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The mean-square displacement, (r (r)), of a labeled particle hopping on a linear chain through s multi-

component dynamic background vrith vacancy concentration 8J is evaluated in the limit of extremely long
times. We find (rr(t)1 [2va2/(1 —

v)
/ t]2(Jr/ r)r/ t,2where J is s collective hopping rate given by

( X x~/J") t. Here J~ is the hopping rate snd x" the concentration of the Xtb atomic species in the back-

ground.

I. INTRODUCTION

The kinetics of noninteracting classical particles hopping
stochastically on regular lattices are described by the well-
kno~n random walk theory. ' In actual physical systems, the
neglect of interactions is rarely justified. At the very least,
hard-core repulsion forbidding multiple occupancy must be
taken into account.

Unfortunately, the inclusion of interparticle interactions,
even with zero range, causes long-range correlations to oc-
cur and makes the problem nontrivial to solve. In particu-
lar, after protracted motion, the single-particle properties are
affected drastically and self-diffusion, which is the hallmark
of classical random walk motion, fails to obtain if the lattice
is not completely empty (excluding, of course, the tracer
atom).

This phenomenon, sometimes referred to as the single fil-

ing condition, has received wide attention in several disci-
plines. ' In biophysics, Hodgkin and Heynes' (see also
Heckmann~) used the concept in their description of dif-
fusion through very narrow pores in membranes. For finite
but random channel lengths comprising N~ background par-
ticles, the essence of these findings' 9 was a greatly reduced
tracer diffusion as compared to its uncorrelated random
walk value. This reduction, being proportional to
((N" +1) '), becomes quite significant for long channels
and thereby seriously curtails large scale wanderings of the
ion under observation. '8 In a similar vein, mathemat-
ics' "as well as physics'4 '6 literature has dealt with single
filing problems. In particular, the asymptotic time depen-
dence of the mean-square displacement, (r'(r) ), of a tracer
with hopping rate Jo has been evaluated to have the follow-

ing form:

2' 0
''"

( p( )) 2
(1 —c)a J r

c

Here a is the length of the elementary hop and the back-
ground atoms, whose concentration c is finite, are assumed
to have the same hopping rate as the labeled tracer.

The expression given in (I) is exact at both the concen-
tration limits, i.e., when either the vacancy concentration
u = (I —c) 0 or when the background particle concentra-
tion e is vanishing. Moreover, in the intermediate concen-
tration regime it also appears to be substantially corroborat-
ed.

Recently, using a theory given by Tahir-Kheli and Elliott'~

(TKE), Tahir-Kheli and El-Meshad's (TKEM) extended the
above result given in (1), to the case where the background

particles hopping rate, J, is arbitrary. In particular, TKEM
have sho~n that in the limit of a rapidly hopping back-
ground, i.e., J ))J, the expression corresponding to Eq.
(1) becomes

I/2

lim (r (r)) - —,for r) » 1
2va 2 Jt

Jog- ~ C

where r)= J/J . In addition, TKEM have conjectured that
the relationship (2) should hold more generally, quite possi-
bly for all positive values of q.

The difficulty with the TKEM prediction given in Eq. (2)
above is that it is rigorously substantiated only in the desig-
nated limit where r) » 1. For finite rt, (2) is proven only
in the limit of vanishing vacancy concentration, i.e., when
v 00rc 1.

The objective of the present work is twofold. First, it is
to reexamine TKE and TKEM with a view to developing a
recursive renormalization for the small frequency propagator
of the tracer particle. Such considerations were left out in
the original TKE formulation. In one dimension, the
relevant renormalization turns out to be more substantial
than in higher dimensions. In particular, for small frequen-
cies, the renormalization becomes crucially important.
Indeed, the serious overestimate of the long-time asymptot-
ics of the tracer (mean-square) displacement away from the
v 0 and/or the q —~ limits in the original TKE formula-
tion (see Ref. 18) can be directly traced to this neglect.

Using a fully self-consistent renormalization, in Sec. II the
TKEM results are corrected and their intuitive conjecture is
fully corroborated for all q & 0 both in the v 0 and the
c 0 limits.

