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Finite-size, two-dimensional one-component Coulomb systems (charged rods) with a circular free
boundary were simulated by Brownian equation-of-motion dynamics. Positional- and orientational-
order correlation functions, site-coordination defects, and particle displacements were examined as a
function of the coupling constant I'=g2/kzT for samples of 253 and 583 particles. Melting of
single-crystal samples occurs as increasing disorder with decreasing I without a conspicuous feature
in the I" dependence of order parameters. A transition between hexaticlike and isotropic fluid
phases is identified at I =148 for the 583-particle sample and I"' =153 for the 253-particle sample.
Results are compared with Monte Carlo and molecular-dynamics simulations and the theory of
dislocation-mediated melting of lattices of quantized vortices.

I. INTRODUCTION

Computer simulations of melting in two-dimensional
lattices by either Monte Carlo or molecular-dynamics
techniques have been carried out by various authors on
several model pair potentials.! The logarithmic potential
appropriate for the interaction between charged rods is
used in the present computer experiment, and was also re-
cently examined by Caillol et al.? with Monte Carlo and
by de Leeuw and Perram® with molecular dynamics. Al-
though the results of several simulations agree with the
theory of continuous melting,* others show evidence for a
first-order transition, such as thermal hysteresis and two-
phase equilibrium.

Various mechanisms of melting have been considered
theoretically. Nelson and Halperin* used the ideas of Kos-
terlitz and Thouless® in their theory which predicts that
melting may occur by two second-order phase transitions
driven by dislocation-pair unbinding and disclination-pair
unbinding, with an intermediate liquid-crystalline hexatic
phase. Other theories of melting considered the grain
boundary mechanism® and first-order processes.” It is
worth noting one finding for several simulations, that the
magnitude of the shear modulus at melting is in agree-
ment with the universality prediction derived from the
renormalization-group theory.!'®°

In the present work Brownian-motion dynamics is used,
as a variant of the molecular-dynamics technique, to study
the melting of a two-dimensional Coulomb system with a
free boundary. In addition to the very ‘“‘soft” interaction
potential, this approach may increase the ability of the
simulated system to reach equilibrium with respect to dis-
clination and dislocation motion.!® Restriction to finite
length by an explicit sample boundary can be complemen-
tary to the finite running time in a simulation. Although
there is no determination as to whether this equilibrium
criterion is satisfied, the present simulations find a hexat-
iclike fluid phase and a transition to an isotropic phase.
Despite the absence of critical temperatures in a finite sys-
tem, the properties of the observed cooperative phenomena
and the influence of sample size are obtained. Theoretical
size effects were recently presented by Dutta and Sinha.!!
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Two-dimensional Coulomb charges embedded in a
viscous medium are analogs of quantized vortices in a su-
perfluid film. Hydrodynamic stability of a vortex lattice
was investigated theoretically by Fetter and Hohenberg,
who showed that the system has a well-defined shear
modulus.’”? The introduction of damping has no funda-
mental effect other than facilitating observation, as shown
by Packard for vortices in superfluid helium.!* The high
friction limit, considered in the present simulation, is gen-
erally applicable to superconducting films, owing to the
finite conductivity of the normal metal and the finite size
of the vortex core. Pearl'* was the first to show the loga-
rithmic interaction potential between Abrikosov vortices
in superconducting films and Conen and Schmid!® have
calculated the shear modulus of vortex lattices. Theory
for melting of vortex lattices has been given by Huberman
and Doniach'® and by Fisher'” who had also estimated the
renormalization of the shear modulus. The melting tem-
perature found in the simulations lies within the range of
values estimated by Fisher and agrees with the impedance
transition temperature found for vortex lattices in alumi-
num films.!® The present work has some analogies to the
treatment of vortex arrays in rotating superfluid helium
by Campbell and Ziff,!° although the dynamics and boun-
dary effects differ.

