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Two interacting stereo-irregular chains of hydrogen atoms coupled at a finite number of
bridge points are simulated by a computer and are solved numerically via the unrestricted
Hartree-Fock approximation with a modified spin-polarized potential. The electron locali-
zation is studied with the inverse participation ratio and the moment analysis. %e
discovered that the eigenstates in the lower part of the spectrum are localized around the
bridge points due to the random ionic potential. The resultant random potential is screened

by the electrons occupying the intermediate region of the spectrum. Thus electrons near the
Fermi energy feel a smooth potential and can tunnel through the bridge points. Connection
between the present calculation and conducting polymers is discussed.

I. INTRODUCTION

In order to obtain reliable quantitative results for
understanding the electronic properties in disordered
systems, recently there have been many numerical
investigations. Most of the calculations are based on
the tight-binding Anderson Hamiltonian with vari-
ous computation schemes. ' Besides its intrinsic
theoretical interest, the problem of electronic prop-
erties in one-dimensional random systems has been
extensively studied in connection with the quasi-
one-dimensional materials such as the charge-
transfer salts and the conducting polymers. The re-
cent review by Andre's summarizes the numerical
studies of realistic chain systems with the Hartree-
Fock, ' the self-consistent-field —linear combin-
ation of atomic orbitals, ' ' the extended-
Huckel-theory, the crystal-orbital, the
coherent-potential approximation (CPA), and the
band-structure calculation ' methods.

It is desirable to calculate all the interaction
strengths in a model with a set of atomic wave func-
tions, instead of treating them as adjustable parame-
ters. Such first-principle calculation is certainly
very difficult, and so far only a periodic straight
chain of hydrogen atoms has been thoroughly
analyzed. To incorporate such a type of calcu-
lation in disordered systems, we have performed an
unrestricted Hartree-Fock calculation with a modifi-
cation of the spin-polarized potential, assuming a
stereo-irregular chain structure of hydrogen atoms.

Although many authors have attempted to inter-
pret the physical properties of quasi-one-
dimensional materials with the model of a single
chain, the neglect of the coupling between chains is
a serious drawback. For example, it is generally ac-

cepted that the structure of many conducting poly-
mers can be viewed as intermingled fibrils of finite
length. Without the coupling between fibrils, each
electron is restricted to a single isolated fibril and so
cannot conduct current. Regardless of its relevance
to conducting polymers the coupling between chains
is an interesting problem not much studied yet.

In this paper we will investigate numerically the
eltx:tronic properties in two coupl& stereo-irregular
chains. We are particularly interested in the case in
which the two chains are strongly coupled at a finite
number of bridge points. This kind of topological
structure can be easily generated with a computer as
will be illustrated in Sec. II. In order to investigate
the electron localization, we must first derive an ef-
fective one-electron Schrodinger equation from the
complete many-electron Hamiltonian. In Sec. III we
outline the computation scheme of the unrestricted
Hartree-Fock approximation with a modified spin-
polarized potential. The effect of disorder on the
single-particle density of states (DOS) can then be
readily demonstrated. The inverse participation ra-
tio has been used by many authors ' ' ' to rnea-
sure the degree of localization. In Sec. IV we calcu-
late both the inverse participation ratios and the mo-
ments of all the eigenstates to check their degrees of
localization. The interesting phenomena e .. tron
localization and electron tunneling around the
bridge points will be discussed in Sec. V. In Sec. VI
we close this paper with a short remark on the
relevance of the present calculation to the conduct-
ing polymers.

II. TOPOLOGICAL STRUCTURE

Figure 1 shows the topological structure of two

coupled stereo-irregular chains generated by com-

puter. We consider the upper-half space (Z & 0) of a
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FIG. 1. The structure of two stereo-irregular chains li-lb-lf and 2i-2b-2f generated by a coinputer. Atoms ib»d 2b

form the bridge point. The scales along the three axes are different, but all the bondlengths have constant value Ro. Point.

2i is on the Xaxis with a distance D from the origin li.

