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The electronic ground state, core-hole states, and valence-hole states of CeO, are studied taking into ac-
count strong correlation among the 4f electrons. The ground state is considered as a mixture of two
configurations, 4/° and spin-singlet totally symmetric 4/1-O 2p-hole states. By an analysis of the core-
level photoemission spectrum, the 4 f occupancy is obtained to be about 0.6. The possibility of this mixed-
valence mechanism in metallic mixed-valent systems and «-Ce is also discussed.

Cerium exhibits fascinating physical and chemical proper-
ties due to the 4f electrons.! The nature of electronic states
associated with the 4 f electrons, however, are far from well
understood except for the localized 4 f! configuration of the
Ce3* ion. In so-called mixed-valent compounds [CeN
(Refs. 2-4), CePd;,® etc.], magnetic properties, lattice
volumes, etc., show anomalous behaviors arising from the
4 f occupancy less than unity. Mechanisms suggested for
the mixed valency have been based on the mixing of two
configurations,  4/%(5d6s)™—4f1(5d6s)™~!,  where
(5d6s)™ is m electrons in the conduction band, and there-
fore 4 f! should be located close to the Fermi level.

Recently, questions have been raised against the existence
of purely tetravelent (Ce**, 4/°) compounds by photoemis-
sion,® x-ray spectroscopy,’ etc., suggesting the presence of
4 f electrons in tetravalent compounds; even in CeO,, which
has been regarded as an obvious example of 4f° x-ray
spectroscopy showed 4f'-derived features as well as 4/°
ones.””® This argument was criticized by some authors® in
that the 4! signal could arise from the 40 initial state by a
strong perturbation of a core hole.

The insulating, nonmagnetic properties of CeO, are most
naively understood as due to the tetrapositively ionized Ce
ion (4/°) and completely filled O 2p valence band. Howev-
er, 4! and a valence-band hole (L~') can form an exciton-
like complex with the same symmetry as the 4 f° configura-
tion, that is, spin singlet with the full spatial symmetry.
This configuration 4! L ~! is close in energy to the 4 f° con-
figuration, and mixing of the two configurations
4f%— 41 -1 should be considered in the initial ground
state. In this Communication, a quantitative analysis of the
core-level x-ray photoemission (XPS) spectrum of CeO,
(Ref. 9) has been performed based on this idea, taking into
consideration also final-state effects due to a core hole, and
the 4f occupancy has been obtained to be about 0.6. The
present method holds for other tetravalent compounds such
as Ce(TMHD),, where TMHD denotes tetramethylheptane
dionate, BaCe0O;,’ and semiquantitatively for metallic
CeRhj, CeRu,,° CeCos.? etc.

The 4f electron number thus determined is larger than
has been estimated for lattice volumes, and suggests that
most of tetravalent Ce compounds are mixed valent rather
than pure 4% We would like to point out the possibility
that this type of mixed-valent mechanism is dominant even
in some metallic mixed-valent systems and also in «a-Ce.
As the mixing between the 4/° and 4" L ! states is caused
by hybridization between the 4/ and ligand (L) orbitals,
small volumes favor the total energy of the ‘‘bonding”
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4f9+4 1L~ ground state.

While the core-level XPS spectra of La, Ce, Pr, and Nd
compounds with stable valence show simple structures, the
main line and a L — 4f satellite,'® the core levels of CeO,
exhibit complex features.® The Ce 3d spectrum of CeO; is
shown in Fig. 1, where each spin-orbit component (separat-
ed by A,,) has two intense peaks (v and v'"’ for 3ds/; and u
and u’" for 3d3,) separated by ~ 16 eV and weak satellites
(v’ and v"” for 3ds;; and u’ and u" for 3d3;;) near the low
binding energy peak. In the original assignment,’ the
ground state was considered to be 4% The v""’, u’"’ and
v,u were identified with the main and L — 4f
(4f%— 4f'L 1) shake-down transitions, respectively, but
the weak features v’, v"’, u’, and u’’ could not be explained.
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FIG. 1. Ce3d core-level XPS spectrum of CeO, (Ref. 9) and cal-
culated spectrum (vertical lines) with use of parameters in the text.