II. METHODOLOGY
A. Diffusion dynamics

The particles in the simulation emulate N infinitely long
parallel charged rods embedded in a viscous medium.
There is a uniform compensating charge of opposite sign
extending over a circle of radius R. Since certain details
of the particle dynamics, for example, the particle mass,
do not effect the equation of state, it can be expected that
Brownian-motion dynamics would produce results funda-
mentally similar to those of usual molecular dynamics.
However, an important difference is that here energy is ex-
changed with the medium, so that the total energy of the
ensemble of particles fluctuates with time and is not a
constant of motion.
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The inertial term in the equation of motion for the par-
ticles is omitted in the frequency range of interest, the
high-friction limit, so that for each particle in the system

dTt, =
7 = p’, f i (2. 1)
where T; is the position coordinate, u the individual-
particle mobility in the medium, and f; the driving force.
The pair interaction contribution to the force is given as

- =

N
~

(2.2)

For vortices in superconductors, the relationship to micro-
scopic parameters is given by

g =% *n,/2m , (2.3)

where n; is the areal density of superelectrons and m their
mass. Again making connection to the superconductor,
Eq. (2.2) implicitly assumes that the range of allowed par-
ticle separations satisfies the criteria

re< |Ti—T; | <A, (2.4)

where 7, is the core radius and A=mc?/2mn,e? the
screening length that cuts off the interaction in a charged
superfluid. Friction in vortex motion arises from normal
electrical resistance.

It thus follows from Eq. (2.2) that the density of a col-
lection of particles is irrelevant and the system is charac-
terized by a dimensionless coupling constant,

T'=q2/kyT . (2.5)

Treating an ensemble of particles which forms a two-
dimensional lattice by the method of periodic boundary
conditions, popular for simulating an infinite medium, can
lead to metastable states which are misoriented and con-
tain trapped defects. This is avoided here by choosing a
finite-disc geometry for the N particles. The driving force
on particle  in the system is then given by

— —

= N o, Ti—T; - -
i=t | Ti—T;
J#i

A central force ?M from the oppositely-charged back-
ground, given as

—Ng*t;/R? |T;| <R

— = N 2.7)
—Ng*t;/|%;|% || >R

far=

constrains the particles to remain in the disc, with free
motion permitted along the boundary. The origin is at the
center of the disc. f(z) is the random Langevin thermal
force obeying the fluctuation-dissipation theorem.

Since the velocities are proportional to the instantaneous
forces, the particle displacements after a time step At in
the simulation are obtained by multiplying the first two
terms in Eq. (2.6) by uAt. Random walk displacements
contributed by T r(t) obey a Gaussian distribution of co-
variance

o =2ulAthky T =2uq*At /T . (2.8)

Thus the length o is the natural scale of the size of the
steps used in the simulation. A fixed time step Az was
chosen so that o is small compared to the interparticle
spacing, although o? varies with T'. At the isotropic phase
transition, the choice of parameters yields
o’N/mR*=2x1073 . (2.9)
In the diffusion-controlled system there is no relevant
Einstein period, which sets the size of the time step in
molecular-dynamics simulations, since there are no propa-
gating collective excitations. Hence At can be effectively
much larger than the value used in usual molecular-
dynamics simulations. The total running time at a given
T, after an allowance for a settling time, was varied from
1024 to 4096 time steps, although most of the runs were
for 1024 steps. Thus particle diffusion comparable to the
interparticle spacing was observed, but long-range dif-
fusion, lengths comparable to R, was not. The dynamics
algorithm follows the usual practice of displacing all par-
ticles at each time step. Only potential energy may be cal-
culated, since particle velocities are not determined.

B. Structure functions

Two system sizes were simulated, for N=253 and 583.
These numbers were selected so that the unrelaxed tri-
angular lattices, arrays fitting within a circle of radius R,
have nearly regular polygon perimeters. The two-
dimensional crystal obtained after the perfect triangular
lattice has been allowed to relax at low temperature, or
large I', is shown in Fig. 1. Deviations from a triangular

24-..-......-242
5 . . . . . . 5 4
3333333
FIG. 1. 583-particle Coulomb crystal at low temperature,

I'=10* Particle positions with 6-fold coordination are
represented by dots, other coordinations by numerals.
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lattice occur mainly at the perimeter, which tends to form
a circle. Thus the sample is viewed as a single crystal with
localized boundary defects.

To classify the defects, the Voronoi polygon construc-
tion was used to obtain the local coordination number of
z; at each site.?’ Sites where z; differs from 6 are shown
by numerals in the figure. Except for the perimeter, sites
with 5- or 7-fold coordination may be identified as dis-
clinations. Near-neighbor 5-7 pairs are dislocations. To
characterize the defect density, the following defect-count
parameter is used:

pa=N"'3 (z;—%)?, (2.10)
1

where z; are the site coordinations and Z; is taken to be 3
on the perimeter and 6 everywhere else. The average of
(z; —Z;) need not be zero, even though ((z; —6)) =0 for
unbounded arrays in two dimensions.