Cartesian coordiate system (X,F,Z) with one atom
at the origin (the atom li in Fig. 1, or the atom 1 in
the inset of Fig. 1). Taking the Z axis as the sym-
metry axis, we construct a right circular cone of an-
gle 8 with its tip at the origin. A point in the cone
with a distance Ro from the origin (point 2 in the in-
set in Fig. 1) is picked randomly by the computer,
marking the position of atom 2. Then we choose the
line from atom 1 to atom 2 as the symmetry axis of
the second cone, as illustrated by the inset in Fig. l.
The position of atom 3 with a distance Rc from
atom 2 is again chosen randomly in the new cone by
a computer. The process repeats itself until the first
stereo-irregular chain of Ni atoms is generated. The
topological structure of this chain is given in Fig. 1

as the star chain li-lb-lf. Next, we put one atom at

the position 2i on the X axis, with a distance D from
the origin, as the starting first atom, to generate the
second stereo-irregular chain of Ni atoms (the dot-
chain 2i-2b-2f). This process of chain generation is
exactly the same as the one used in Ref. 39 (referred
to as I). Therefore, each chain maintains the quasi-
one-dimensional feature along the Z axis even for
8 as large as n./6, as was explained in I.

Each stereo-irregular chain is characterized by the
constant bondlength Rc and a set of random bond
angles within the range (n.—O, m ). In a system of
randomly located stereo-irregular chains, two chains
may cross each other with a sufficiently close dis-
tance. That is, an atom on one chain is very near to
an atom on the other chain. For convenience, we
call the small region surrounding these atoms a
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"bridge point. " The bridge points represent the
most important coupling in a random system of
coupled chains. If the density of the chains is low
and 8~ is not very large, along each chain (of finite
length) there is only a finite number of bridge
points, and two consecutive bridge points are
separated by a large number of bondlengths. In oth-
er words, the correlation between two bridge points
can be neglected. Under the condition of low chain
density, the coupling of more than two chains at a
single bridge point is also unlikely to occur.

To investigate the physical properties of two cou-
pled stereo-irregular chains, when we generate the
second chain the position of the first atom (point 2i)
and the symmetry axis of the first cone should be
arbitrarily chosen. A large number of such coupled
chains must be examined and the results are then
configurationally averaged. This kind of calculation
is extremely tedious, but can be avoided in the
present work where the density of the chains is as-

sumed to be low. Chains are coupled mainly
through the bridge points the correlation between
which has been neglected. Since the parts of one
chain away from the bridge points are not much af-
fected by the other chain, the characteristic feature
of the coupled chains does not depend crucially on
the relative orientation of those weakly interacting
parts of the chains. To study the coupling between
chains pairwise is then a reasonable starting point
for the general understanding of a system of random
chains at low density. Therefore, the initial position
(point 2i) and the orientation of the first cone axis
have negligible influence of the final results, provid-
ed the distance D (between the points li and 2i) is
much larger than the Bohr radius. Our choice of
the starting condition to generate the second chain is
for convenience only. Almost all the coupled chains
we have generated with Ni N2 ——30 and ——8~ =m. /6
come close to each other at bridge points separated
by more than 10 bondlengths. Using the structure
in Fig. 1 as an example, there are two bridge points.
The first bridge point connects atom pair no. 3 and
the second bridge point connects atom pair no. 17
(marked as lb and 2b). If we take Ro ——5 (in this pa-
per the unit of length is Bohr radius), then the dis-
tances between the two atoms in the atom pair
no. 3 (R3) and in the atom pair no. 17 (R17) are
(D;R3;R17)=(5;0.5751R0,0.3744RO), (6;0.5863RO,'

0.3451Ro ),(7;0.6611RO,'0.4219R0), ( 8;0.7812Ro,
'

0.5629RO), (9;0.9293R0„0.7320RO). Since we as-
sume low concentration of chains, for the calcula-
tion in this paper we always set D & Ro.

The first bridge point at the atom pair no. 3 may
be introduced artificially due to the choice of the
starting condition in generating the second chain.

However, the two bridge points are separated by 14
bondlengths. Consequently, our way of generating
the chains does not introduce the correlation be-

tween the bridge points. The numerical solutions to
be presented later indeed justify this simplification.
Therefore, the presence of the first bridge point will

not affect the main conclusion derived from the
present calculation. There are two advantages to
generating the coupled chains as we have done.
First, if we set 8 =0 and then 8 &0, we can easily

compare the results of the two cases to examine the
disorder effect. Second, by increasing the value of D
step by step, we can investigate systematically the
effect of the chain coupling on the electronic proper-
ties. Nevertheless, we should point out that the
physical significance is not associated with the value

of D, but to the values of R3 and R17, as well as to
the topological structure of the whole system. We
can choose the position of point 2i and the first cone
axis arbitrarily, and this essentially leads to the ap-
pearance of the bridge point somewhere along the
chain, provided the chain is long enough. Our
choice of the initial condition for generating the
second chain is for convenience only, since in this

way bridge points appear in coupled chains which
are not too long to be solved numerically with a
modern computer. Consequently, in the rest of this

paper, the statement "dependence of D" actually
refers to the dependence of the topological structure
of the coupled chains in general, and on the local en-

vironments around the bridge points in particular.

