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It is shown that the simple position-space rescaling method developed by Gonyalves da Silva and
Koiller to compute the local density of states (DOS) in disordered harmonic chains is exact on cer-
tain hierarchical lattices and in the limit of zero impurity concentration. It is demonstrated that
their method can be improved even though convergence to the true DOS cannot be achieved simply.
Partial information on eigenvectors can be extracted from the scaling trajectories. For an ordered
chain, delocalized states can in general be identified with chaotic behavior. Analogies with critical

phenomena may be found from a functional-integral formulation of the problem. The relationship
to transfer-matrix approaches is also mentioned.

I. INTRODUCTION

Disordered systems must in general be studied by ap-
proximate methods. One-dimensional systems seem par-
ticularly well suited to test such methods because of the
existence of quite a few theorems and exact results against
which to test one's ideas. Many of these theorems have
been developed in the context of the Anderson localization
problem, ' others in the context of disordered harmonic
chains. ' It is well known that these problems are in fact
related.

One characteristic feature of the binary chain is that the
spectrum of its eigenfrequencies [or density of states
(DOS)] most often exhibits many gaps and sharp features
whose existence is quite well understood on a theoretical
basis. ' ' Nevertheless, all standard approximation
schemes yield a smooth DOS which does not exhibit such
features. Recently though, it has been pointed out by
Gonqalves da Silva and Koiller (GK) that DOS which
closely resemble computer simulation results may be ob-
tained from a very simple position-space rescaling scheme
(or renormalization group if one is not too strict on
nomenclature). Similar, but more careful and elaborate
procedures have also been used in studies of localization.

The purpose of this paper is to point out limitations of
the GK rescaling scheme and to indicate how, as suggest-
ed by GK, it may be improved while conserving its origi-
nal simplicity. More importantly we believe, we show that
the GK approximation and its generalizations are exact on
certain hierarchical lattices. This not only proves useful
to understand the results, it also provides an example of
how an ordered but highly inhomogeneous system may
mimic an homogeneously disordered system. That such a
possibility existed was already pointed out by Kaufman
and Griffiths' in their study of hierarchical lattices in the
context of phase transitions. In that context, Berker and
Ostlund" had proved earlier that some well-known
position-space renormalization-group schemes, such as the
Migdal-Kadanoff approximation, were exact on these lat-
tices.

Hierarchical lattices have also found their way into the
study of disordered systems such as spin-glasses' but
there one is looking at a problem where the difficulties of
both phase transitions and disorder are intermixed. Even
though our problem has some of the features of critical
phenomena, as is shown in Appendix A, we believe that
we are mostly concentrating on disorder. While hierarchi-
cal lattices in critical phenomena are used as approxima-
tions of higher-dimensional Bravais lattices as well as ap-
proximations of disordered systems, here both the original
disordered system and, in some sense, its hierarchical lat-
tice models are one dimensional.

Note that since the hierarchical lattices for which the
GK recursion relations are exact can be physically real-
ized, this proves that the approximation scheme satisfies
some essential physical requirements such as having a pos-
itive DOS. It is easy to devise other rescaling schemes
which do not satisfy this property.

We also show in this paper that the scaling trajectories
contain some information on eigenvectors. In particular,
delocalized states in general lead to chaotic trajectories'
while trajectories for localized states are attracted to fixed
points. A different kind of fixed point characterizes re-
gions where the DOS vanishes. From what has been said
earlier on the structure of the DOS, it is clear that in any
rescaling scheme for the disordered binary chain the at-
tracting sets in parameter space are bound to have a very
complicated structure. This is the case in the GK approx-
imation.

In Secs. II and III, we discuss various GK-type rescal-
ings and study their convergence to the true DOS. Section
IV introduces the hierarchical lattices. Section V
discusses eigenvectors and scaling trajectories. There it is
also shown that the GK scheme gives the exact DOS on a
single light impurity in an infinite chain. We conclude in
Sec. VI with a general assessment of the method. Analo-
gies with phase transitions are pointed out in Appendix A,
while contact with transfer-matrix approaches is made in
Appendix B.
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II. POSITION-SPACE RESCALING
AND RENORMALIZATION GROUP

g (A;q —M~cp 5,J )uj ——0,
J

where

(2.1)

For the sake of completeness, we review in this section a
few known results. Consider a harmonic chain of atoms
of mass M; at position i. Let us assume that the force
constants between sites i and i + 1 are X;;+&

and that the
displacements of the atoms about their equilibrium posi-
tions are given by u;. Then the eigenvalue equation for
the angular frequency co is given by

changed by a factor of 2 in Eq. (2.7). It is easy to see that
this equation then has the same structure as the original
one. Hence the above steps may easily be repeated to
eliminate more and more degrees of freedom. This is con-
veniently done on a computer by iterating Eqs. (2.8a) and
(2.8b).