Our second objective here is considerably more grand:
namely, to obtain the long-time asymptotics of the tracer
(mean-square) displacement for a general, many-component
dynamical alloy. Such an alloy ~ould have a concentration
x" of the Xth type of atoms with hopping rate J". More-
over, we shall continue to assume the existence of an arbi-
trary vacancy concentration v, i.e., subject only to the condi-
tion

In (3), k is summed over all the atomic species present,
e.g. , A, B,C, . . . , etc. Of course, the single tracer atom is
itself also arbitrary and can, if so desired, be made identical
to any species of the atoms present in the background
stream.
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II. LO%-FREQUENCY RENORMALIZATION —SINGLE-
COMPONENT SYSTEM

Making the usual assumptions'" ' regarding the sto-
chssticity and the instantaneous nature of the hops which
are allowed only across the nearest-neighbor separation to
lattice positions that are currently unoccupied, we get the
following equations of motion for the occupancy variables of'

the tracer, p;, and those of the host atoms of the alloy, n&"

(note, i and j are lattice positions):

dp]

df
XJ)j(P) VJ —PgV() (4a)

= —QJ(1~(n;~VJ np
—V))

dt
(4b)

where VI is the vacancy variable

V;=1 —p; —Xn;"

d(s) = (r (r)) (,)
= —,2 X(t,s)

s k k 0
(7b)

Within the TKE theory, the equation of motion for
G, (r) is written down first. This involves, in addition to

the mean-field terms proportional to 6', higher-order terms
of the form

GtI. '(r) = ((P)uj ,p )), I cj' (Sa)

Mg
= l1J (Itg) =

tip c

%'hen the fluctuations from the mean field become
important —which is always the case in one dimension out-
side the rather trivial short-time regime —the second-order
terms proportional to 6' ' cannot be ignored. To take a
proper accounting of these fluctuations, TKE consider next
the equation of motion of 6' ~ which in turn involves
higher-order fluctuation terms of the form

G"'=((ptu2u3, p i)), 1A2& 3

To make contact with the TKE and the TKEM works, let
us first consider a single-component system such that the
host alloy consists of only one variety of atoms (plus, of
course, an appropriate number of vacancies which reside on
all unoccupied sites). For this system we can dispense with

the superscript A. , thus writing J and n;, instead of J" and

The basic function of interest is the retarded Green's
function for the tracer occupancy variable, i.e.,

G, (r) =0(r)(p, (r)P, (0)) = ((p, ;P, ) ),
or equivalently its Laplace transform G, (s). As is well

known" 4 the long-wavelength Fourier transform G~, where

+ e/a
G, (s)= f d(e'''' ' 'G, (s) . (6b)

m 2~ —sy/o

is related directly to the Laplace transform of the tracer
mean-square deviation. That is, if Gq(s) is written as

Gg(s) = [s + X(k,s) ]

These terms, ho~ever, are of the order of

(u2zu3') G, , —v'c'G,

and their neglect relative to the second-order terms is justi-
fied only as long as Taylor expansions in the limits of small
concentration of background particles, i.e., c 0, and small
concentration of vacancies, i.e., v 0, are valid. However,
for finite concentrations, the TKE procedure is not exact
and its usefulness lies in the fact that for J & J /z (where z

is the coordination number of the lattice) it appears to in-
corporate all the dominant fluctuations from the mean field
and thus produces a useful approximation for the entire
concentration range.

The foregoing argument holds for both two (2D) and
three dimensions (3D). However, in one dimension (1D),
it breaks down because the concentration-dependent Taylor
expansion of the mass operator does not obtain for c 0."
The fact that in the opposite limit, i.e., v 0, the Taylor
expansion continues to be valid even in 10 is of only mar-
ginal usefulness because the essential feature necessary for
the adequacy of the TKE results at general concentrations is
its exactness at both the opposite concentration limits.

In order to identify the source of this difficulty in the
TKE formulation, let us recast their result for the mass
operator in the limit of long wavelengths. We csn ~rite
(compare also Ref. 18)

lim [X(k,s)/(ka)'I = (uJ')R (u, P,s) (9a)

where

lim 8 =(ns)'~'/2)8 .s~0

So far, this reduction of the tracer motion has resulted en-
tirely from a single iterative step, namely, by the influence
of the second-order propagators upon that of the first order.
If s simple perturbative scheme for the mass operator based
upon a concentration expansion were valid, any renormali-
zstion of the second-order propogators themselves (due to
the influence of the third-order propagators) could be
neglected to the dominant order in concentration. Howev-
er, as is clear from Eq. (10), the c 0 limit for the mass
operator is divergent, therefore the renormalization coeffi-
cient R has of necessity to be evaluated through a self-
consistently "dressed ' sei of propagators (rather than
"bare" ones which were truncated in the TKE theory at the
second iterative level).

All correlated propagators, beginning with 6' ', involve in
addition to the tracer at least one fluctuating background
particle field u;. The signature of the propagation of such a
composite is not (vJO) but a. [Note that (vJO) is the sig-

n= J+vJ; P=cJ

This is a rigorous statement which follows readily after sim-
ple rearrangement of the TKE mass operator.