Principal components in the final-state peaks are indicated by 419,
4f', and 472,
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A recent molecular-orbital calculation on the CeOs'?~ clus-
ter with use of the scattered-wave Xa (SW-Xa) method!!
attributed the weak satellites to shake-up ones accompany-
ing the main lines ¥ and v, but could not give reasonable
explanation to the intense high binding energy peaks v'"
and u'’. Although self-consistent, local-density, one-
electron calculations may be useful to derive some ground-
state properties such as the 4f-electron number,!? it is not
appropriate for excited states of 4f systems in which elec-
tron correlation is important.

We therefore expand the initial and final states of the
CeOg cluster using a basis set with the integral 4 f number n,
and for the energetic reason neglect n =2 in the initial state
and n =3 in the final state. Thus the initial ground state is
given by

Yy=cpl0) + Jenll) (1)
i

1) =a[10) = 31§ 3 figLssl0) 0))
ij o

where |0) represents the 4f° configuration with the com-
pletely filled O2p levels, L;, and f,-t, are creation operators
for the spin-o ligand orbital L; and the spin-o crystal-field
level f; of Ce4f, respectively, and I’é’s are coefficients to
make the 4f'L~' state fully symmetric. The SW-Xa
results have shown that only the 4f a,,~L a;, overlap and
one of the two 4/ 1,,~L t,, overlaps are important, and we
include these two terms (/=a,, and t;,) in (2).
(0|H|1) = Vs, where H is the Hamiltonian of the system,
can be evaluated from the SW-Xa calculations as
(0|Hlay,)=V,=148¢eV and (0|H|t,)=V,=171¢eV.B
The final core-hole state should also be a singlet state apart
from the core-hole degeneracy by neglecting 3d-4 f multiplet
coupling and is given by

Wr=cpol0) + X epll’) + X camlim’y (3)
I Im

[y =a/10) , 4)

lim") =ajaul0’) (5)

where primes denote the presence of a core hole. In the
third term of (3) there is only one term |aj,t1,);
(OIIH|a2,u> = (tllu|Hla2utllu> = Vl
and
(O'1HIt],) = (asl Hlayti) = V> .

X-ray photoemission spectroscopy (XPS) intensities are cal-
culated with use of the sudden approximation

Ire | (W WEN? . (6

An energy required to move one electron from O2p to
Cedf in the core-hole state may be estimated by the Z +1
approximation:

E@f—4f'L-)Y=E ~—15eV
and
E'(4f'L“—'4f2L"2)EE2~0 eV .

In the ground state, E(4f°—4f'L"')=Ey~0eV. The
energy difference between O2P a,, and ¢, is only 0.1 eV
(Ref. 11) and has been neglected. These three parameters
were adjusted around the above values to give best fit to the
energies and intensities of the XPS: FE;=-142¢eV,
E,=1.1eV, and Ey=0.1 eV. The spectrum thus obtained
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is shown in Fig. 1. One can see that the calculated spec-
trum reproduces quite well the experimental one. The most
significant result is that the 4/ number is as large as 0.61,
which is nearly the same as that obtained for the SW-X«
ground state and is considerably larger than that widely ac-
cepted ~0. This value is compared with that inferred from
the x-ray absortion’ (0.68). With use of the above parame-
ters the ground state (1) is calculated to be 2.2-2.3 eV
below pure 4/° and nonsinglet 4f'L~! states, consistent
with nonmagnetic behavior at experimental temperatures.