When this is done, L'"'~ 0 after a number of iterations
which depends on the value of ie. In general then,

M
600 ——lim 2K'"' —M(m +i@)

(2.IO)

Using translational invariance, we have, for an infinite
chain,

A;, =(l(;;;+,+lt.;;,)5,, —lt.;,+,5, +„—Z;;,5; p(cp )=—ImGpp .
7T

(2.11)

(2.2)

is a tridiagonal symmetric matrix and 5 is a Kronecker
delta function.

Let us define the Green's function G by

g [A,J M~—(rp +is)5&]G&k =M~5;k, {2.3)

Using the cyclic invariance of the trace and the fact that
[M '~~A M '~2 —(cp +i@)I] may be diagonalized by an
orthogonal transformation, it is easy to show that

lim Im[Tr6 ]= lim Tr[ImG ]
e—+0 e~0

=77+ 5(cp; —cp ) (2.5)

where co; are real eigenvalues of (M '~22 M
ro I)=0 or eq—uivalently of Eq. (2.1). We conclude that

with N the number of atoms in the chain,

where is is an infinitesimal imaginary number. Let I be
the identity matrix and M,J

——M;6,J a diagonal matrix.
Then, in matrix notation,

G=M ' [M ' A M ' —(rp +LE)I] 'M'

(2.4)

The effect of a finite e is to insure convergence. The price
paid is that the convergence is to a density of states where
each of the delta functions in Eq. (2.5) is replaced by a
Lorentzian.

There are clearly many ways the scaling transformation
could have been performed. Instead of eliminating N/2
degrees of freedom and changing the scale by a factor 2 at
each iteration as we just did, one could have eliminated
(b —1 )N /b degrees of freedom and correspondingly
changed the scale by a factor b (see Appendix B). One
could also have blocked the degrees of freedom by groups
of two and then eliminated blocks, etc. All these methods
give the exact result in the case of the uniform chain. In
fact, what we have defined here is a renormalization group
since two successive rescaling transformations, one of
length scale r and the other of length scale s, give the same
result as a rescaling transformation of length scale rs. For
a disordered system, as we shall shortly see, approxima-
tions are involved and different rescaling transformations
give different results. For an arbitrary scaling transforma-
tion, a general expression may be found for the recursion
formulae using, for example, projection operator tech-
niques. '

III. GENERALIZATION TO DISORDERED SYSTEMS

p(cp2) = —Im —g G;;
N

(2.6) A. The Cxon~lves da Silva —Koiller
(GK) approximation

is the density of states.
Consider the case of a uniform chain, i.e., M; =M and

K;;+]——K for all values of i. Let us restrict our attention
to the equations for G;0. The first step {so-called decima-
tion) of the rescaling procedure consists in eliminating all
lines for which i is odd. We obtain

[2K —M(rp +is)]G;p M5; p+I (G;+2 p+G;——2 p)

(2.7)

where

L (0)

2K' ' —M~, (rp +iE)

L (0)

2K' ' —M; &{co +is)
(3.1a)

Consider a harmonic chain with uniform restoring
forces {X;;+&——K) and masses Mz and M~ distributed at
random. This is a model for one-dimensional binary al-
loys. If one eliminates degrees of freedom as in Eq. (2.7)
one finds

(0)
L(1)

2X(0)—M(u'+ i e)
(2.8a) L(&) L (0)

2X(0)—M, +,(~'+i &)
(3.1b)

~( ) ~(o) L( )

Z("=L")=—Z .

(2.8b)

(2.9)

In the second and last step, the scale of distances is

Clearly, the "force constants" in the rescaled system are
now random variables because the masses are randomly
distributed. The GK approximation consists in replacing
Eqs. (3.1a) and (3.1b) by their average. (Similar approxi-
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mations have been made in the past in the theory of locali-
zation. In general a complete probability distribution for
the rescaled variables must be kept. ) When we assume
that the masses are independently distributed on each site
with a probability equal to their relative concentrations cz
and cz, Eqs. (3.1a) and (3.1b) become, in the GK approxi-
mation,

L(i) L(0) L (0)

2~(0)—M, (~z+ i ~)

L (0)
Cg

2Z'( ' —M (~ +&e)
(3.2a)

~(1) ~(0) L (i) (3.2b)

In other words, all moments of the probability distribution
for K and L, except the first one, are set equal to zero.
This approximation is discussed further below.