Physically, what Eq. (9a) implies is the following. For
small wave vectors, the average tracer hopping rate in the
mean-field approximation is equal to vJ . Accordingly, the
mean-field value of R is unity. If fluctuations are taken
into account, the average hopping rate is renormalized by a
factor R, where R is a function only of u, P, and the La-
place frequency s. Upon evaluation in 1D, ' '8 the renor-
malization factor R is found to be greatly diminished from
unity, especially for small frequencies (or, equivalently, for
long times), i.e.,
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nature of the tracer propagation at the first level. ] Thus,
the correct procedure for iterative dressing of the tracer
hopping is to solve an integral equation where o. = (J+ vJ )
is replaced instead by a renormalized o.', i.e.,

a o.'= J+vJ R

In such a recursive process, no alteration of the P's is un-
dertaken. The presence of P's is not directly owed to the
propagation of a correlated composite pair consisting of a
tracer and a background particle fluctuation field. [It is in-

teresting to note that a seemingly different dressing pro-
cedure employed by Fedders" [see his Eqs. (43)-(50)} for
the evaluation of the renormalization factor for the J = J
system, sums a similar set of diagrams to that given in (11)
above. The apparent differences in the two procedures arise
only because of the vastly different formulations being em-
ployed. } Thus for zero frequency, i.e., s 0, we get the
following simple relationship for a fully dressed value of the
renormalization parameter R

R = s' (J+vJ R )' '/2P

IV. MULTICOMPONENT SYSTEM—AN EFFECTIVE
SINGLE-COMPONENT PICTURE

In view of the difficulties enumerated above, we propose
an approximate treatment for the multicomponent system in
terms of an "effective" single-component picture. To this
end, it is convenient to recast Eq. (12a) in the following
form

st/2[Jeff+ uR J }t/2
R

2J (1 —v)

where

(14)

trast, the corresponding exact solution for a single-
component system in 2D (or 3D) for the limit v 0 con-
tains' only the well-known "two-body" solution for the
tracer diffusion correlation factor. "

The difficulties encountered in 1D are similarly insur-
mountable. Moreover, the lack of a convenient small con-
centration expansion in 1D is a further handicap.

which gives lim X (k, s)/(ka) ' = (vJ )R
(k )-0 (15)

lim R = (Js) ' '/2Ps~0 (12b)

Similarly, at large frequencies, this procedure readily leads
to the result R =1 thereby leaving the TKE theory intact
away from the small frequency regime. Moreover, Eq. (12)
not only agrees with the well-known result'" for J = J, it

also corroborates the TKEM conjecture" which is
equivalent to Eq. (12), and puts it on relatively firm
theoretical grounds.

III. MULTICOMPONENT SYSTEM: THE DIFFICULTY

G"'= ((p»z»";p, )) .

where

(13a)

u'= n' —(n") = n" x"— (13b)

Thus, unlike in (Sc) and (Sd), the neglect of the third-order
fluctuation for a multicomponent system is not exactly justi-
fied in the limit v 0 unless all but one of the components
have small concentrations and the dimensionality is two or
three. Moreover in 1D, even the small concentration limit
offers difficulty.

In 2D (or 3D), the occurrence of this difficulty is expect-
ed on general grounds. Here an exact solution of the kinet-
ic equations, even in the limit v 0, contains information
about the dynamics of the "many-body" system. In partic-
ular, it includes all the information needed for the solution
of the 2D (or 3D) dynamical percolation problem. In con-

The application of the TKE theory to a many-component
dynamic alloy is quite involved. Not only is the algebra
cumbersome, but also the accuracy of the procedure is infe-
rior ' to that of the single-component theory. " This loss of
accuracy arises somewhat as follows: For the general case,
the second-order propagators refer to coupled propagation
of the tracer with different components of the alloy and the
equations of motion of these propagators depend in turn on
higher-order fluctuation terms of the form

The superscript a- implies either a distinct tracer, when
a =0, or a tracer which is identical to one of the species of
particles in the host alloy, say X, i.e. , a-= A. . The parameter
J'"' is determined by the constitutents of the alloy, their
hopping rates and the frequency.

The most obvious choice for J'"" is a weighted average
over all the background particles. This average, however,
must reflect, rather than just the bare weighting proportion-
al only to the concentration, a fully dressed weighting which
takes account of both the concentration, x", and the
relevant kinetic renormalization parameter, R, of each of
the background components when acting as tracers, i.e.,

Jerf $(JlxkR iL)/ $(xilR IL) (16)

The set of Eqs. (14)—(16) completely specify the behavior
of the mean-square displacement of the tracer in the long-
time limit. Of course, a similar procedure can also be car-
ried out for short times. However, this is quite uninterest-
ing in that the relevant renormalization parameters, R, are
close to unity for large frequencies and the results are un-
changed from those given by the use of the unembellished
TKE procedure. "

In the time domain, Eqs. (14)-(16) readily lead to the
following simple result for the mean-square displacement of
the tracer

i/2

lim (r (r)) = 2va Jt
Jt» eo (1 )1/2 (17)

where J defines a "collective hopping" rate, i.e. ,

(I 8)
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Thus the displacement is determined largely by the slowest
set of particles in the background.
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