Concentration-dependent dielectric response of $Ga_{1-x}Al_xAs$

P. Csavinszky and K. R. Brownstein Department of Physics, University of Maine, Orono, Maine 04469 (Received 7 March 1983)

The dielectric properties of the semiconductor $Ga_{1-x}Al_xAs$ are of importance in the study of electronic states and charge conduction. In this paper we present analytical composition-dependent spatial dielectric functions for $Ga_{1-x}Al_xAs$ involving compositions from x = 0.05 to x = 0.45 in steps of 0.05. The spatial dielectric functions we present describe the response of $Ga_{1-x}Al_xAs$ to charges of $Z = \pm 1$, ± 2 (in atomic units) embedded in the semiconductor.

I. INTRODUCTION

The semiconductor $Ga_{1-x}Al_xAs$ has received and continues to receive a great deal of attention. The reason is that, in conjunction with GaAs, superlattices can be formed which present a unique opportunity for the study of electronic states¹ and charge conduction.² For this reason the dielectric properties of $Ga_{1-x}Al_xAs$ are of fundamental importance. In this paper we present analytical composition-dependent spatial dielectric functions for this semiconductor. We have considered the composition of x = 0.05 to x = 0.45 in steps of 0.05, and the response to charges of $Z = \pm 1, \pm 2$ (in atomic units).

II. THEORETICAL BACKGROUND

The spatial dielectric function of an undoped semiconductor describes the response of the valence electrons to a point charge placed into the crystal lattice. The response consists of a rearrangement of the valence electrons that results in the shielding of the potential of the charge.

A few years ago Resta³ formulated a Thomas-Fermi (TF) approach for obtaining an isotropic spatial dielectric function of a semiconductor. In a subsequent work Cornolti and Resta⁴ have numerically solved the nonlinear TF equation for the potential and presented the spatial dielectric functions in the form of graphs for point charges $Z = \pm 1$, ± 4 embedded in undoped diamond, Si, and Ge.

In order to obtain analytical spatial dielectric functions, Csavinszky and Brownstein⁵ formulated a variational approach by which the nonlinear TF equation can be solved approximately. In their work they have considered point charges Z = +1, +2, +3, and +4 in undoped diamond, Si, and Ge. In a subsequent work, Csavinszky and Brownstein⁶ extended their variational approach to point charges Z = -1, -2, -3, and -4, again in undoped diamond, Si, and Ge. In another paper,⁷ the variational approaches of Refs. 5 and 6 have been applied to GaAs, and sitedependent spatial dielectric functions have been obtained. In the above work, point charges $Z = \pm 0.16$, ± 1.16 , and ± 0.84 have been considered. The charges Z = +0.16 and Z = -0.16 are the effective charges⁸ due to the partial ionicity of the chemical bonds on a Ga and As site, respectively. The charge Z = +0.84 corresponds to a column VI donor on an As site, that of Z = +1.16 to a column IV donor on a Ga site. Similarly, the charge Z = -1.16 corresponds to a column IV acceptor on an As site, that of Z = -0.84 to a column II acceptor on a Ga site.

In the present work, the site dependence of the spatial

dielectric function of $Ga_{1-x}Al_xAs$ is not considered since, to our knowledge, no data are available on the compositiondependent partial ionicity of the sites in $Ga_{1-x}Al_xAs$. In what follows, atomic units ($\hbar = 1$, m = 1, $e^2 = 1$) will be used. In Sec. II A we discuss positive point charges, and in Sec. II B negative point charges.

A. Positive point charges

The spatial dielectric function $\overline{\epsilon}_n(r)$ is defined³ by

$$V(r) = -\frac{Z}{\overline{\epsilon}_n(r)r}, \quad 0 < r \le R_n \quad , \tag{1}$$

where R_n is a screening radius beyond which the screening of the charge is complete, and V(r), the potential energy of the charge, is the solution⁴ of

$$\nabla^2 V(r) = \begin{cases} a \{ E_F^{3/2} - [E_F + A - V(r)]^{3/2} \}, & 0 < r \le R_n \\ 0, & R_n \le r < \infty \end{cases}$$
(2)

The boundary conditions that V must obey are discussed elsewhere.⁴ In Eqs. (1) and (2) the subscript n refers to the word nonlinear, while in Eq. (2) the constants a and A are defined³ by $a = 2^{7/2}/3\pi$ and $A = V(R_n)$. The quantity E_F denotes the valence Fermi energy, which is related to the valence Fermi momentum k_F by $E_F = k_F^2/2$. The latter is calculated from $k_F = (3\pi^2 n_0)^{1/3}$, where n_0 is the density of the valence electrons. In our calculation of n_0 , due to lack of data, we have neglected the very slight composition dependence of the size of the $Ga_{1-x}Al_xAs$ unit cube, i.e., we have assumed that $Ga_{1-x}Al_xAs$ has the same size unit cube as GaAs. In calculating n_0 we have used a unit cube side⁹ of 10.684 a_B (a_B is the Bohr radius), and considered that it contains eight atoms,¹⁰ with a Ga or an Al atom contributing three electrons, and an As atom contributing five electrons. The value of the valence Fermi momentum used in our calculations is $k_F = 0.92 a_B^{-1}$.