To compute the single-site density of states, one notices
that L(")~0 as n~ ~ and hence, by analogy with Eqs.
(2.10) and (2.11)

pg (g)(~ )=—lim Im
1

&n~ oo

Mg

2K —Mg (g)(co +l 6)

(3.3)

while the total density of states is given by

p(co )=cgpg(co )+cgpg(co ) . (3.4)

The latter result comes from the fact that once n ~ ao, the
averaging over all sites but one (either A or 8) has been
performed. It is then reasonable to assume that the trace
over 6;; reduces to (3.4).

It is well known that the exact one-dimensional density
of states of a binary chain exhibits, for large enough mass
ratio, a complicated system of peaks and valleys which
may be understood from the existence of isolated clusters
of light atoms on all length scales. GK have pointed out
that since in their approximation the averaging is not per-
formed at the first step but only gradually, X/2 sites at a
time, clusters of all sizes are taken into account. Hence,
apart from exact results, their method is the only one
which predicts sharp features analogous to those of the
real density of states. Single-site methods like the
coherent potential approximatio~ produce smooth re-
sults. 4'

As mentioned above however, the GK approximation is
in a sense rather crude since at each step the probability
distribution for the parameters' K and L is replaced by
single values for K and for L. In general, the full proba-
bility distribution must be kept. From that perspective,
one can test the validity of the GK scheme by computing
the ratio of the standard deviation to the average of K and
L after each iteration. If that ratio is small, then one is
justified in keeping only the average of the probability dis-
tribution and neglect its width. By actual computations,
one finds that after one iteration, there are certain values
of co for which the ratio of width to average is infinity.
Decimating twice before averaging does not improve
matters greatly. In fact, there are then more values of co

for which the fluctuations are larger than the average.
Nevertheless, it is conceivable that after many iterations
there are well-defined average values of K and L with

small fluctuations. Hence, even though the GK scheme
may be bad for the first few iterations, it may well im-
prove afterwards and give acceptable results for the com-
plete problem. The best way to verify this is to actually
compare "exact" spectra with the results of GK. In Sec.
II B we consider how to improve the GK scheme.

In Fig. 1(a), we reproduce the spectrum of GK for
Mz ——1, Mz ——3, K=1, cq ——0.5, and @=0.02. For that
value of e, the spectrum converges to better than one part
in 10' in less than 11 iterations for any m . As e~ 0, the
number of iterations increases and the spectrum converges
towards a set of 6 functions. For comparison, we show
the "exact" spectrum obtained from computer simulations
by Payton and Visscher' on a chain of 100000 atoms.
Clearly, the details of the two spectra are different, even if
a few of their moments, which we discuss below, are in
rather good agreement.

To clearly illustrate some of the details of the GK spec-
trum which are incorrect, we note that the density of
states does not vanish at all the forbidden frequencies
predicted by the "special frequency theorem" of Matsuda.
For any mass ratio larger than two, the theorem
predicts special frequencies at v =4' /cg, „=2.0,
3.0,3.41,3.62, . . . . As GK pointed out, for a mass ratio
of three, there is a gap in their spectrum at v =2.0. We
find that this gap is present at all concentrations, but it
does not disappear when the mass ratio becomes lower
than two, contrary to what exact results and numerical
calculations suggest. At the other forbidden frequencies,
there is always a concentration for which the density of
states does not vanish. As the concentration of light
atoms is increased, high-frequency structure (v & 2) slow-
ly shifts to higher frequencies and hence the gaps do not
stay at fixed energy.

Exact results of Borland also give the integrated DOS
at the above "special frequencies. " Given the remarks we
just made, one cannot expect the GK approximation to ex-
actly reproduce those results but nevertheless, the devia-
tions are not necessarily large. For a concentration cz ———,

'

and a mass ratio of three for example, the integrated DOS
of GK does not deviate by more than 7% from Borland's
results.

B. Cxeneralizations of the GK scheme

From comments in Sec. IIA it is clear that the GK
scheme may be improved by keeping a model probability
distribution for I( and L which has more nonzero cumu-
lants than just the first one. This is the standard ap-
proach. We choose a different route. As suggested by
GK, we generalize their scheme in a way that preserves
the very simple probability distribution at the expense of
having either more complicated recursion relations (when
a larger fraction of atoms is eliminated before averaging
over disorder) or a larger parameter space (when blocks of
atoms are kept as the basic unit of the scheme instead of
single atoms). The motivation for this approach is that
one wants to keep the essential simplicity of the scheme as
well as its hierarchical lattice interpretation and verify to
what extent it can be made into a realistic model of disor-
dered systems. We also demonstrate below that, contrary
to what one may have thought, averaging variables other
than K and L (such as K/L and 1/L, for example) does
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Mp
Goo=

Mo(~ +
(3.5)