III. UNRESTRICTED HARTREE-FOCK
DENSITY OF STATES

In order to obtain numerical results, we consider
two chains of equal number of hydrogen atoms,
N i

——N2 ——N/2 =30. The system is electrically neu-

tral. The cone angle is set to be 8 =n/6 or 8 =0.
Throughout the rest of the paper the name stereo
irregular chain is for 8 =m/6, and the name

straight chain is for 8 =Q. The Hamiltonian of the
coupled chains is

H= gp; /2m+ g V""(r;)

+ —,$ V"(r;—r,.),

where V""(r;) is the total ionic potential for the ith
electron. The Coulomb interaction between the ith
and the jth electrons is V"(r; —

r& ), and the summa-
tions are over all the N electrons. In I (Ref. 39) we
solved the same Hamiltonian of a single stereo-
irregular chain with the unrestricted Hartree-Fock
approximation but the spin-polarized potential is
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modified. In this paper the same approach will be
used. Let

be the hydrogen ls wave function centered at the ith
atom, and the single-particle eigenfunction of the
unrestricted Hartree-Fock equation be constructed
as

4; (r)= gpj(r)B J .
J

for the o spin, then the unrestricted Hartree-Fock
approximation leads to two coupled equations for
both spin o=t and o=t,

B~HooB~ =Eo .

In the above equation B is the matrix of the coeffi-
cients B J, and E is the diagonal Hartree-Fock
eigenenergy matrix for the spin o.

At the atomic limit, within the manifold of the ls
state, each hydrogen atom can be either neutral with
the one-electron energy level E, or negatively
charged with the two-electron energy level E . The
strong electron correlation effect must be taken into
account in order to obtain the bound state with ener-

gy E in a negatively charged hydrogen. Chan-
drasekhar has proposed a two-particle wave func-
tion for this bound state, which yields a very accu-
rate binding energy as compared to the observed
value. Therefore, the spin-polarized potential in-

cluded in Ho should be modified wherever two
electrons of opposite spins occupy the same atom.
The exact form of Ho is very complicated, and can
be found in an earlier paper. ' Of course, Ho de-

7

Q, ~ eeoc '~ eee

L,
~ e ee ~ %ceo ~ 4

Q, ~e/Sea 0 ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ e ~ e+e 'S

5 ~e ~ ~ ~ eeoc ~ oo ~ a oe ~ ee z ~ ~

I Q
~e ee &' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~e~ eo ~ ~ ~ ~

~
e ~ ~ ~ ~ ~ ~ ~ ego ~ e ~ e oo ~ ~ & ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ \ ~ ~ ~ og

~ ~ ~ ~ 1
~ ~ I ~ ee ~e ~

~
~ g ~

eS ~ ~ eo

II~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I

I I~ ~ ~ ~ ~ ~ oo oo ~ Oo oe ~ ~ * ~ ~

0.3656-1.1649 E —Oe2144 —0.0949 E

~ ~ ~ ~
~ ~

~ l ~ ~ ~ e ~ ~

~ ~

Q
f ~ o e

—1.7833 E —0.1998 —0.0666 E

~ o ~
~ ~

0.3349
FIG. 2. The density of states (DOS) (histograms) and

the IPR (dots) for coupled straight chains with Ro ——3.
The values of D are given on the right-hand side. The
unit of energy is the hartree. The value of A is 1 for IPR,
4 for DOS on the left, and 6 for DOS on the right.

FIG. 3. The density of states (histograms) and the IPR
(dots) for coupled stereo-irregular chains with Ro ——3.
The values of D are given on the right-hand side. The
unit of energy is the hartree. The value of A is 1 for IPR,
2 for DOS on the left, and 6 for DOS on the right.
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FIG. 4. Same as in Fig. 2 but with R(I ——5, A =60 for
DOS on the left, and A =45 for DOS on the right.