The pair correlation function is computed as a histo-
gram whose elements are given by

gR(r)=3 Alry— | Ti—T; | ,8r) /po(ri,6r) ,
ij
i#j

where 8r=2R /N, ry,=k &r, k=1,2,...,N and A(r,8r) a
unit window function of width &r centered at r=0.
Pol(r,6r) is the uniform distribution, which was obtained in
a separate computation for the disc geometry. The statist-
ical weight, which decreases to zero at ¥=2R, is then nor-
malized out. The result for a simulated N=583 crystal at
I’'=526 is plotted in Fig. 2, where the points are connected
by a continuous line. An average over 64 time samples
was taken. Although the envelope of g(r) decays slowly
towards unity, the decay is in fact more rapid than the
algebraic decay » ~" with 1 <0.25 predicted by theory for
a stable infinite two-dimensional crystal.*!! The decay
length for g(r) in this finite crystal is approximately
§g=0.7R, determined as the length for decay by a factor
of e. Peaks in g (r) in the vicinity of » ~2R reflect the ten-
dency of the particles on the perimeter to form a circle
and the near neighbors within a concentric circle. The fol-
lowing amplitude is later used to summarize the positional
order correlations:

(2.11)

- r=526

[¢] 1 2
r/R

FIG. 2. Particle position pair correlation function at I'=526
vs separation in units of sample radius.
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FIG. 3. Particle 6-fold orientational order correlation func-
tion vs reduced separation.

Ag=N"'3 |g®(r)—-1] . (2.12)
k
6-fold orientational order is represented by the bond-
order parameter,
i .
(=23 "%,

Jj=1

(2.13)

where the sum extends over the z; neighbors and 6;; are
the angles subtended by (T; —T;) with respect to an arbi-
trary, fixed direction. The orientation correlation function
is computed by averaging ¥*¢ over all pairs of particles:

D UHEIYTDA(r— | T —T | ,6r)

iJj

i#j
(k)
8¢ (rk)= =
ZA(rk—[ri—rj[,Sr)
ij
i
(2.14)
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FIG. 4. 253-particle system at " =200.



28 BROWNIAN-DYNAMICS SIMULATIONS OF MELTING OF . .. 239

3 . 5°3
3%5-5 - - - 7533
3357.? .o -.773
357 - 5753,
3°.° . o3y
3. o . 3
3. . .. e
3. .. .. 3
3. .. . .3
3.
.53
35 - T T T T e e e e T -7
37 - - 14
2"t A
45 .. S L3
3T, . oL 3
3.5 cen e o 73
357 - s i v . . .53
3%, . . e . .3
K S et o0 3
3. 5 - <. '--33
3 .7. ---5~72
s 7o R
2’5 . 573
45757 Tt T3
335, - " 533
3

95355533
FIG. 5. 583-particle system at I'=200, equivalent tempera-
ture as Fig. 4.

The result for g¢ at T'=>526 is shown in Fig. 3. The pro-
nounced decrease in the peak heights with increasing 7 is a
consequence of the boundary alignment, a significant
departure from the constant value obtained for systems
with periodic boundary conditions."?® An amplitude of
hexatic order is defined as

A36=N—1§k;gg")(rk) : (2.15)
The results presented in Figs. 1—3 are representative of
the well-ordered particle arrangements obtained at large I,
where the samples are manifestly single crystals. In the
next section results encompassing the melting transition
are presented.

III. T DEPENDENCE

The number of thermally excited site defects increases
with decreasing T, as illustrated at I =200 for the N=253
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FIG. 6. Pair correlation amplitude, defined by Eq. (2.12), vs
reduced temperature (I' ') for 253- and 583-particle systems.
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FIG. 7. Orientation correlation amplitude defined by Eq.
(2.15), vs ' ! for 253- and 583-particle systems.

sample in Fig. 4 and for the N=583 sample in Fig. 5.
Qualitatively, the length £, decreases with decreasing I" as
g(r) decays more rapidly. However, the simulations do
not reveal a particularly characteristic value of T for the
onset of rapid decay of g (r), which might then be taken as
evidence of a melting point. Transitions from algebraic to
exponential decay, as predicted by theory* for the asymp-
totic behavior at large r, are not observed. Since both g(r)
and g¢(7) include the effects of the edges, an interpretation
of the functional form of the » dependence is not attempt-
ed. Instead, the amplitudes 4, and Agb are used to charac-

terize the simulation data.