The exact average density of states on a site of mass MQ
may be obtained by calculating Eq. (3.5) for all possible

not improve the GK scheme. It is meaningless.
Let us consider the first suggested improvement, i.e.,

eliminating a larger fraction of atoms before averaging
over disorder. It seems that this procedure should lead
one, in the limit, to the true spectrum. It is easy to show
that this is not so. Suppose one has eliminated all 6;p ex-
cept Goo. Then L, ' '~ 0 and

chain configurations with a mass Mp at site 0 and averag-
ing. One obtains

~
~

Mp
Goo =

2E' —Mp(co + l 6)

The GK approximation would give

Mp
Goo =

(2K' ') M—o(co +i@)

(3.6)

(3.7)

In view of Eq. {3.6), it is tempting to write the set of
equations for the disordered system's Green's function in
the form
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FIG. 1. (a) Density of states p(m) in the GK approximation
for Mg/Mg ——3, cg ——0.5, and ~=0.02. v'=4M'/M', „. The
length rescaling factor is S =2. (b) p(co ) in arbitrary units, as
obtained by Payton and Visscher (Ref. 16) from computer simu-
lations on 100000 atoms. M~/M& ——3, ez ——0.5, v =4' /co~».

FIG. 2. (a) Density of states p(co ) obtained for the same
parameters as in Fig. 1 but this time 4 of the atoms are elim-

inated before they are averaged over. Hence S =4. The density
of states at v =0 is 1.59 for the value of e chosen (0.02). The
vertical scale stops at 1.5 for uniformity in display. (b) —, of the
atoms are eliminated before averaging. S = 8.
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6-0 (G.+1,0+G.—1,0)
2x(0)—M, (~'+i.~) 2x")—M,-(~'+E~)

(3.8)

and to perform the GK approximation on the variables

(0) MA (B)
A (B)= —MA (B)(cO + l 6')2

(3.9a)

(0) L (0)
+A (B) = (0)2K —Mg (g)(ci) +le')2

(3.9b)

instead of on E and L as in Eqs. (3.2a) and (3.2b). It turns
out that this procedure gives negative densities of states.
The possible reason for this state of affairs and various
other comments on the convergence of the GK approxi-
mation are touched upon in Appendix A. The next sec-
tion will also demonstrate that the density of states ob-
tained from the GK approximation has to be positive
since it is an exact result for hierarchical lattices which
can in principle be physically realized. In Sec. V we also
show that the GK approximation is exact in the single im-
purity limit.

Despite the above remarks, performing more decima-
tions before averaging can improve the spectrum in certain
frequency ranges. In Figs. 2(a) and 2(b), we show spectra
for MB ——3MA and cA

——0.5, computed by eliminating
3X/4 and 7%/8 degrees of freedom before averaging.
This corresponds to scale changes of 4 and 8. These re-
sults can be directly compared with the GK spectrum and
the "exact" spectrum of Figs. 1(a) and 1(b). Eliminating
more degrees of freedom apparently improves the DOS.
The ameliorations are mostly in the lower (v &2) and
higher (v & 3) frequency regions. The central zone of the
spectrum (1.5&v ~3) remains in poor agreement with
the "exact" DQS. This feature becomes more dramatic
when the mass ratio is increased to a very large value.

Figures 3(a)—3(c) show the DQS obtained with the "ex-
act" method and with the GK approximation for a resca1-
ing of 2 and 8. The mass ratio is 10 and the two mass
concentrations are equal. Once again, it is clear that in-
creasing the scale change improves the DQS. But it also
seems impossible to obtain appreciable intensity for the
central peak, whose frequency corresponds to the localized
mode of a single light atom oscillating between two heavy

atoms. The reason for the absence of this frequency is
that the GK approximation is equivalent to calculating
the DOS of an atom moving against parallel groups of
atoms which have masses proportional to MA and MB
{more details will be given in the next section). So, even if
MB is infinitely large, there are still light atoms against
which the central atom is vibrating.

The simplest way to obtain this peak is to perform de-
cirnations on blocks of three atoms instead of a single
atom as done before. The result of this calculation is
shown in Fig. 3(d). This demonstrates that using blocks of
atoms keeps more information on the short-range order. '

This blocking procedure is the second way, mentioned
above, which can improve the GK scheme. This method
converges to the exact result in the limit of very large
blocks (10 atoms, for example). In their paper,
Goncalves da Silva and Koiller use the exact moments of
order one to five to justify their method. (See Tote added
in proof)

We conclude that since, at sufficiently high mass ratio,
the highest and lowest frequencies of a given spectrum
correspond to the largest clusters of either light or heavy
atoms, decimating a larger number of atoms before
averaging improves these portions of the spectrum. The
central part of the spectrum, on the other hand, depends
more on the local environment of light atoms and hence it
is preferable to treat exactly blocks of three or more atoms
to obtain this portion of the DOS correctly. When larger
and larger blocks are kept as the basic element of the GK
scheme and more and more of the blocks are decimated
before averaging, one expects the results to improve.