In the variational approach of Csavinszky and Brownstein,⁵ Eq. (1) is rewritten by the substitution

$$\psi(r) = r[V(r) - A] \quad . \tag{3}$$

The resulting differential equation,

$$\psi'' = \begin{cases} a \left[r E_F^{3/2} - r \left(E_F - \psi/r \right)^{3/2} \right], & 0 < r \le R_n \\ 0, & R_n \le r < \infty \end{cases}$$
(4)

is then solved by an equivalent variational principle. As before,⁵ in the $0 < r \le R_n$ interval we have used the trial

TABLE I. Parameters entering into the spatial dielectric function of $Ga_{1-x}Al_xAs$ for the case of Z = +1.

x	ε(0)	R _n (a.u.)	r ₀ (a.u.)	λ	
0.05	12.95	4.27	0.25	0.15	
0.10	12.80	4.26	0.25	0.15	
0.15	12.65	4.25	0.25	0.15	
0.20	12.50	4.24	0.25	0.15	
0.25	12.35	4.22	0.25	0.15	
0.30	12.20	4.21	0.25	0.15	
0.35	12.05	4.19	0.25	0.15	
0.40	11.90	4.17	0.25	0.15	
0.45	11.75	4.16	0.25	0.15	

function

$$\psi(r) = \left[(1-\lambda) + \lambda e^{-r/r_0} \right] \left(-\frac{Z \sinh[q(R_n - r)]}{\sinh(qR_n)} \right] , \quad (5)$$

where $q = (4k_F/\pi)^{1/2}$, and r_0 and R_n are variational parameters. As shown elsewhere,⁵ the parameter λ is obtained by imposing a matching condition of $\psi'(r)$ at $r = R_n$. This leads to the expression

$$\lambda = \left(1 - \frac{\sinh(qR_n)}{\epsilon(0)qR_n}\right) \frac{1}{1 - e^{-R_n/r_0}} \quad , \tag{6}$$

where $\epsilon(0)$ is the static dielectric constant of $Ga_{1-x}Al_xAs$. This quantity is given¹ by

$$\epsilon(0) = 13.1(1-x) + 10.1x \quad . \tag{7}$$

Finally, the spatial dielectric function $\overline{\epsilon}_n(r)$, as defined by Eqs. (1) and (3), is given by

$$\bar{\epsilon}_n(r) = -\frac{Z}{\psi(r) + rA} \quad . \tag{8}$$

Using $A = V(R_n)$, and Eq. (6), we find that Eq. (8) becomes

$$\overline{\epsilon}_{n}(r) = \left\{ \left[(1-\lambda) + \lambda e^{-r/r_{0}} \right] \left(\frac{\sinh[q(R_{n}-r)]}{\sinh(qR_{n})} + \frac{r}{\epsilon(0)R_{n}} \right) \right\}^{-1}$$

The values of the parameters $\epsilon(0)$, λ , R_n , and r_0 , for

TABLE II. Parameters entering into the spatial dielectric function of $Ga_{1-x}Al_xAs$ for the case of Z = +2.

TABLE III.	Parameters	entering	into the	spatial	dielectric
function of Ga	$1-xAl_xAs$ for	or the cas	se of Z =	= -1.	

x	e (0)	R _n (a.u.)	r ₀ (a.u.)	λ	<i>R</i> _c (a.u.)	
0.05	12.95	4.89	0.86	-0.45	1.03	
0.10	12.80	4.89	0.90	-0.47	1.03	
0.15	12.65	4.89	0.94	-0.49	1.03	
0.20	12.50	4.89	0.98	-0.51	1.03	
0.25	12.35	4.88	0.99	-0.51	1.03	
0.30	12.20	4.88	1.04	-0.53	1.03	
0.35	12.05	4.87	1.04	-0.53	1.03	
0.40	11.90	4.85	1.04	-0.53	1.03	
0.45	11.75	4.84	1.05	-0.54	1.03	

charges Z = +1, +2, for different values of x, are listed in Tables I and II.