The temperature dependence expressed as I'~! depen-
dence, is shown for the quantities 4,, Ay, and p, in Figs.
6—8, respectively. Although it is not demonstrated that
the samples are equilibrated at each T, the simulations
show that these parameters fluctuate more so with time
than with small changes in I'. Thus it was not possible to
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FIG. 8. Coordination defect density, defined by Eq. (2.10), vs
I' ! for 253- and 583-particle systems.



240 A.T. FIORY 28

discern evidence for thermal hysteresis. The data present-
ed are the results of a series of isothermal runs taken as a
function of increasing I'~!. For clarity in the display and
to provide some statistical averaging, the points in the fig-
ures are averages over three runs, each of duration 1024A¢.

Both samples exhibit decreasing order and greater de-
fect density with increasing I'"!. The larger sample is
more ordered for any given I'. A pronounced change in
behavior occurs at I'=148 for the N=583 sample, where
the I'~! dependence of Ay, Ag,, and py show a fairly

abrupt change in slope. This break is more smeared out
for the N=253 sample, where it is shifted to about
I’ ~153. This is the only noticeable feature found in the
' ! dependence. Statistical noise masks discerning possi-
bly subtler features at lower I'~!. For higher I'"! the
fluctuations are much less, and the I" ! dependences are
all comparatively smoother. The transition will be labeled
with the notation I'=T;, anticipating its identification
with the onset of the isotropic fluid phase. There is no ob-
vious precursor melting point.

Particle motion also changes at I';. An elementary
quantity for analysis is self-diffusion. Because of the fi-
nite geometry, the self-positional correlation function in-
creases unbounded with time at all finite T'. Thus the
difference between particle motion in solid versus liquid
phases is distinguished by the time scales, which ideally
differ by a factor of N. For the finite running times used
in the simulations, one measure of particle diffusion is the
variance in particle displacements. The following parame-
ter is used:

X*=(mao®)~'Y |Tilm At)—T;(0)|?, (3.1

where the net displacements over the duration of a run of
m time steps is used in the computation. Results are
shown in as a function of I'"! in Fig. 9. In addition to
the expected increase of X* with T' ™!, an abrupt change in
behavior occurs at I'; and is found for both samples.
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FIG. 9. Normalized mean-square particle displacements, de-
fined by Eq. (3.1), vs T~ 1,
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FIG. 10. Normalized mean-square particle displacement vs
defect density, implicit functions of T, for the 583-particle sys-
tem.

Though the parameter X? is poorly defined for low ',
where it decreases with m, it is nevertheless useful for ex-
hibiting trends. In addition, it is found that X2 does not
simply scale or increase with the density of site defects, as
shown in Fig. 10, where X? is plotted against pa for the
N=583 sample. This plot shows a change in slope in the
vicinity of p;=0.25, which corresponds to I'=T;, indi-
cating a change in microscopic dynamical behavior.

Further interesting information is the manner in which
the site defects form clusters. This is shown in Figs. 11
and 12, where plotted against I'~! are the quantities {r/)
and (rf), which are mean-square nearest-neighbor spac-
ings between site defects of like kind (e.g., 5-5 and 7-7
pairs) and unlike kind (5-7), respectively. The lengths
have been normalized to the triangular lattice parameter a,
given by
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FIG. 11. Mean-square separation in units of interparticle
spacing between (5-5) or (7-7) neighboring coordination defect
pairs vs I'~! for the 583-particle system.
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FIG. 12. Mean-square separation between (5-7) and other dis-
similar neighboring coordination defect pairs vs I'"! for the
583-particle system.

a?=2(3"12)N—1xR%. (3.2)

The 5-7 spacing at low I'"! approaches (r})~31242/2,
since the dominant defects are dislocations. However, the
ratio {r?)/(r2) at low I'"! is much larger than a value
~2, expected if all of the defects were closely paired dislo-
cations, a square 5-7-5-7 formation. For such a configura-
tion, the dislocations are displaced parallel to their
Burgers vectors. The observed ratios fall between 3.4 and
4.4 in the region I'"!<TI'7!, indicating that there are
dislocations which are further apart. For example, a
dislocation pair displaced perpendicular to the Burgers
vectors, a 5-7-5-7 in-line string, gives (r2) ~4.