IV. HIERARCHICAL LATTICES

To understand some of the results discussed in the
preceding section, it is useful to keep in mind that the GK
recursion relations are exact for certain hierarchical lat-
tices. Not only does that fact prove that the GK scheme
and its generalizations give positive densities of states, it
also helps to understand certain spectral features of the
DQS. We now demonstrate the exactness of the GK re-
cursion relations for certain hierarchical lattices, which,
incidentally, are not translationally invariant.

Consider the GK recursion relations Eqs. (3.2a) and
(3.2b). After one decimation, one can write the equations
of motion for the remaining degrees of freedom (say the
even sites for definiteness) in the following form:

2X (0)(cA +cB ) —2cA L "' L (0) —2cBL (0) L (0)

2X")—M, (~'+ ~ ~}
M~(ro +i@) 6—;0

= M 6 0+ (6.+2 0+6' 2 0)
L (0)

(0)
(0) + cBL

2K —MA(m +I',e)
L (0)

2X(0)—M (co'+ie)
(4.1)

This expression came from eliminating odd sites and
averaging but instead, one may interpret it as corning from
the elimination of two sites of mass cAMA and cBMB on
each odd site, attached to their neighboring even sites with
respective intersite force constants cAK' ', cAL' ' and
cBK' ', cBL' '. Indeed, considering the lattice of Fig. 4{a),
one can see that the equation of motion for the site

marked i + 1, for example, is (with i even)

A[( '"—MA(~'+ e)J i"+1,0= A[ "'(~l+2,0+ l, o)]

(4.2)

Canceling cA and substituting analogous equations for the
other odd sites in the equations of motion for the unde-
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cimated atoms, it is easy to see that Eq. (4.1) follows.
In order to perform the next decimation, Eq. (4.1) is

first rewritten with the help of Eqs. (3.2a) and (3.2b),

In this expression, a numbers the eigenvalues co and the
corresponding eigenvectors with amplitudes uj ~ on sites j.
These eigenvectors are normalized as follows:

(2K' "—Mg Q) )G; p ——Mg 5g p+L "'( Gg +2 p+ Gg 2 Q) .

(4.3)

X u; ui Mi oV',——X u; u; W; =5 (5.2)

We are thus back to the original problem. Decimating
and using the same point of view as above, one finds that
after the second decimation the GK approximation is ex-
act for the lattice of Fig. 4(b). Repeating this process, a
whole lattice i" generated.

From an alternate point of view, the basic building
block of the hierarchical lattice is Fig. 5(a). To generate
the lattice, each bond of force constant K is replaced by
four springs and two masses as indicated in Fig. 5(b). To
construct the hierarchical lattice which is the exact solu-
tion of the GK recursion relations iterated n times, one
simply repeats the operations leading from Fig. 5(a) to 5(b)
n times. The final lattice contains 2&(4" springs and
(4"+' —1)/3 masses. It can sustain at most as many
modes as there are masses. If the central mass is Mz or
M~ then, correspondingly, pz(cu ) or pz(co ) is the exact
density of states for this atom in the lattice. ' Depending
on the value of the small imaginary part e, the peaks cor-
responding to each eigenfrequency will be more or less
broad.

Note that the different generalizations of the GK
scheme mentioned in the preceding section correspond to
obvious generalizations of the hierarchical lattice just dis-
cussed. Note also that one may interpret the hierarchical
lattice as being built, starting from Fig. 5(a), by replacing
each spring K by cz parallel units of type, say 2, and cz
parallel units of type 8. Units of type 3 would consist of
a mass Mz attached to two springs of constant E and
units B would instead have a mass Mz and two springs of
constant K. This procedure would lead to the same recur-
sion relations and is identical to that used in critical phe-
nomena. ' However, since cz and c~ here are fractional
numbers, we find it preferable to think in terms of realiz-
able lattices of the type described earlier. We also think
much insight into the significance of the results in critical
phenomena' could be obtained by similarly working with
fractional numbers of bonds and trying to interpret the re-
cursion relations obtained there as originating from some
type of average over randomness.

Finally, we should point out the figures we used here
are just pictorial representations of the lattice. They
should be interpreted as one dimensional. Figure 6 illus-
trates how one would physically realize the lattice of Fig.
5(b).

V. EIGENVECTORS AND SCALING TRAJECTORIES

Information on the eigenvectors is contained in the scal-
ing trajectories. We first show this explicitly in the case of
a pure chain' and in the single impurity limit where the
GK recursion relations are exact. The relation between
eigenvectors on the hierarchical lattice and those of the
lattice it is supposed to model is discussed afterwards.