B. Negative point charges

The spatial dielectric function $\overline{\epsilon}_n(r)$ is defined again by Eq. (1), where V(r) is now the solution⁴ of

$$\nabla^2 V(r) = \begin{cases} a E_F^{3/2}, & 0 < r \le R_c \\ a \{ E_F^{3/2} - [E_F + A - V(r)]^{3/2} \}, & R_c \le r \le R_n \\ 0, & R_n \le r < \infty \end{cases}$$
 (10)

The boundary conditions that V must obey are discussed elsewhere.⁴ In Eq. (10) the quantity R_c denotes the radius of the Coulomb hole, determined⁴ from

$$E_F + A - V(R_c) = 0 , (11)$$

while the other quantities have their previous meaning.

In the variational approach of Csavinszky and Brownstein⁶, Eq. (10) is rewritten with the aid of Eq. (3) as

$$\psi'' = \begin{cases} ar E_F^{3/2}, & 0 < r \le R_c \\ a \left[r E_F^{3/2} - r \left(E_F - \psi/r \right)^{3/2} \right], & R_c \le r \le R_n \\ 0, & R_n \le r < \infty \end{cases}$$
(12)

and solved by an equivalent variational principle.

As before,⁶ in the $0 < r \le R_n$ interval, we have used the trial function displayed in Eq. (5). A matching condition on

TABLE IV. Parameters entering into the spatial dielectric function of $Ga_{1-x}Al_xAs$ for the case of Z = -2.

x	ε(0)	R _n (a.u.)	r ₀ (a.u.)	λ	<i>x</i>	ε(0)	R _n (a.u.)	r ₀ (a.u.)	λ	<i>R</i> _c (a.u.)
0.05	12.95	4.17	0.25	0.22	0.05	12.95	5.29	1.76	-1.14	1.52
0.10	12.80	4.15	0.25	0.22	0.10	12.80	5.29	1.81	-1.15	1.52
0.15	12.65	4.14	0.25	0.22	0.15	12.65	5.29	1.87	-1.21	1.52
0.20	12.50	4.13	0.25	0.22	0.20	12.50	5.29	1.92	-1.22	1.52
0.25	12.35	4.11	0.25	0.22	0.25	12.35	5.29	1.98	-1.28	1.52
0.30	12.20	4.10	0.25	0.22	0.30	12.20	5.29	2.05	-1.31	1.52
0.35	12.05	4.08	0.25	0.22	0.35	12.05	5.29	2.11	-1.35	1.52
0.40	11.90	4.07	0.25	0.22	0.40	11.90	5.29	2.18	-1.39	1.52
0.45	11.75	4.05	0.25	0.22	0.45	11.75	5.29	2.26	-1.39	1.52

 $\psi'(r)$ at $r = R_n$ leads again to Eq. (6).

The values of the parameters $\epsilon(0)$, λ , R_n , r_0 , and R_c , for charges Z = -1, -2, for different values of x, are displayed in Tables III and IV.

III. CONCLUDING REMARKS

Inspection of Tables I-IV shows that, with the exception of Table IV, the screening radius R_n is a slowly decreasing

- ¹C. Mailhiot, Yia-Chung Chang, and T. C. McGill, Phys. Rev. B <u>26</u>, 4449 (1982).
- ²R. K. Reich, R. O. Grondin, and D. K. Ferry, Phys. Rev. B <u>27</u>, 3483 (1983).
- ³R. Resta, Phys. Rev. B <u>16</u>, 2717 (1977).
- ⁴F. Cornolti and R. Resta, Phys. Rev. B <u>17</u>, 3239 (1978).
- ⁵P. Csavinszky and K. R. Brownstein, Phys. Rev. B <u>24</u>, 4566 (1981).
- ⁶P. Csavinszky and K. R. Brownstein, Phys. Rev. B 25, 1362 (1982).

function of x. Inspection of Tables I and II shows that the other variational parameter r_0 is not affected by x, and it is the same for charges Z = +1 and +2. In contrast to this, comparison of Tables III and IV reveals that r_0 for Z = -1 is quite different from r_0 for Z = -2, and that in each case the r_0 values show a dependence on x. It is also seen from Tables III and IV that the R_c values are quite different for different negative charges, but in each case they do not show an x dependence.

- ⁷P. Csavinszky and K. R. Brownstein, Int. J. Quantum Chem. Symp. <u>16</u>, 457 (1982).
- ⁸R. M. Martin and K. Kunc, Phys. Rev. B <u>24</u>, 2081 (1981).
- ⁹R. W. G. Wyckoff, Crystal Structures (Wiley, New York, 1963), Vol. 1, p. 112.
- ¹⁰C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), p. 26.