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Total-configurational-energy calculations have already been very successfully carried out for periodic
structures and for isolated molecules, allowing one to study, e.g., crystal structures, reconstructions, and
vibrational frequencies. We describe here for the first time a method for calculating the total energy of
isolated, charged, point defects in an infinite crystal. It uses the self-consistent Green’s-function technique.
We demonstrate its quantitative utility be applying it to two defects in GaP.

Many of the interesting phenomena associated with
deep-level point defects in semiconductors occur because
the equilibrium positions of the constituent atoms and the
forces holding them in place depend on the charge state of
the defect.'! Examples include negative-U systems,? radia-
tion enhanced diffusion,’ persistent photoconductivity,* and
various self-trapping systems.® Although understanding
these situations requires knowing how the total energy of
the system depends on the charge and position of the near-
by atoms, no quantitative scheme to solve this problem for
a truly isolated point defect has yet been proposed or imple-
mented.

Approximations to the total energy of defects have been
obtained using self-consistent electronic calculations in a su-
percell geometry.>’ Aside from the well-known problems
with this method, e.g., impurity banding, the supercell
geometry demands either that the defect be neutral, pre-
cluding a study of the charge dependence,® or that there be
a pair of oppositely charged defects in each neutral super-
cell,’” raising questions about the long-range interactions
between charged defects. Calculations also have been car-
ried out using first-principles® and semiempirical methods in
a finite cluster.’ Here, in addition to the well-known prob-
lems with cluster methods, a problem arises of spurious in-
teraction between the charged defect at the center of the
cluster and the cluster terminator. Interestingly, gradients
of the energy at a truly isolated defect have recently been
calculated using the Helimann-Feynman theorem.'®!
Although this is useful for determining equilibrium confi-
gurations, it is not so for comparing situations which differ
by more than a simple distortion. Clearly, a method of cal-
culating the total energy of isolated defects will have
widespread applicability. This Rapid Communication
presents what is, to our knowledge, the first method for do-
ing so and demonstrates its utility by applying it to two illus-
trative situations.

We work within the local-density-functional formalism,?
using first-principles pseudopotentials'® that are equivalent
to the frozen-core approximation.!* The total energy is
given by the usual expression,'®
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This functional should be evaluated using the density p.(r)
that minimizes it. Such a density can be constructed by us-
ing wave functions that satisfy a Schrodinger-type equa-
s 12
tion'%:
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When the conditions (1) and (2) are satisfied, a computa-
tionally simpler form of Eq. (1a) is"®

ET= Zn,'e,»+ Vii_ V¢¢+ fpe(r)(fxc_ ch)dr . (3)

The defect energy we wish to calculate, AE, is the differ-
ence of two energy expressions similar to (3). The initial
situation is the infinite, neutral, perfect crystal and the final
situation is the infinite, neutral crystal containing the defect.
That difference contains a large constant term, the differ-
ence between the total energy of those isolated atoms re-
moved from the crystal and those added to it to create the
defect. The large constant could be eliminated by doing to-
tal energy calculations for the isolated atoms, but we shall
not do so here.

To permit charged defects in the neutral crystal, we must
allow conceptually for reservoir centers at large distance
from the defect. Only one property of the reservoir must be
specified: its energy change u on accepting an electron.
That change depends on how one chooses the zero of po-
tential energy within the solid, but so, too, does each eigen-
value ¢;. By referring p to the same energy scale on which
the eigenvalues are measured, the choice of zero for poten-
tial energy within the solid is made irrelevant.

In evaluating the change in (3), it is useful to write the
electron density and ionic density as

(4a)
(4b)

pe(r)=p2(r)+Ap.(r) ,
pi(r)=p2(r)+4Ap,(r) ,
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where the superscript zero refers to the perfect-crystal situa-
tion. The ionic charge in (4b) is, in the usual way, related
to the Laplacian of the local part of the ionic pseudopoten-
tial Vps. The change in ionic density, Ap,(r), is one of the
inputs to the problem. This quantity will be taken nonzero
only within the very limited defect region. The change in
the electronic density Ap.(r) has to be calculated and, for
isolated point defects, the self-consistent Green’s-function
technique provides a quantitative way of doing so.'®!” Us-
ing that technique, one also obtains the scattering phase
shifts ¢ (E), from which the change in the eigenvalue term
in (3) can be evaluated as'®