Based on the above scheme, the 4 f-derived resonant pho-
toemission spectrum is also calculated. The valence-hole
state with the i symmetry is expressed as

+
\I,Fi=cFiLio|0) +2¢'H‘I‘11Lio—|0> s 7
1
and as the resonant photoionization takes place via

hv
4d'4f L=/4d"% 0 — 4f% 2L 4d%4 S — 4d'O L +el,
the intensity is effectively given by
Ipc|(¥ile TIWR) 2, (8)

where only transition matrix elements for the 4/ emission
remain nonzero. The 4f-derived emission as a function of
E(4f°L-'—4f"L~?) is shown in Fig. 2. One can clearly
see that the 4 f spectrum is quite different from the 4 f com-
ponent of the one-electron density of states (DOS) in the
initial state.!' Intense lines are L ~! final states due to the
4 f emission while weak lines are 4 ' L =2 final states arising
from the L — 4f transition following the 4 f emission. The

OCCUPIED DOS

wee TOTAL
— 4f

E(4f°L'»4f'"2) = 0.1 eV

02p
| [
1 |
>
o 1.1 eV
z
w L v
z | | I
2.1eV
)
d |
3.1eV

L ] |

* I
| 1 1
8 7 6 5 4 3 2

RELATIVE BINDING ENERGY (eV)

FIG. 2. 4f-derived valence-band spectrum of CeO, as a function
of E(4f9L~1'— 4f'L~2). The same parameters as in Fig. 1 are
used. The O2p (a,, and ry,) levels are shown by arrows. The top
panel shows the one-electron density of states (DOS) of the
CeOg~'2 cluster (Ref. 11).
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spectrum is complicated as compared with those of Ce**
compounds'®!? due to splitting of the ay,- and 1,,-like hole
states, but gross features are not very different from Ce**.
This may explain similarity between the 4 f-derived photo-
emission of ‘‘tetravalent’’ CeRh;, CeRu,,° etc., and that of
trivalent intermetallic compounds. So far, resonant photoe-
mission of CeO; has not been reported and no 4/ satellites
have been observed, although the valence-band XPS'“
seems to show the 4 f emission overlapping the O 2p band.
We have shown in this Communication that CeO, is
mixed valent and that nonmagnetic and insulating behavior
is consistent with the presence of the 4 f electrons if we con-
sider the mixing of totally symmetric 4f-electron-ligand-
hole states into the pure 4° configuration. Since this mix-
ing takes place via 4f-ligand orbital hybridization, the total
energy of the ground state is lowered as overlaps between
the 4/ and ligand orbitals (e« V’s) become larger. This
favors a smaller lattice volume as compared to Ce** com-
pounds. We would like to recall that the above properties,
nonmagnetic, small volume, 4/° signals in the core-level
XPS, etc., are also the case for metallic mixed-valent Ce
compounds such as CeN, CePd;, etc., apart from properties
associated with the presence of conduction electrons. This
suggests that not only the mixing 4£%(546s)™
— 471(5d6s)™"! but also 4f°— 45" L~ should be con-
sidered in the metallic mixed-valent compounds. Therefore
we have tried the same analysis by neglecting effects of con-
duction electrons for CeN, for which resonant photoemis-
sion has also been reported.!* Both core-level® and 4f spec-
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tra have been well reproduced with ~ 0.8 of a 4/ electron
in the ground state,'® which is again larger than the 4f
occupancy determined from the lattice volume.?* The 4f
emission is similar to that in Fig. 2 with
EW@GfOL-1'—4f'L ") =2-3eV.

Furthermore, it is possible that the present type of mixed
valency could play an essential role in «-Ce. In the case of
a-Ce, 5d orbitals on the 12 nearest-neighbor atoms play a
role of the ligand orbitals L. The 4f number in «-Ce is
close to unity as has been revealed in many experi-
ments,!”~!° but is not exactly one as can be seen from the
419 signal in the core-level XPS,3 which might suggest a-Ce
to be mixed valent in the same sense as CeQ,. It should be
noted that the essential point of the present mixed-valence
mechanism is not the 4f occupation but is the local sym-
metry of the electronic state of Ce losing its orbital and spin
degeneracy. Therefore, in the a-vy transition, the change in
the 4/ number could be small while the transition should be
a first-order one accompanied by the symmetry change of
Ce4f. Detailed results and discussions on CeN, a-y Ce, as
well as CeO, will be published later.!® A mechanism for the
a-y transition with volume collapse?® will be presented
there.
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