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Dispersion of magnetoplasmons in layered systems
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Dispersion relations for magnetoplasmons are derived for both type-I and type-II superlattice systems
within the simple model in which thickness of individual charged layers is neglected. The magnetic field is

taken to be in the direction of the superlattice growth, and coupling to I.O phonons is retained in the

theory. General equations valid within the random-phase approximation are derived, and analytic results

correct up to second order in two-dimensional ~ave number are obtained for the magnetoplasmon disper-

sion.

I. INTRODUCTION

Much attention' ' has recently been focused on the col-
lective excitation spectrum of a system of a large number of
equally spaced, parallel two-dimensional electron layers,
Very recent interest arises from the experimental observa-
tion' of collective modes in the semiconductor superlat-
tice system both in the presence and in the absence of an
external magnetic field. In a recent publication detailed
theoretical description of the collective excitations in semi-
conductor superlattices was provided with particular em-
phasis on the situation without any magnetic field. Subse-
quent experimental observation of the plasmon mode in

GaAs-Al„Ga~ „As superlattices by a light scattering experi-
ment confirmed the theoretical predictions rather well, and
a satisfactory picture of the collective excitation spectrum in

layered systems in the absence of any magnetic field has
thus emerged.

Ho~ever, the situation in the presence of an external
magnetic field is not so clear. In particular, a magneto-
plasmon mode has been observed' in light scattering
spectroscopy of a GaAs-Al„oa~ „As superlat tice. Even
though this mode obeys the simple theoretical prediction in
its dependence on electron density in the layers, it is found
to have rather anomalous magnetic field dependence. De-
fining ~0=~ —~„where rv is the experimentally ob-
served magnetoplasmon frequency and cu, is the cyc1otron
frequency, one expects coo to be independent of the magnet-
ic field in a leading-order calculation. Experimentally, coo is
found to be weakly magnetic field dependent and its value
in the long-wavelength limit seems to be in slight quantita-
tive (but nor qualitative) disagreement with the prediction of
the simple theory. This is surprising since the simple
theory describes the situation in the absence of any magnet-
ic field quite well.

To understand the reason for this discrepancy and in or-
der to provide a complete description of the magneto-
plasmon dispersion in these systems, we treat in this paper
the problem of collective excitations in semiconductor su-
perlattices in the presence of a strong, external magnetic
field. For the superlattice we employ the simplest possible
model in which the thickness of individual charged layers is
neglected and the system is taken to consist of a periodic ar-
ray of an infinite number of charged layers (of zero thick-
ness). The layers are considered to occupy the xy plane and
the separation between adjacent layers in the z direction is
taken to be a length "a." For a type-I superlattice all layers
are identical, containing charge carriers of two-dimensional

density n per unit area and of effective mass m. For a
type-II superlattice, alternate layers contain two different
types of carriers (which may be electrons and ho1es or elec-
trons with different effective masses) with two-dimensional
densities n ~ and n2 and effective masses m ~ and m2, respec-
tively. The superlattice period (in z direction) is thus a and
2a for the types-I and -II systems, respectively. A constant
external magnetic field 8 is assumed to exist along the z
direction. We employ self-consistent field random-phase
approximation (RPA) as discussed in detail in Ref. 6. We
restrict ourselves only to the nonretarded limit (c ~) in

this paper. In Sec. II we discuss the type-I superlattice,
whereas in Sec. III we discuss the type-II system. We con-
clude in Sec. IV with a brief discussion of the experimental
situation.