1 Er do
-4 d .
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For the charged defect, however, two problems arise.
The first, seemingly formal, is that scattering phase shifts
do not converge for a 1/r scattering potential. In the past,
this has not been regarded as a serious problem because
none of the formulations of the Green’s-function method
have been able to follow the Coulomb tail out to infinity,
and so no numerical difficulties with (5) have been report-
ed. The second problem is more immediate: When one
evaluates the change in V;— V,. using (4), the first-order
term is

AV, = V)= dr—dr,'—[pf’(r)Ap,-(r')
lr—r'l
—p2(r)Ap.(r)] . (6)

This integral diverges at large values of r unless the defect
is neutral. Actually, this problem is related to the seeming-
ly formal one of evaluating (5). Had we studied how the
phase shifts diverge, we would have found exactly the same
problem with (5) as we did with (6). The two divergences
would have canceled were it not for the accident that the
inability to follow the Coulomb tail to infinity suppressed
the infinite value concealed in (5).

To eliminate both divergences consistently, it is useful to
make the cutoff of the Coulomb tail an explicit, rather than
an accidental, feature of the procedure. Define the defect
potential U (r) in the usual way as the difference between
the Schrodinger operators (2a) for the perturbed and perfect
crystals. Instead of using U(r) in the Green’s-function
equation G = G°+ GOUG, we set the potential to zero ident-
ically for r larger than some cutoff radius R. That is, we re-
place the scattering potential U (r) in the Green’s-function
equation by U(r)O(R —r), where O is the unit step func-
tion. This means that the perturbed wave functions no
longer satisfy (2a), but instead satisfy
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We do not solve (7) directly, but instead, we solve the
Green’s-function equation containing the cutoff potential
U(r)O(R —r).

The density p.(r), obtained from this G, does not
minimize the functional (l1a) because its wave functions do
not satisfy (2a). However, if we evaluate (la) using this
density, the error is second-order small because the true
density does minimize the functional. The steps which led
from (1a) to (3) can still be carried out but now, when this
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is done, the second term on the right-hand side (rhs) of (7)
causes an extra term, —f, RU(r)p,(r)dr, to appear on
the rhs of (3). This term combines with Eq. (6) to give a
convergent result even for charged defects. The phase
shifts ¢(e), evaluated for a cutoff potential, are now also
well defined, and there is no ambiguity about any of the
terms going into AE. Because of Eq. (7), Janak’s theorem!’
9E,/0n,=¢€; no longer holds. Instead, we now find that

ARE) —eit [, VO tpurrar ®
where Ap.(r) is the change in density we obtain from the
Green’s-function calculation using the truncated potential.

Let us now turn to results obtained by applying this for-
malism to calculating the total energy of two illustrative de-
fects in GaP. The purpose of this is to demonstrate that the
proposed formalism, which is so far completely untried, is a
viable one. Our Green’s function for GaP carries 20 orbi-
tals per atom, and uses a 17-atom cluster for both inner-
and outer-set orbitals.'® We use nonlocal pseudopotentials'?
for Ga, for P, and O, and the Ceperly-Alder expression for
correlation and exchange. The cutoff radius R is 0.70a,
where a is the lattice constant. Thus, R passes close to the
centers of the second-neighbor phosphorus atoms, each of
which is a/+2 distant from the central atom.

The first-model defect is created by having phosphorus as
the central atom and allowing the four nearest-neighbor Ga
to move, each by the same amount, radially outward
(u > 0) or inward (¥ <0). The displacement ¥ =0 corre-
sponds to a perfect crystal and should, by translational sym-
metry, be the minimum energy configuration. The
Green’s-function formalism, with the 17-atom cluster, the
cutoff R, etc., does not automatically retain that symmetry.
Therefore, obtaining the energy minimum at ¥ =0 is an im-
portant test of the convergence and internal numerical con-
sistency of the scheme. Strictly speaking, there is no need
to use the cutoff R for this defect, which is neutral. How-
ever, we have deliberately chosen R somewhat smaller than
would be needed to fully enclose the volume of nonzero de-
fect potential in order to demonstrate that the cutoff of it-
self does not introduce any spurious shift in the equilibrium
position. AEr was calculated at four nonzero displacements
(see Table I ). Self-consistent iterations were carried out
until the difference between input and output potential at
any point was no larger than 0.004 eV for the large displace-
ments or 0.0003 eV for the small ones. This high degree of
self-consistency is needed for the convergence of the ener-
gy. It is 10 to 100 times better than what is normally need-
ed for convergence of the electronic structure. The calculat-
ed energies satisfy

