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The formula for the quantized Hall conductance in a two-dimensional electron gas is often derived by
solving the Schrodinger equation for an electron in crossed electric and magnetic fields, and taking the ex-
pectation value of the current operator in its eigenstates. In this report ~e demonstrate explicitly, by using
the Dirac equation, that there are no relativistic corrections to this expression, at least in the ideal case.
This is true even if the drift velocity of the electrons approaches the speed of light or the Landau level

splitting approaches the electron rest-mass energy and holds despite the appearance of a classical correction
to the cyclotron frequency.

The transverse magnetoresistance of the two-dimensional
metals formed at semiconductor-insulator or semi-
conductor-semiconductor interfaces has been observed' to
be given by the expression

Rn = h/e'i

where i is an integer equal to the number of Landau levels
for which all extended states are occupied. Equation (1)
holds an accuracy of better than 1 part in 106. It can readily
be derived by considering a noninteracting two-dimensional
(2D) electron gas in crossed electric and magnetic fields,
and most theoretical activity has focused on establishing Eq.
(1) in the presence of various classes of background poten-
tials. I In this paper we report on an investigation of the
possibility of relativistic corrections to Eq. (1},suggested by
Girvin and Cage. As discussed below, we find that the
same result for an ideal 2D electron gas is obtained irrespec-
tive of whether Eq. {1) is derived from the Schrodinger
equation or the Dirac equation. Correspondingly, although
we do not focus on that aspect here, the general argument
of Laughlin can bc gcncral1zcd to thc rclat1vlstlc case and
so we should expect no relativistic corrections to Eq. (1) in
real quantum Hall systems.

We start by considering the Dirac equation for a 2D elec-
tron gas in the x ypiane in cross-ed electric [E= ( —E, 0, 0),
g=Eex] and magnetic [H= (0, 0,H), A= (O, Hx, 0)] fields.
Following Landau and Lifshitz" we first consider the auxili-
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The orbital eigenfunctions for the first three terms in Eq.
{2) may be taken as plane waves in the y and z direct1on, "
with the x-dependent wave function obeying

ary second-order equation

[(I'—eEx)' —(e p —eA)'
—m'c +elcHX, +iegcEn„]ran=0, (2)

~here ~' is the Dirac equation eigenvalue and other nota-
tions are standard. The first three terms on the left-hand
side of Eq. (2) depend only on orbital coordinates while the
last two depend only on spinor coordinates. This allo~s us
to seek solutions to Eq. (2) which are the product of spinor
and orbital functions. The normalized eigenspinors and
cigenvalues for the last two terms in Eq. (2) are
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where ru,' e(H' —=E')/m 'c, xp =h k„c/eH, and
xp = (H'xp ES'/e)/(H' —E').—The only nonconstant term
on the left-hand side of Eq. (4), the second term, is propor-
tional to the one-dimensional harmonic-oscillator Hamiltoni-
an, and so the eigenvalues and eigenfunctions are known.
The equation A.„+A.+ =0 may be solved to determine
8'(k~, n, +}with the result

I

Apart from a normalization constant, the solution to the
Dirac equation, P, is related to

4(kq, n, +) =(L~L, ) ' 'exp(ikey) exp(ik, z)$„(x)X+ (6)

by

4= [P[g(kg, n, +)—eEx) —y (cp —eA)+mc')4 . {7)
1/20 —ES'(kt, n, +) = eExp+

H
t

x (m'e +t'k, 'c'+mc [tcu, (2n+1+1)]]'i'

It is useful to compare these solutions with their nonrela-
tivistic counterparts. In Eq. (4) we see that the cyclotron
frequency co, has been reduced, compared to its nonrela-
tivistic value, co, —= eH/me, by a factor of [1—(E/H)')'i;

(5) this feature is shared with the corresponding classical prob-
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lem. ' The centers of the x-dependent orbitals are located use the operator relation'
at 1

xa =xo — ~m c +f k, cE I 2 4 2 2, 2

eH H —Ez

+ mc [t(u, (2n + I + I ) ]] ' (8)

which can be compared with the nonrelativistic expression
xo = xp Emc /eH Thc .important point herc is that even

though the distance that the orbital centers are shifted by

the electric field is changed in the relativistic treatment, the
separation between orbitals with differing values of k~ is un-

changed [8,= (tc/eH)8k~] Wit.h the use of Eq. (8) the
energy can be reexpressed in terms of the electrostatic po-
tential at xp,

e- ie — j xH
H, p

——A = ——E+
c h ec

where H = n (cp —eA)+Pmc'+e$ is the single-particle
Dirac Hamiltonian. Since the expectation of the commuta-
tor is zero we have, for each eigenstate of H,

( &I ( k g, ~. & + ) Ij~ I g ( k qn, k,+ ) )

= (ecE/H)($(kqnh, . +, )~P(kq, n, X+)), (12)

Equation (12) can also be obtained explicitly, if somewhat
tediously, by using Eqs. (3), (6), and (7). Thus we have
that

Hg(kq, n, + ) = eExp +-
H —E
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ec VHI = o.pi (13)

(9)
which can be compared with the nonrelativistic expression

h kzg= eExp +mc +
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As we can see in going from Eq. (9) to Eq. (10), it is possi-
ble to distinguish two types of relativistic corrections, those
which go as (E/H)' and those which go as fry, /mc' In.
typical experiments fry, /mc' —10 ' and, calculating on the
basis of an ideal system, E/H —10 '. As we see more ex-
plicitly below E/H is the ratio of the "drift" velocity of the
current-carrying electrons to the speed of light. If most of
the current is carried by few electrons because of localiza-

tion or because of electrostatic' effects, then this ratio
could be several orders of magnitude large. Also, the drift
velocity of electrons in edge states" can be several orders of
magnitude larger. Thus, at first sight, it seems that there
could be relativistic corrections to the quantum Hall effect
at an accuracy level which is currently being approached ex-

perimentallyy.

To calculate the Hall current we assume that some in-

tegral number i of Landau levels is occupied. Then

where VH=EL„and o-p is the number of states per unit
area per Landau level. However, from Eq. (8) and taking
periodic boundary conditions (k„=2rrn/Lz), it is clear that
0 p is unaltered from the nonrelativistic case, and we recover
Eq. (1).

There are essentially two elements influencing the expres-
sion for the Hall resistance of a 2D electron gas. The first
element is the drift velocity of the electrons in the crossed
fields. The argument leading to Eq. (12) shows that this
must be eE/H, so that the Lorenz force is zero, indepen-
dent of any relativistic treatments. The second element is
the number of states per unit area in a Landau level. For
an electron gas, whether relativistic or nonrelativistic, the
electric and magnetic fields enter only in the two combina-
tions (fk„c —eHx) and (E —eEx). Periodic boundary con-
ditions require that k~ values be quantized in units of
27r/L» The Dira.c (or Schrodinger) equation for adjacent al-

lowed values of k~ can be mapped into each other by chang-
ing the origin in the x direction to x = x+ hx
[gx = (hc/eHLz)] and the zero of energy by —eESx. Thus
the number of states per unit area in a Landau level is also
independent of the details of the solution and there are no
relativistic corrections to the quantized value of the Hall
resistance.
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where the relativistic current operator j~=ecn~, indepen-
dent of A. To evaluate its matrix element in Eq. (11) we
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