II. MAGNETOPI. ASMONS OF TYPE-I
SUPERI.ATTICE

Following Ref. 6 it is straightforward to write down the
general dispersion relation for the magnetoplasmon in type-I
superlattice system within the RPA:

where ~(co) = K„(ru' —cut. )/(&u' —cur') is the background lat-
tice dielectric constant, and ~L and ~T are, respectively, the
LO- and the TO-phonon frequencies. The wave number q
is the two-dimensional (2D) wave number in the plane of
the layer, whereas k, is the wave number in the superlattice
direction which is defined in the range 0 ~ k, ~ 2vr/a by vir-
tue of the periodicity in z direction. The electronic polariza-
bility function II(q, ru) is given in the presence of the strong
magnetic field by

~here n, n' are Landau level indices, and E„=(n +
2

}Am, is

the energy of the nth Landau level with cu, =eB/mc as the
cyclotron frequency [I = (ct/e8 ) '~' defines the Landau
length]. In Eq. (2), f„denotes the occupancy of the nt h
Landau level, whereas the coefficient ~C, (q ) ~' is given by

( )(2 2' q/ e
—qll2L"1 "2

t
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where n t=max(n, n') and n 2=min(n, n'). The function
L'(x) is the associated Laguerre polynomial9 defined by

L r (x ) exx r —(e -xxm+r)1

mI d
(4)

In Eq. (1) the function S(q, k, ), the form factor which
determines the phase coherence of the collective excitation
in different layers, is given by

S( k ) sinh(qa)
cosh(qa ) —cos(k, a )

(5)

In Eq. (6), b'= (N + 1)i', where N denotes the Landau in-
dex for the highest filled level. In all the earlier work the
q'i' terms of Eq. (6) were neglected.

Using Eqs. (5) and (6) in Eq. (1), we get a cubic equation
in co.

(ru —r«tL) («) 2 —cu t) (cu —4a),2) —a)~2(ru2 —curt) S (q, k, )

qb qbx 1 — (ru' —4a),') + (co' —r«,') =0 . (7)
2

'
2

In Eq. (7), cu~ = 2n ne'q/x is the square of the 2D-plasmon
I

The first theoretical treatment of the magnetoplasmon
dispersion in a type-I superlattice system was provided by
Kobyashi, Mizuno, and Yokota. They, however, considered
only the k, =0 limit in Eq. (1). In addition, they restricted
themselves to the ql « 1 situation. Reference 6 general-
ized the calculation to nonzero k„but the restriction
qi « 1 was retained.

In this paper we retain higher-order ql terms in the polari-
zability to obtain a magnetoplasmon dispersion that is
second order in qi. Calculating Eq. (2) up to second order,
we get

'1

nq 1 —qb/2 qb/2
( 44)'. -4. '

frequency and S=S(q,k, ). It is straightforward to write
down the three solutions to Eq. (7). These are coupled
magnetoplasmon-LO phonon modes of the layered system.
Instead of working with the complete solutions to Eq. (7),
we will neglect the coupling between the LO phonons and
the electronic collective modes in Eq. (7). This is entirely
justified since in the actual experimental situation this cou-
pling is extremely weak by virtue of the rather large differ-
ence between cvL and the typical electronic collective excita-
tion energies in the system (e.g. , in the GaAs-AI„Gat „As
system coL-35 meV, whereas the electronic modes are in
the I-20-meV range for accessible values of n and 8).
Neglecting this coupling we write down the electronic collec-
tive modes implied by Eq. (7):

2 2 2 2

CuP+auc+ 2 2
= rum

3o),copSq b

SQip
—30)c

3~c~pSq b2 2 2 2

4mc 2 2
= ma

Scop —3',

The mode cu is the magnetoplasmon or the upper hybrid
mode, whereas the other mode

&us ——2', —3r«, a&~Sq'b /4(S~~ 3co,')—
is the Bernstein mode that carries negligible spectral weight.
Bernstein modes are important only for frequencies cu = neo,
with n = 2, 3, 4, etc. , and co~ is the lowest frequency mode.