FIG. 5. Same as in Fig. 3 but with Rp ——5, A =18 for
DOS on the left, and A =14 for DOS on the right.

pends an the number of up-spin and down-spin elec-
trons. In our model it is very unlikely that the fer-
romagnetic phase is stable. Hence, in our numerical
calculation we consider the case of 30 up-spin and
30 down-spin electrons.

For given topological structure of the caupled
chains, (3) is solved numerically. The density of
state is shown in Fig. 2 for the straight chain with
Rp =3, in Fig. 3 for the stereo-irregular chain with
Rp ——3, in Fig. 4 for the straight chain with Rp ——5,
in Fig. 5 for the stereo-irregular chain with Rp-——5,
in Fig. 6 for the straight chain with Rp ——7, and in
Fig. 7 for the stereo-irregular chain with Rp=7.
Owing to the strong intra-atomic correlation, each
spectrum is split into a lower and an upper subspec-
trum. In each figure, the left column represents the
density of states of the lawer subspectrum and the
right column represents that of the upper one. The
number on the right-hand side of each figure marks
the corresponding value of D.

Let us first examine Fig. 2. All histograms show
the general structure with three peaks. With in-
creasing D the position of the middle peak (indicated

by an arrow} moves toward outside edge of the cor-
responding density of states. When D becomes very
large, the twa straight chains are no longer coupled
and the density of state is then identical to that of a

7
single straight chain. In fact, when D/Rp ———, the

situation is already very close to the limiting uncou-
pled chains. It is well known that for a single
straight chain the density of states for each subspec-
trum is a smooth curve with only two peaks at the
edges. It is interesting to note that in each column
the position of the midpoint between the middle
peak and the outside-edge peak is almost the same
for all values of D, and almost coincides with the
outside-edge-peak position of the corresponding sub-
spectrum of the limiting uncoupled chains. There-
fore, the sequence of histograms in Fig. 2 suggests
that the coupling between the two chains splits the
outside edge of each subspectrum.

If we compare Figs. 2, 4, and 6, we see that the
strength of the split increases with Rp. At the limit
af strong split, the middle peak and the inside-edge
peak merge into one, as can be seen in Figs. 4 and 6.
The variation of the strength of the split with Rp is
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related to the antiferromagnetic ordering. It has
been shown in I that a single straight chain is anti-
ferromagnetically ordered for large Rp. If D&Rp,
two antiferromagnetic chains are again coupled anti-
ferromagnetically. We should point out that here
the strength of split is measured relative to the width
of the subspectrum. The actual amount of split de-

pends on Rp and D in a complicated way; note that
the energy scales in Figs. 2, 4, and 6 are different.

Next, we examine Fig. 3 for the coupled stereo-
irregular chains with Rp=3. The long tails in the
density of states are due to the localized states
around the bridge point, as will be seen in Sec. V.
Besides these long tails all the density-of-states his-
tograms have rather sharp edges. This is the same
feature appearing in the density of states of a single
stereo-irregular chain. Therefore, the intrachain
coupling is much stronger than the interchain cou-

FIG. 7. Same as in Fig. 3 but with Ro ——7, A =200 for
DOS on the left, and A =65 for DOS on the right.

pling to prevent the disorder from having three-
dimensional character. When Rp increases, we see,
in Figs. 5 and 7, that the density of states ap-
proaches the typical shape for three-dimensional dis-
order systems. Figures 3, 5, and 7 can be interpreted
as follows. For a single stereo-irregular chain, due
to the constant bondlength, the dominating disorder
effect comes from the randomness in second-
neighbor interaction. It has been clearly demon-
strated in I that such a physical disorder effect is
rather weak even though the topological disorder
may be very strong, except for large Rp accom-
panied with antiferromagnetic ordering. Let g be
the characteristic interaction length in our system.
If g is much larger than Rp, then within a sphere of
radius g centered at any atom, two chains can still
be recognized. Only when Rp is comparable to g
does the distribution of atoms within this sphere
show three-dimensional disorder. This explanation
manifests itself in the next section when we investi-
gate the electron localization.
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IV. ELECTRON LOCALIZATION

Let us first check the localization of the single-
particle eigenstate (2) via the inverse participation
ratio (IPR} defined as

~« = g I ~crji I X I&oJ I' (4)

For an infinite system with an orthonormal basis,
the value of IPR varies from zero for extremely ex-
tended states to one for extremely localized states.
Although these two conditions are not satisfied for
exact numerical solutions in a finite system, IPR has
been used by many authors to estimate the degree of
localization of eigenstates in a finite system.