The following relation will be useful shortly:

(2K —Mco )up ——K(u) +u, ),
one sees that after I iterations

(5.3)

&2m

Qp~

Defining

(2A' ' —Mm')a (m)

2L (m)
(5.4)

cu = (1—cosk a)2K
M

(5.5)

one can show from the recursion relations and from Eq.
(5.4) that

&pm
=cos(2 k a) . (5.6)

Given the above boundary conditions, Eq. (5.5) will be an
eigenvalue only if

cos(2"k a)=0 . (5.7)

One concludes that from the right-hand side of Eq.
(5.4), which may be computed directly from the recursion
relations with real co, one obtains information about the
eigenvectors. In particular, a delocalized eigenvector such
as Eq. (5.6) will lead to a value of y™which strictly
speaking iterates to zero but which in practice follows a
rather chaotic trajectory.

Indeed the eigenvalues are found from the DOS calcu-
lated with a small imaginary part and hence they are not
quite exact, i.e., the relation (5.7) is only approximately sa-
tisfied. In fact, for the uniform chain one finds for n large
enough that any co satisfying Eq. (5.5) with k real is an
eigenvalue. In general, this leads to chaotic trajectories
since the recursion relations (2.8a) and (2.8b) when written
in terms of the variable

(m) & (1 y(m)) (5.8)

are of the form

w' +"=A.w' '(1 —w' ') (5.9)

A. Pure chain and single impurity limit

When the recursion relations (2.8a) and (2.8b) are iterat-
ed n times and Eqs. (2.10) and (2.11) are used, one obtains
the exact DOS on the central atom of a chain containing
2"+' —1 atoms with the boundary condition that the last
atoms are attached to a rigid wall by a spring of constant
K. Alternatively, this procedure gives the DOS for a
chain of 2"+' atoms with antiperiodic boundary condi-
tions.

At frequencies for which the DOS is different from
zero, Eq. (5.1) shows that the central atom must be mov-
ing and, by symmetry, displacements to the left and to the
right must be equal. Hence, starting from

(5.1) with A, =4. This is easily recognized as the logistic
map. ' ' The value A, =4 is the last accumulation point of
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CB MB CBMB C BIVIB

CBMB

FIG. 4. (a) Lattice which leads to the GK expressions for K'" and L"' when all pairs of sites c~M&, c~M& are eliminated. Note
that the masses on sites i,i +2, etc. need not be specified. The force between sites i and i + l with mass M~ is c~K (u;+& —u;) but it
is easier to see how it generalizes to further recursions when written in the form c&(K' 'u;+ ~

—L ' 'u;). (b) Lattice which would repro-
duce the GK expressions for JC' ' and L' '. Notice that pairs of masses and springs on the smallest length scale (dotted square) are
analogous to those which, when eliminated, yielded L "' in (a). The difference here is that all elements in the dotted square (level zero)
are multiplied by c&. Hence, when eliminated, this dotted square gives c&L'" and c&K"' as may be checked from Eqs. (3.2a) and
(3.2b).

Iterating the recursion relations (3.2a) and (3.2b) one
finds that there is a finite density of states on the impurity
atom outside the band for the pure chain at

(5.11)

4E 1

M
(5.10)

where the inverse localization length is given by

1 1+5~= —ln
a 1 —5

(5.12)

K

"c k ~
k Ce

CBMB

(a)
FIG. 5. Hierarchical lattice may be built by considering the

spring E in (a) as being a unit formed of four springs and two
masses as indicated in (b), and then considering each of the
springs in that figure as another such unit and so on.

where 5=1—(Mz /M~). This is in agreement with the ex-
act result. Taking the displacements to be even around the
A atom by symmetry, one finds that

Note that in regions where the DOS vanishes, ratios
such as (5.11) grow under iteration. ' In the case of the
pure chain, the chaotic and growth regimes of iteration are
separated by fixed points ' which give some information
on the singularities of the DOS at the band edges. ' The
scaling function which allows this information to be ex-
tracted is discussed in Appendix A.