At temperatures near I';, the fraction of site defects has
become large enough that clusters and networks form.
From visual inspection of various particle configurations
one finds separated dislocations, dislocation pairs, strings
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FIG. 13. Particle configuration at I'=149 > I"; for a N=583
sample.

of site defects which resemble crystallite-grain boundaries,
as well as denser clusters. Thus there is no one defect pat-
tern which could be identified with a mechanism driving
the disorder. For illustration, a configuration is shown in
Fig. 13 for =149, which is just below (cooler) the I';
transition and in Fig. 14 for I'=143, which is just above
(warmer) I';. Similar complexity of the defect configura-
tions near melting has been found in other simulations,
where periodic boundary conditions are used.?° Figure
11 shows that {r?) approaches 2 at large "', as the
higher density defect clusters form more closely packed
arrangements.

The transition region I' ~T'; is displayed in more detail
in Figs. 15 and 16 where g(r) and g¢(7) are, respectively,
plotted for three values of I'. The g(r) function is strong-
ly damped in this region, as evident in all three parts of
Fig. 15. Even for I' > Ty, Fig. 15(a), g(r) decays to a
small value at r ~R, indicative of liquidlike positional or-
der. Upon heating through T';, the decay length &, de-
creases from 0.20R at '=149 to 0.12R at '=145. The
fluctuations create uncertainity in these quantities of
about 20%.

Qualitative changes in gq(7) at I'; are more dramatic
than for g (r). The curve for I' > T'; in Fig. 16(a) is similar
in shape to the low-temperature results, Fig. 3, in so far as
the decay of g¢(7) is long range, extending beyond the ra-
dius of the disc. The main difference between Fig. 3 and
Fig. 16(a) is that the magnitude of g4(#) is depressed at the
lower I'. The behavior shown in Figs. 15(a) and 16(a) is
qualitatively like the hexatic liquid crystalline phase pos-
tulated theoretically by Nelson and Halperin* and is simi-
lar to that found by McTague et al. in a Leonard-Jones
system.?’ Although Fig. 15(a) shows that the system is
not a solid, it cannot necessarily be concluded from Fig.
16(a) alone that orientational order is stable, i.e., that g4(7)
decays algebraically.*

Rapid decay of g4(r) is found for I" < T'; as displayed in
Fig. 16(c). Indeed the orientational order does not persist
beyond r ~R. There is a greater tendency towards boun-
dary alignment, as evident by sharper peaks in g¢(r) near
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sample.
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FIG. 15. Pair correlation function at three I values near T';.
(a) 149, (b) 147, (c) 145.

r~2R. It is clear, therefore, that in the T’ < T'; region the
system is like an isotropic liquid exhibiting short-range or-
der in both g (r) and g4(r). Previous work has shown that
short-range fluid order persists up to I'=4 in the one-
component plasma phase.>?

The quantity X2 presented earlier is a macroscopic aver-
age over all particle displacements. However, inspection
of individual particle trajectories reveals that the displace-
ments are spatially inhomogeneous in the vicinity of the
I'; transition. For ' >T; it is possible to identify corre-
lated regions of size comparable to &, which, with time,
slip with respect to one another. Particles at the slip
boundaries undergo larger than average displacements.
However, in other regions of the sample, there are more
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FIG. 16. Orientational-order correlation function at three

values of T near I';. (a) 149, (b) 147, (c) 145.

compact clusters of particles with above-average displace-
ments.

The change in potential energy per particle at I'; found
for the N=583 system is 0.0007(6)g, which implies an
entropy change AS /kp=0.10(9). Although the uncertain-
ity is large, AS is clearly much less than the entropy of
melting of 0.4kp found in the same I' region by Monte
Carlo? and 0.36kp from molecular dynamics.> On com-
paring the N=583 crystal at I'=500 and the isotropic
fluid at T'=145, a potential energy change of 0.0084(4)q
is found. For comparison, the potential energy change
computed from results presented by de Leeuw and Per-
ram, between crystalline and fluid phases extrapolated to
similar values of T, is 0.0082q2, which includes a latent
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heat of 0.0027¢2 in the vicinity of I'=135. Thus
Brownian-motion dynamics and molecular dynamics pro-
duce the same result for this crystal-liquid potential ener-
gy difference. The essential difference is that the present
Brownian-dynamics results are consistent with AS=0 at
I';. These systems exhibit negligible thermal expansion.
The area as measured by (r?) is constant to two parts in
10* in the range r>r,.

