (a
lifetime-broadened Van Hove singularity) in the middle of
the phonon band. Thus when x, =0, the peak in the over-
tone spectrum is at 3200 cm ', which is 200 cm ' above
the double loss which, in the model, occurs at 3000 cm
We shall see that the effect of lateral interactions will al-

ways be to shift the peak in the overtone spectrum up-
ward, relative to the double loss, though the two need not
always be inverted as in this extreme example. The di-
mensionless parameter of the problem can be seen to be
4oo/W, and whenever the lateral interactions are large
enough for this parameter to be comparable to or smaller

than unity, the shift of the overtone peak relative to the
double loss will be appreciable.

As A, is increased in value, the overtome peak is down-

shifted; when A, is sufficiently large, it lies below 2Np, the
onset of the two-phonon continuum. This is illustrated in

Figs. 2(d) and 2(e). In the language of solid-state physics,
the anharmonicity is sufficiently strong to produce a two-

phonon bound state, with excitation energy less than 2cop.

This two-phonon bound state dominates the scattering
cross section for all the examples we have explored. As
the lateral interaction parameter W vanishes, of course, we
are left with the noninteracting molecule picture discussed
in Sec. I. Formally, the N(N —1) excited states which in-

volve excitation of two distinctly different molecules from
their n=0 to their n=l level correspond to the two-

phonon continuum, while the N excited states with one
molecule excited from n=0 to n=2 constitute a band of
two-phonon bound states, with zero bandwidth. As
W~O, our decoupling scheme reproduces this behavior
exactly, as one sees from Eq. (3.24).

Figure 3 shows a sequence of calculations identical to
those given in Fig. 2, but I has been increased to 50 cm
The trends are very similar to those in Fig. 2, but the vari-
ous structures evident in Fig. 2 are smoothed out by the
influence of lifetime broadening.

Figure 4 shows a plot of the splitting between the peak
in the overtone spectrum and the double loss, for the case
where W=40 cm ', a realistic value for an adsorbed
species at monolayer coverage. The trend is similar to
those displayed in Figs. 2 and 3, with very appreciable
shifts away from the noninteracting molecule limit (A, = 00

lh

3

O

(a)
xq =0

90

2400 2900 3400 3900

~(cm ')

ch

C
D

0
Ch

L)
L0

(d)
xe = I /30

90

30

2400 2900 3400 3900
~(cm-I)

lA

C

0
th
D

JD

0

(b)
Xp

90

0
2400 2'900 3400 3900

~(cm-')

(c)
90—

Ch

C
D

0
lh
D .—

0

x~ = I/l5
90

60

0 I

2 400 2900 34 00 3900

~(cm ')

th

3 ~ 60

o 30th

0 0
2400 2900 3400 3900

o)(cm ')

FIG. 3. More numerical calculations of the overtone contri-
bution to the scattering cross section. These calculations are for
eo ——1500 cm ' and W=200 cm ', as in Fig. 2, but here we
have a more realistic value for I, viz. , l =50 cm
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FIG. 4. Plot of the splitting between the overtone and
double-loss spectrum peaks as a function of A, . As A.~ oo, the

splitting approaches the value A.coo as predicted by the Birge-

Sponer extrapolation.

limit in the figure) for physically realistic values of A, .
Table I summarizes a series of calculations carried out for
a wider range of parameters. Note that as the strength of
the lateral interactions increases, the overtone feature al-

ways progressively broadens.
While we have presented a series of calculations based

on a particular model of the adsorbate lattice and lateral
interactions between adsorbates, the trends illustrated in

the calculations can be seen to be insensitive to these de-

tails. With dipolar coupling between adsorbates, the fre-

quency of the double-loss feature exhibits a coverage-
dependent shift, but lateral interactions will influence the
relative position of the overtone and double-loss features in

a manner very similar to the calculations displayed here.
If 8' is the phonon bandwidth, once again the key param-
eter is keno/8', and this must be substantially larger than
unity for the noninteracting model to apply. We conclude
with a discussion of the implications of these results.