Using Eq. (5) in Eq. (8), we obtain the explicit magneto-
plasmon dispersion relation correct to O(q2b'). It is in-
teresting to consider the strong-coupling (qa « 1) and the
weak-coupling (qa » 1) situations explicitly. For
qa « 1, Eq. (5) gives

S = qa(1 —q'a /6)(1+q'at/2 —cosk, a)

whereas for qa &) 1, we have S =1. The corresponding
magnetoplasmon dispersion relations are

2 2
-i i/2

(cu —ru ) i =co qa 1 — 1+ —cos(k a)2 2 12 q2a2 q a
N c p 6 2

2 1+

3o) qb
ru~ 1+ '

for qa && 1
2(ct)p 3ctlg )

2q 2b 2/2
for qa « 1

qadi«~[1+q a /2 —cos(k, a)] ' —3&v,
(9)

(10)

Equation (10) gives the magnetoplasmon dispersion in the
weak-coupling (qa » 1) purely 2D limit, whereas Eq. (9)
contains the 30 limit as a special case when k, =0. Equa-
tions (7)-(9) are the important new results of this paper for
the type-I superlattice system.

III. MAGNETOPLASMONS OF TYPE-II
SUPERLATTICE

In constrast to the type-I superlattice system, collective
excitations in the type-II system have not been studied in

any great detail either experimentally or theoretically. The
theoretical work ' that is known to us concentrates mostly
on the situation without any magnetic field except for a very
brief discussion in Ref. 6. Experimental work is almost
nonexistent except for Ref. 5 reporting the observation of a
helicon wave in a InAs-GaSb superlattice. We do not know

I

of any experimental observation of plasmons or magneto-
plasmons in a type-II superlattice system (e.g. , the InAs-
GaSb system' or GaAs n i p isystem"). H-ow-e-ver, experi-
mental efforts are underway" trying to observe collective
excitations in n -i -p -i superlattices.

Following Ref. 6 we write down the general dispersion re-
lation for the magnetoplasmon in a type-II superlattice:

1

1 — II~(q, ru)St(q, k, ) 1 — IIq(q, ru)St(q, k, )
271e 2' e

Kq

II~(q, ~)II2(q, ~)S2 (q, k, ) =0 . (11.)
Kq

Here, IIi and II2 are the polarizability functions of the car-
riers in the two different kinds of two-dimensional layers
forming the type-II system. Equation (6) gives II~ and II2
with the electron density n;, effective mass m;, and the Lan-



dau length b; (with i =1,2 as appropriate), replacing n, m,
and b, respectively. The form factors Sl and S2 are given
by

sinh(2qa )
cosh(2qa ) —cos(2k, a )

2 sinh(qa )cos(k,a )
S2=

cosh(2qa ) —cos(2k, a )

(12)

%C neglect coupling with the LO phonons for the sake of
simplicity (their inclusion is straightforward within the for-
malism as indicated in Sec. II). We also ignore the small
variation in the background lattice constant K between the
two materials and take it to be a constant.

%C first use the simplest formula for the polarizability
neglecting the higher-order corrections (qb » 1) in Eq. (6)
whence

In Eq. (13), al~l~2 are 2D-plasma frequencies defined by
~l', l,l2=22rnl 2e q/n. ml2 Eq,ua. tion (13) defines the general
magnetoplasmon modes for the type-II superlattice in the
ql (.& 1 limit for arbitrary values of qa and k,a. Experimen-
tally, one is most interested in the strong-coupling
(qa « 1) situation. This can be easily obtained from Eq.
(13) by appropriate expansion of S12 as defined by Eq.
(12). Let us consider the interesting case of k,a =nrr

111,2 —(n 1, 2$ /m l. 2) (Ol M l. 2)

Using this and Eq. (12) in Eq. (11), we get a quadratic
equation in ~2 which can be easily solved to give the follow-
ing collective modes:

ru+ =
2 [ 22a+la&,22+St(ru l+~e)~2)]
1

+-[(alA ~c2+ ~i~pl 5 i~@2) + 4~pl~p2S2 ] ~ (13)

(where n =0, 1,2, etc.) in the strong-coupling situation
(qa (( 1). It is easy to show from Eq. (13) that one gets
the following collective modes:

re+ = —](co2l+CO22+ Wq2l + II'q2)
1

+ f (s) 22 —a) 22+ 8'~2l —8'~22)2+48'~22 W~P]'i ], (14)

where IVl, l,2,2= (22rnl 2e'/nml 2a)'i are the appropriate
3D-plasma frequencies of the system. Equation (14) is the
magnetoplasmon dispersion relation for a two-component
plasma ln thc 3D system.