CAK CA MA CAK

C B K CBMB CBK

FIG. 6. Physical realization of the lattice of Fig. 5(b). Notice
that the central object may move sideways but not rotate.
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B. Hierarchical lattice and disordered chain

"2.-& a

~pa 2y
(n —1) (5.13)

where

(2K MAco )
yA =

2L(n -1) (5.14)

Similarly, from the equation of motion for the atom of
mass cAMA to the extreme right, one finds

~2n 2lt —2 ~
A (n —2)

& 2n —& 2yA
(5.15)

or, from Eq. (5.13),

In the completely disordered case, one may first ask for
the character of eigenvectors on the hierarchical lattice
and then try to compare it to eigenvectors on a truly disor-
dered chain. Given an eigenfrequency, it is possible to
find the relative displacements of atoms on the hierarchi-
cal lattice. An eigenfrequency for a finite chain (i.e., for a
fixed number of iterations) may rapidly be found numeri-
cally, to thirteen significant figures for example, by identi-
fying a maximum in the DOS using a rather large value of
e, then looking at a smaller energy range around that max-
imum with a smaller value of e, and repeating the process
until @=10 ' . Each time, the DOS is computed for in-
tervals of co equal to e.

To find the relative displacements of atoms, let us con-
sider Fig. 4(b). If the atoms to the extreme left and right
are replaced by walls, then that figure represents the atoms
which are eliminated (except for the central atom) by the
last two decimations. Using the equation of motion for
the atom of mass cAMA, it is easy to see that in an eigen-
mode o., if n iterations eliminate all atoms but the central
one, then

k =(nz + —,
' )~/l, (5.18)

where m =0, 1,2, . . . and l =2"a. Hence, when the chain
is doubled in size, there are twice as many eigenvalues and
the splitting between these is

2K . psink a —a .
2l

(5.19)

As one keeps increasing the size of the chain, the splitting
of the new eigenvalues which appear close to the original
one are clearly proportional, when k a »1, to the inverse
chain length.

In the case of a single impurity, where the GK recur-
sion relations are exact (c„=0),one may verify numerica1-
ly that the result (5.17) holds. For the more general case,
we find that for each eigenenergy on a central atom, for
example, 3, two new eigenfrequencies appear when the
chain length is doubled. This behavior is illustrated, for
small chains, by the tree diagram of Fig. 7. The splitting
between eigenfrequencies does not however follow the in-
verse length dependence discussed above. Instead, the
splitting between the two lowest frequencies of the tree
have the following dependence on chain length:

Ace (l) =C/l" (5.20)

with C a constant and p=2. 39 for the special case in Fig.
7. A law of this form is also found for the splittings of
the two highest frequencies corresponding to each chain
length on the tree of Fig. 7. However, for a chain of a

36
I

delocalized mode on a finite pure chain on the other hand,
the eigenfrequency for symmetric modes is given by Eq.
(5.5) with

A
+2n 2n —2 ~ 1

2 (Pl —2)2 (1f 1 )Qp~
(5.16)

3.4—

~2 ~2 ~2 (2$e —2lxa sinhKa) (5.17)

where 6 and ~ are defined, respectively, below Eq. (5.10)
and in Eq. (5.12) and co is given by Eq. (5.10). For a

These relations may easily be generalized (see below).
From these, the displacements of atoms at any distance
from the central atom may also be found but the expres-
sions are not so simple.

Clearly then, the character of a mode may not be in-
ferred from the behavior of recursion relations as simply
as in the case of the pure chain, both because the displace-
ments of atoms do not follow trivially from the recursion
relations and because, on a hierarchical lattice, the dis-
placements of the many atoms at a given distance from
the central site are in general different from each other.

Another clue on the general character of an eigenmode
may be obtained from the behavior of the -nergy of a
given mode as the size of the lattice is increased. Consid-
er, for example, a single impurity in a pure finite chain of
length 2l =2"+'a. Perturbation theory gives the eigenfre-
quency co of the localized mode as,

3.2-

3.0—

2.8-

2.6
3

FIG. 7. Eigenfrequencies around co =3 as a function of
n =log&(I), where 2l is the hierarchical lattice length. For an 2
central atom, the eigenfrequencies are represented by points.
Some of them have been joined by straight lines to illustrate the
bifurcation structure. The crosses are for a B central atom. For
clarity, the crosses have not been marked for n )4. c~ ——0.5,
Mg ——3M'.
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given length, the many splittings do not compare very
easily with one another. By analogy with Eq. (5.17), one
also finds that for a chain of length l, the lowest frequency
m (I) in Fig. 7 for that chain follows the law

~'(l) —~'„=c'/t~ (5.21)

with p, the same as in Eq. (5.20) and where co is the
lowest frequency on the continuation of the tree of Fig. 7.

We should also point out that an eigenfrequency for an
3-type central atom, in general finds itself barely shifted
for a B central atom on a chain twice the size, and vice
versa. A few of the eigenfrequencies for B-type central
atoms are marked with crosses on Fig. 7. In general
though, these frequencies correspond to a small density of
states compared with that on the A-type atom in Fig. 7,
and hence one may surmise that for these frequencies, the
average displacement is larger away from the central
atom, a fact one may confirm by looking at eigenvectors.