In Figs. 2—7 the plottings of the A«'s versus the
eigenenergies are shown by the dots. The vertical
scale for IPR in all cases are the same with A =1.
From Figs. 2, 4, and 6 it is obvious that all the
single-particle eigenstates are extended states. Al-
though the values of the IPR in Fig. 3 are larger
than those in Fig. 2, none of them is large enough to
suggest the existence of a well-localized state. This
type of behavior is very similar to that observed in a
single stereo-irregular chain with Ro ——3. Conse-
quently, we conclude from the II'R analysis that for
Ro ——3 the random coupling between the two stereo-
irregular chains only very weakly localizes extremely
few states.

When Ro increases to 5 and 7, Figs. 5 and 7 indi-

cate the stronger and stronger localization of the

arid

I tl z
L,f =&+;.(r) ~(y —(y&)'~ +;.(r))'",

(5)

L;" =—(4; (r) ~(x —(x}}
~

~P; (r))'~, (7)

of the oi eigenstate, where Z is the longer one of the
projected lengths of the two chains along the Z axis.
The y moment I.," is not normalized, so it also mea-
sures directly the departure of the stereo-irregular
chains from the XZ plane. The up-spin moments
are plotted in Figs. 8—10 for Ro ——3, 5, and 7,
respectively. In all these figures solid curves are for
the coupled straight chains while the dots are for the
coupled stereo-irregular chains. The horizontal axis
labels the eigenstates with increasing eigenenergy.
We should remind the reader that only the lower
half of the eigenstates are occupied. For compar-

eigenstates in the band tails. It was demonstrated in
I that for larger Ro, the eigenstates are sublattice
Bloch states with antiferromagnetic ordering. The
disorder energies in both the intrachain and inter-
chain couplings are of the same order as the antifer-
romagnetic coupling strength. Therefore, for large
Ro the randomness in two coupled stereo-irregular
chains has the three-dimensional feature. This clari-
fies the discussion at the end of the previous section.

To investigate the electron localization in more
details, we have calculated the second moments:

IPR

0 ~ ~ ~ ~~~~ ~ ~ 0 ~ ~
I

I I I

~ ~ ~ ~ ~ ~ oo~+ to ~ e ~ ~ ~ ~

I I I

r. .
I- 0 -"

3.5-

0
~ ~

C5
Z0o
QJ 1
(0

~ ~

'..., V
~

~ ee

~ 0
~ ~ ~

~~ s ~ ~

+ ~ ~ \ ~ ~
~ ~

~ ~

\

P
~ ~

~ ~

\

~ ~ ~

~ ~ Q ~ ~ -- ~ ~ &
~ +

0,

~ I

60

~ ~ ~ ~ ~ ~

I I

60

~ ~
~ ~ ~

~ ~
~ ~

~ ~

60

FIG. 8. IPR and moments for up-spin eigenstates with Rp=3. Solid curves are for coupled straight chains and dots are
for coupled stereo-irregular chains. The eigenstate index n is numerated with increasing eigenenergy.
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When the coupled chains turn into stereo-
irregular structure, the z and the x moments are re-
duced as a result of both the intrachain and inter-
chain electron localizations. The increase of the y
moment is caused by the deviation of the structure
from a planar type. We should point out that the
first 30 eigenstates (1&n &30) belong to the lower
subspectrum and the last 30 eigenstates (31 & n & 60)
belong to the higher subspmtrum. Between them
there is an energy gap. From the behavior of the
moments, we see that with increasing value of Ro,
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ison, the IPR data are also included.
For the case of straight chains, all the moments

behave normally in accordance with the delocalized
wave functions along the chains. The coupling be-
tween the chains is reflected by the x moment hav-

ing a value around 0.5. The value of the y moment
lies around 1, which is the limiting value of an iso-
lated hydrogen 1s wave function. The fluctuation of
the moments is due to the detailed balance between
various contributions to the total energy in reaching
the self-consistent solution.
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the states near the outside edges of the subspectra
(near n =1 and n =60) start to localize first, then
the states near the inside edges of the subspectra also
become localized, and finally all the states in the
whole subspectra are localized. It is important to
notice that for Ro ——3 strongly localized states lie
only near the outside edges of the subspectra. We
will return to this point when we study the tunneling
phenomena around the bridge point. If we compare
the z moments in Figs. 8—10 with the corresponding
second moments in I for a single stereo-irregular
chain, we see a larger fluctuation in the present re-
sult. This is because of the existence of the bridge
point, and is again related to the tunneling phenom-
ena to be discussed later. The fluctuations in the x
and y momenta have their origin in the variation of
the interchain distance.