If we consider the k,a = (n +
2 )vr in the strong-coupling

(qa (& I) situation, we get

CU + = (Ctlgl+ Cdg2+ qa (Qlpl+ Cdp2)
2 2 2 2

+ [fd~l —Cal~2+ Qa (bl&l —Ql&2) ]j

OP~I + gQ M&1,

(15)
OP&2+ QQ OJ&2

Equation (15) gives the coupled magnetoacoustic plasmon
modes of the type-II supcrlattice in thc strong-coupling lim-
it.

Finally, taking the qa » 1 hmit of Eq. (13) will give us
the weak-coupling limit, where wc recover' the magneto-
plasmon modes of the pure 2D layers themselves. The
weak-coupling limit is not an experimentally relevant limit
for these systems, particularly for the light scattering spec-
troscopy.

It is straightforward, but rather tedious, to obtain explicit-
ly the higher-order q/ corrections to the magnetoplasmon
dispersion relations for the typc-II system. One should now
use the complete Eq. (6) for II in the general dispersion re-
lation given by Eq. (11). One immediately gets a quartic
cquatloA lA co glvcn by

(Ol2 al 2l ) (cu' —4~2l) (a)' —al 22) (o)' —4~,'2) —S l
—
]ru~22(ru2

—al,'2) (al' —4al 22) [(1—q 2b2/2) (co2 —4&o2l) + (ru2 —co2l) q'b l'/2]

+ ~22(~2 —m,22) (~2 —4~,'l) [(1—q'b2/2) (~' —4~,22) + (q2b22/2) (~'—~A) ]l

(52 Sl )alplolp2[(al 4~el) ( I lf bl /2) + (~ ~el)? bl /2] [( &2) ( ~ 2 / ) ( e2) f

Solutions to Eq. (16) give the coupled magnetoplasmon-
Bernstein modes (n =2) of the type-II superlattice. We do
not pursue these solutions any more because the Bernstein
modes carry negligible spectral ~eight and the magneto-
plasmon modes have almost the same dispersion as that
given by Eq. (13) in the experimentally interesting qi &( I
situ tatlon.

IV. CONCLUSION

%e have obtained the dispersion relations of the magne-
toplasmons in type-I and -II superlattices in this paper. Our
results agree with the known 2D and 3D results in the ap-
propriate limits. %c have gone beyond the leading-order
result by keeping the higher-order qb correction in our for-
mula where b-i(lV+I)' ' in the cyclotron radius of the
hlghcst filled I andaU lcvcl Mld tg ls thc 2D wave number ln
the plane of the layer.

Experimental work' ' of %orlock and co-workers on a
type-I superlattice shows a small variation of the quantity
ala= (al~ cog ) wltll tile lnaglletlc field. This ls qualita-
tively consistent with our Eq. (9) by virtue of the higher-
order ql correction explicitly retained in our calculation.
However, quantitatively the experimental effect seems to be
larger in magnitude than what Eq. (9) would suggest.

Specifically, the observed magnetoplasmon frequency3 at
8 = 5 T is about 9.5 meV, giving rise to an- (al' —al2)'i2 Of abOut 5 meV. If We COmpare thiS With

the ~o=au~S' that we obtain by neglecting the correction
term in Eq. (8), we And a theoretical value of 7.5 meV to
be compared with the experimental value of 5 meV. By the
inclusion of the dispersion correction [the second term in
Eq. (8)] and use of the parameters (qa =0.8, k,a =5.5,
a =780 A) corresponding to the experimental situation we
get me 7.3 mcV, which is closer to the experimental value
of 5 meV but still far too large. Thus at least part of the ex-
planation of the experimental observation must lie outside
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the higher-order qb corrections in the dispersion relations
considered in this work. Other possible mechanisms could
be electron-electron interaction neglected in this paper and
the finite-size effects.
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