IV. CONCLUSIONS

Brownian-motion simulations of Coulomb particles
confined within finite discs show a well-marked transition
to an isotropic fluid at I'; ~ 148 for a N=583 particle sys-
tem. In the region I' > I'; the system appears as an orien-
tationally ordered liquid, perhaps a hexatic phase.
Presumably the bend stress imposed by the boundary
depresses the transition temperature, since I'; increases
with smaller N. It was not possible to reveal another melt-
ing transition of the finite crystal at larger I'. For com-
parison, the molecular dynamics results of de Leeuw and
Perram® show a hysteretic transition for I'~135, while
Caillol et al.? have inferred that a transition is located at
I’ =~140. Fisher’s theory for vortex lattices predicts melt-
ing in a range of I from 120 to 220.!7

Energy considerations are ambiguous as to whether the
T’y transition is thermodynamically second order since the
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systems are of finite size. However, it should be possible
to test the dynamics of the transition by imposing shear
and bend perturbations and establishing the time depen-
dence. The features of a second-order transition such as
critical slowing down and divergent correlation lengths are
expected to be cut off by the finite R. Thus the maximum
relevant times are those for the diffusion of dislocations
and disclinations over distances comparable to 2R. These
were not determined in the present work. However, the
motion of dislocations in vortex lattices in superconduc-
tors was treated theoretically by Brandt?' and by Kra-
mer.2 For glide motion, dislocations can move on the or-
der of N times faster than the individual particles. Hence
this is a possible mechanism for relaxing long-range
(r ~R) order in the disc for the running times used in the
present simulation.

Another area for further investigation is to increase the
sample size and examine g (r) and g¢(r) for only a center
portion of the sample. This was not done here because
N=583 was deemed too small to allow a reasonable size
for the truncated specimen.

ACKNOWLEDGMENTS

The author benefitted from discussions with D. S. Fish-
er, G. H. Gilmer, A. F. Hebard, D. R. Nelson, and J. D.
Weeks.

ISee J. Q. Broughton, G. H. Gilmer, and J. D. Weeks, Phys.
Rev. B 25, 4651 (1982), and references therein; also, W. F.
Brinkman, D. S. Fisher, and D. E. Moncton, Science 217, 693
(1982); Symposium on Melting, Localization and Chaos, edited
by R. K. Kalia and P. Vashishta (North-Holland, Amster-
dam, 1982); Ordering in Two Dimensions, edited by S. K.
Sinha (North-Holland, Amsterdam, 1980).

23, M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, J. Stat.
Phys. 28, 325 (1982).

3S. W. de Leeuw and J. W. Perram, Physica 113A, 546 (1982).

4D. R. Nelson and B. 1. Halperin, Phys. Rev. B 19, 2457 (1979).

5J. M. Kosterlitz and D. J. Thouless, in Progress in Low Tem-
perature Physics, edited by D. Brewer (North-Holland, Am-
sterdam, 1978), Vol. VIIb, Chap. 5.

6S. T. Chui, in Melting, Localization and Chaos, edited by R. K.
Kalia and P. Vashishta (North-Holland, Amsterdam, 1982).

7T. V. Ramakrishnan, Phys. Rev. Lett. 48, 541 (1982).

8R. Morf, Phys. Rev. Lett. 43, 931 (1979).

9). Tobochnik and G. V. Chester, in Ordering in Two Dimen-
sions, edited by S. K. Sinha (North-Holland, Amsterdam,

1980), p. 339.

10A. Zippelius, B. I. Halperin, and D. R. Nelson, Phys. Rev. B
22,2514 (1980).

11p, Dutta and S. K. Sinha, Phys. Rev. Lett. 47, 50 (1981).

12A, L. Fetter and P. C. Hohenberg, Phys. Rev. 159, 330 (1967).

B3R, E. Packard, Physica 109-110B + C, 1474 (1982).

143, Pearl, in Low Temperature Physics—LT9, edited by J. G.
Daunt, D. O. Edwards, F. J. Milford, and M. Yagub (Plenum,
New York, 1965), p. 506.

ISE. Conen and A. Schmid, J. Low Temp. Phys. 17, 331 (1974).

16B. A. Huberman and S. Doniach, Phys. Rev. Lett. 43, 950
(1979).

17D, S. Fisher, Phys. Rev. B 22, 1190 (1980).

18A, F. Hebard and A. T. Fiory, Physica 109-110B, 1637 (1982).

19L. J. Campbell and M. Ziff, Phys. Rev. B 20, 1886 (1979).

203, P. McTague, D. Frenkel, and M. P. Allen, in Ordering in
Two Dimensions, edited by S. K. Sinha (North-Holland, Am-
sterdam, 1980), p. 147.

21E. H. Brandt, Phys. Status Solidi 36, K167 (1969).

22E. J. Kramer, J. Appl. Phys. 41, 621 (1970).