Finally, let us compare the IPR data and the mo-
ments, especially the z moment. For example, we
examine Fig. 8. Many states should be delocalized
according to the IPR criterion, but are largely local-
ized according to the moment analysis. This differ-
ence, however, suggests that the moment analysis
gives the precursor to effects which occur near the
mobility edge at small length scales.

V. ELECTRON TUNNELING
AROUND THE BRIDGE POINT

Because the two stereo-irregular chains are cou-
pled through a finite number of bridge points, it is
possible to have an eigenstate extended over part of
one chain and part of the other chain, with the two
parts linked at one or more bridge points. This kind
of localization (or delocalization) is difficult to iden-
tify even with the moment analysis. In this section,
we will investigate in more detail the properties of
the eigenstates.

Let us define a path starting from the end point li
of the first chain in Fig. 1. The path traces along
the first chain li-lb-1 f. Similarly, we define another
path 2i-2b-2f along the second chain. The total
length of each path is 29Ro. Then, we calculate
the electron density ! 4; (r)! along these paths.
The presentation of ! 4; (r)! 2 as a function of r is
illustrated in Fig. 11 at the bottom of the right side.
Along the horizontal axis r starts from the first
atom (marked point 1) of the first chain, moves to
the last atom of the first chain (marked point 30Ro),
then starts again from the first atom (marked point
1) of the second chain, and finally ends at the last
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5
4
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30+1 30R.

FIG. 11. The charge distribution along the coupled chains for various occupied eigenstates indicated by the number at
the right end. Inset shows the averaged charge distribution over the screening region (S), and over the linking region (L).
The parameters are cr = f, Ro ——3, and D =3.
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atom of the second chain (marked point 30RO). For
0 = &, Ro ——3 and D =3, the electron density

l 4;,(r)
l

is plotted in Fig. 11 with the values of i
indicated at the right side. i is numerated with in-
creasing eigenenergy. Since only 30 states are occu-
pied for each spin, we have ignored all the empty
states. In each plot the two chains are separated by
an arrowhead, and the bridge point (lb, 2b) is
marked by two stars.

The five lowest energy states are extremely local-
ized. There are three bridge points in this system of
coupled stereo-irregular chains. The ground state is
localized around the narrowest bridge positioned at
the bridge point (lb, 2b). The i =2 state localizes
around another bridge point near the end (li,2i), and
the i =5 state is localized around the third bridge
point near the other end (1f,2f). Strictly speaking,
the third bridge point is only vaguely defined since
around this point the separation between the two
chains is rather large. The electron localization
around this point is mainly due to the electron
correlation effect. There is almost no overlap be-

tween these three localized states. Hence, these
bridge points are not correlated as we have men-

tioned at the end of Sec. II. If we reexamine Fig. 8,
we see that the localization of these states is unambi-

guously indicated by the moments, but not by the
IPR.

Now let us average
l
'0;,(r)

l

over the states from
i =8 to i =20. The result is plotted at the bottom of
the inset (marked as S) in Fig. 11. The positions of
the empty voids coincide with the positions of five
localized states i =1, 2, 3, 4, and 5. Therefore, the
potential produced by the five electrons trapped at
the bridge points is screened by those electrons occu-
pying the states i =8, 9, . . . , 20. The rest of the
electrons which occupy the states near the Fermi en-

ergy (i )21) feel a screened smooth potential, and so
are delocalized. If we further average

l 4;,(r) l

over the states from i =21 to i =30, the result is
shown at the top of the inset (marked as L ) in Fig.
11. This average charge density indeed extends over
the whole system. Consequently, the entire low sub-
spectrum can be divided into three regions; the
states in the low-energy region are localized due to
the random ionic potential, the electrons occupying
the states in the intermediate-energy region provide
the main screening strength, and all the states in the
high-energy region are extended.