AE =Bu+5Cu*+4Du’ ,

with B=0, C=70.85 eV/A2 and D= —96.77 eV/A3, to
better than 0.01 eV. The minimum is at ¥ =0, the anhar-

TABLE 1. Energy of GaP for various radial displacements of Ga
centered around P.

u (A)
AE (eV)

+0.236 0
1.761 0

—0.0472
0.087

—0.0755
0.207

—0.236
2.185
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monicity is in the expected direction (compressing the
bonds to the central phosphorus is harder than stretching
them), and the spring constant C is reasonable in size.
(The compressibility of the crystal, interpreted as nearest-
neighbor bond stretching, would have given C = 50 eV/A2
Here, there are bond-bending forces of unknown amount
acting to raise C.)

The second example is a model defect in the sense that
we do not investigate lattice displacements. It is GaP:Op,
where an oxygen atom replaces the central phosphorus but
the nearest gallium neighbors are at ¥ =0. Here, the intent
is to test the operation of the cutoff scheme when there is a
Coulomb tail in U(r). The defect can exist in three charge
states, O*, 0% and O, obtained by populating the gap
state with 0, 1, or 2 electrons. We calculate the total energy
AE(n) and the eigenvalue e(n) for n =0, 1, and 2, where
n is the occupancy of the gap state. By fitting AE and € to
quadratics in n, we can evaluate 9AE/9n at n =0, 1, and 2,
and € at n=-5 and n= % Table II shows that

0AE/dn;— €, the integral in (8), is small at the R we have
used. For this reason, Janak’s theorem!® is well satisfied
and the Slater transition-state eigenvalue method is justified
for calculating total energy differences.

For a cutoff R large enough to fully enclose the defect
potential of a neutral system, the integral should have been
zero for n =1, instead of for n = 0.5 as is the case here.
The discrepancy is presumably to be attributed to our deli-
berate choice of a rather small cutoff.

The values in these tables were calculated without taking
account of the second-order difference in total energy which
arose because the wave functions do not accurately mini-
mize the functional. They were obtained with u placed at
the valence-band maximum, which we take as the zero for
the eigenvalue scale. Thus, the differences

E0/+)=AE(1)—AE(0)=1.32¢eV
and

E(=/0)=AE(2)-AE(1)=1.55¢eV

are the energies required to take an electron from the
valence band to the first- and second-donor levels of
GaP:Op assuming no lattice relaxation. Let these differ-
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TABLE II. Total energy AE, eigenvalue ¢, and d (AE)/dn for the
three charge states of unrelaxed GaP:Op (in eV).

State n AE e(n) dAE/dn 9AE/dn —e(n)
0t 0 -219.654 1.1784 1.214 +0.036
0° 1 —-218.330 1.4603 1.435 -0.025
0~ 2 —216.785 1.7188 1.656 —0.063

ences be approximated by the transition-state eigenvalues,
E(0/+)=~e(5)=132¢eV, E(—/0)=~e(3)=159eV .

Then the major effect of the second-order total energy
change may be obtained by using perturbation theory to es-
timate the first-order change in the eigenvalues e(—;) and
e(%) caused by the long-range potential at these half-
integer occupancies, namely, by ¥50(r—R)/(Kr). (K is
the dielectric constant of GaP.) This lowers e(-;) and
raises e(%) by about 0.03 eV. Their difference,
UEe(%)—e(—;) is the electron-electron repulsion energy
for this defect and is calculated to be 0.33 eV. This value of
U is in reasonable accord with what we expect experimental-
ly from this system, namely, =0.4 eV. The values of
E(0/+) and E(—/0) are 0.1 and 0.2 eV lower than the
experimental values, namely, 1.45 and ~ 1.8 eV, respec-
tively. Whether or not this discrepancy will decrease when
the nearest-neighbor Ga atoms relax to their position of
minimum energy is presently under investigation and will be
reported elsewhere. It would also be interesting to see
whether use of the local-spin-density formalism would
change the results found for O° which, having an unpaired
electron in the gap state, does have a nonzero spin. We are
not, however, able to investigate this point.

In summary, we have presented a method for performing
total energy calculations on isolated point defects and have
validated its ability to deal with distortions and with occu-
pancy changes. The existence of such a method allows the
several groups now using self-consistent Green’s functions
to study problems previously inaccessible to them.
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