In our view these calculations call into question the use
of the Birge-Sponer extrapolation as a means of estimating
dissociation energies of bonds in adsorbed species, unless
the data are obtained in the submonolayer regime, when
lateral interactions can be expected to play a minor role.
We predict that as coverage increases, and the strength of
lateral interactions does also, then the width of the over-
tone feature should increase, while the width of the double
loss does not if the damping factor I is dominated by in-

teraction of the adsorbate with the substrate and is thus
not coverage dependent. We note that broadening with in-

creased coverage is evident in the overtone regime of the
electron-energy-loss spectrum of ethylene on Ni(111).' It
is likely that lateral interactions are responsible for this

TABLE I. Summary of the results of numerical calculations of the overtone spectrum for several realistic values of bee and x, .
For all of the entries in this table, coo——1500 cm ' and I =50 cm '

~ Note that the overtone and double-loss peaks switch positions (so
that the overtone peak lies at higher energy than the double loss) when k~0/W-1. This table also shows that as A.coo/W decreases,
the width of the overtone peak increases.

W (cm-')

10
10
10
20
20
20
40
40
40
64
64
64
80
80
80
96
96
96

120
120
120

5 x10-'
7.6x�1-'

010x�1-'

5 x 10-'
7.6x10 '
10x10 '

5 x10-'
7.6x10-'
10x10 '

5 x10-'
7.6x 10-'
10x10 '
5x 10-'

7.6x10 '
10x 10-'
5x10 '

7.6x10 '
10x10-'
5x10-'

7.6x�1-'

010x�1-'

A, Alp

W

1 ~ 50
2.28
3.00
0.75
1.14
1.50
0.38
0.57
0.75
0.23
0.36
0.47
0.19
0.29
0.38
0.16
0.24
0.31
0.13
0.19
0.25

kcoo(1 —X)

(cm-')

2970
2954
2940
2970
2954
2940
2970
2954
2940
2970
2954
2940
2970
2954
2940
2970
2954

2970
2954
2940

mM (cm ')

2965
2941
2920
2974
2950
2929
2992
2967
2945
3014
2988
2964
3030
3003
2978
3046
3019
2993
3072
3045
3019

Full width
at half maximum

(cm ')

102
101
101
110
107
105
121
118
117
144
143
137
165
162
159
185
182
177
215
213
210

2coo(1 —X —co,g )

(crn-')

5

13
20

—4
4

11
—22
—13
—5

44
—34
—24
—60
—49
—38
—76
—65

—102
—91
—79
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broadening, through the mechanism explored here.
Schmeisser et al. have studied vibrations of phy-

sisorbed N2 and 02 on polycrystalline Ag and Cu films by
means of electron-energy-loss spectroscopy. The experi-
ments are carried out in the impact scattering regime
where the angular deflection of the electron beam is large,
not the near-specular dipole-dominated regime explored
explicitly here. Negative-ion resonances are found for
these species, and with beam energy tuned to resonance,
multiquantum losses (up to -8ficoo) are observed in the
study. In this paper, in the multiquantum regime, two
distinct loss features are observed near nkcoo, and the au-
thors identify the low-frequency feature as an overtone,
and the high-frequency one as the multiple loss. Since the
high-frequency member of the doublet is, in fact, substan-
tially broader than the low-frequency member, in our view
one should not rule out the possibility that it is, in fact,
the overtone, upshifted and broadened by lateral interac-

tions, as in our theoretical studies of two-phonon losses.
Whether or not this is the case could be determined by
studying both the relative position and the width of these
features as a function of coverage.

Ibach' has pointed out that it would be of considerable
interest to compare electron-energy-loss and infrared spec-
tra in the two-phonon loss regime, since there is no analog
of the double loss in infrared study, Such a comparison
may be possible in the near future if infrared techniques
continue to evolve rapidly.
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