A careful examination of these extended states re-
veal their special feature as tunneling states. Take
the state i =28 as an example. We can imagine that
one electron moves along the first chain from the
end point li toward the point lb (marked by a star),
tunnels through the bridge point to the point 2b
(also marked by a star) on the second chain, and

fZ:5,3) (Z:7,3)

aJg[g J!L!g', I a gllglglgg Qg[.Jli!!g J ~ + i~~kla L
h~~e'a& ~Aamyy yg+h Rh& ~yah~~' y [

I
$

a, ala

j!}L

$4)z(r)$

I FIRST CHAIN SECOND CHAIN

D'OR.}1 3080

FIG. 12. Same as in Fig. 11 but with D =5 (left part) and D =7 (right part).
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(Z:5,5) (z:r,5) (z:9,5)

sj)I. II. .JII. .ili. 4 & Ii. .Il. .. a . l .lj/I a

zi J~ . . Il. .lj . . If

2

aL JL

1st CHAIN t2nd CHAIN
Ji L

1st CHAIN t2nd CHAIN
.Il

1st CHAIN f 2nd CHAIN

FIG. 13. The charge distribution along the coupled chains for o = t, Ro ——5, and D =5 (left part), D =7 (middle part),
and D =9 (right part). Only the seven lowest energy eigenstates are plotted with the numerals on the right labeling the
eigenstates.

then continues to move along the second chain to-
ward the end point 2i. The two stereo-irregular
chains are now linked together.

If we increase the value of D to 5 and 7, sitnilar
results are shown at the left part and the right part,
respectively, of Fig. 12. For large values of Ro ——5
and 7, we found that all the states are localized.
Therefore, there is no electron tunneling phenomena
in these cases. The localization of the seven lowest

energy states is shown in Fig. 13 for Ro ——5 and in

Fig. 14 for Ro ——7.
It is clear by now that the existence of the bridge

point introduces a large fluctuation in the moments
for Ro ——3. The fluctuation is gradually reduced as
Ro increases, as can be seen in Figs. 8—10.

The conclusion can be drawn as follows. If Ro is
not very large, the energy spectrum of two coupled
stereo-irregular chains can be separated into a low-

energy localized region, an intermediate-energy
screening region, and a high-energy linking region.

(z:r, r) (z:9,r) (z:11,r)

5

lL

1st CHAINt 2nd CHAIN 1st CHAIN 12nd CHAIN 1st CHAIN t2nd CHAIN

FIG. 14. The charge distribution along the coupled chains for o = 1, Ro ——7, and D =7 (left part), D =9 (middle part),
and D =11 {right part). Only the seven lowest energy eigenstates are plotted with the numerals on the right labeling the

eigenstates.
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FIG. 15. Schematic plot of three interacting chains

coupled at two bridge points.

VI. FINAL REMARK

We have discussed in Sec. II that in a system of
intermingled stereo-irregular chains, each chain is
crossed by other chains at a finite number of bridge

points, provided the chain density is low and the an-

gle 8 is not too large. Figure 15 can be viewed as
part of this system where one chain meets two other
chains at two bridge points. Then, under suitable
conditions there exist tunneling states linking these
three chains from point 1 through points 2 and 3 to
point 4. We then expect a finite dc conductivity. It
is generally accepted that for many conducting poly-
mers, the structure consists of many intermingled fi-
brils.

One weak point in the present calculation is the
appearance of an energy gap between the two sub-

spectra. Therefore, for one electron per atom, a gap
separates the occupied and the empty parts of the
density of states. The presence of this gap is most
likely due to the use of the hydrogen ls wave and
the simplification of the system to only two interact-
ing chains. If we use m. orbitals to investigate a sys-
tem of many interacting chains, the gap is expected
to be removed. However, such a calculation prob-
ably will be beyond the capability of currently avail-
able computer.

Finally, we should point out that the chosen
parameters do not represent simplified experimental
properties. It is certainly not true that an experi-
mental property is the complete geometric structure
of a system. Our attempt is to include the structural
randomness into a system of linear chains and
demonstrate the role of the bridge points as the tun-
neling region, which was not suggested elsewhere.
Of course, a more sophisticated solution on this
problem requires the statistical-mechanics treatment
on a system of randomly distributed bridge points
connected by conducting segments.
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