The type of behavior we have just described in Fig. 7
has also been observed for atoms of mass Mz or M~, for
small or intermediate concentrations and for energies ei-

I

ther above or below the band edge of the pure chain of
heavy atoms. It is interesting to point out though that in
the latter case, when the DOS is calculated for a heavy
central atom, the power-law behavior of the splittings sets
in for longer chains only suggesting that the eigenvector
has more structure or a longer "localization length" in the
sense that its asymptotic large distance decay comes in at
a larger distance from the central atom.

These results on energy splittings suggest some sort of
"algebraic localization" of the modes. This may be
checked by looking in detail at the eigenvectors although,
as we discussed at the beginning of this section, it is a
much more difficult task. We must first compute some
sort of average over the displacements of atoms at a given
distance from the central atom. We tried arithmetic aver-
ages over the displacements or their absolute values, but it
seems that the geometric mean has a more regular
behavior. More specifically, using the results (5.13) and
(5.16), and their generalizations, we calculate the average
displacements of atoms at a distance (in units where a = 1)
2"—2" from the central atom of a chain of length
2)& 2" as follows:

2 2

ln(u „„ /uo )—= g
i& ——1 i& ——1

2

y cc;, . . . c; 1n~x'" "x'" ' x"
i =1m

(5.22)

where 1 (m (n and,

(„) 1/(2'"'),
1/(2'" '), l =2.

1
ln cos —1—

2 2m
(5.23)

We find this to be the case to about 8% accuracy for
chains of length 2&&2 and to about 0.03% for chains of
length 2)&2". Note in passing that for sufficiently large
values of m, Eq. (5.23) reduces to

To check the validity and understand the meaning of
this formula, we first consider the eigenvector correspond-
ing to the lowest frequency on a hierarchical lattice with
either an A or B central atom. In that limit (co~0), the
GK approximation should be exact since the mass disap-
pears from the problem [Eqs. (2.1) and (2.2)] and hence
there is no more disorder. One finds that Eq. (5.21) is
satisfied with p =2, i.e., co goes to zero as 1/I in agreement
with the fact that this lowest-frequency mode should be
delocalized. Furthermore, , since cos(mx/21) is the eigen-
vector corresponding to the lowest-frequency mode of a
uniform chain, we can check whether calculations from
Eq. (5.22) fit the function

ln(u „„ /uo )=m(Pm yn) . — (5.25)

This result indicates a behavior that is more complicated
than Eq. (5.20) but that does however have the nice feature

E

Q —2
O

la

E
fa
OJ

c -4
CU

la

-5

I

Fig. 7. The points are all averages over atoms closer to
the boundaries than to the central atom where the DOS is
calculated and hence they represent the long-distance
behavior of the eigenvectors. The curves on Fig. 8 may all
be fitted by the following:

—m ln2+ ln(m. /2) (5.24)

which is independent of n and should be contrasted with
the result (5.25) below.

For a more general case, the results of calculations with
Eq. (5.22) are illustrated in Fig. 8. The various straight
lines are for different chain lengths. For each of these
chains, the energy is chosen as the lowest on the tree of

I
$

I
[

I

8 10 12

FIG. 8. ln(u „„ /uo ) is defined in Eq. (5.22). The fact

that we have straight lines on this figure shows that the relation
(5.25) is correct. The crosses are the results of calculations and
the straight lines are least-square fits.
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TABLE I. Results obtained from various trees of the type illustrated in Fig. 7. ~l is the eigenfre-
quency square (for a chain of length 4) from which the tree branches. cq is the concentration of A-type
atoms (M& ——3M& ). In the next column, is the maximum number of iterations necessary to study the
longest chain (of length 2l) for that tree. For the first two lines of the table, longer chains were beyond
the precision of the computer. The central atom is that on which the DOS is computed, p is defined in
Eqs. (5.20) and (5.21), while P and y appear in Eq. (5.25). Note that the result marked with an asterisk
applies only to the longest chains and is the most uncertain.

2
C01

2.391 284000 256 7
1.980909 373 849 6
3.071 697 493 336 6
0.882 686 932 815 51

0.001
0.005
0.5
0.5

log~i

8
7

11
11

Central
atom

6.52
5.35
2.39
2.3

1.86
1.53
0.228
0.213

3.86
2.95
0.475
0.480

ln
&pn pn —m & = gc;lnfx"

=y(m —n) —+ .
2

(5.26)

This relates more directly the behavior of recursion rela-
tions with eigenvectors.

Even though we have looked only at a small number of
cases, it is tempting to suggest that the above behavior of
energy splittings [Eq. (5.20)] and of average displacements
[Eq. (5.25)], is typical for that kind of model. Note also
that given the complicated topology of the hierarchical
lattice and the somewhat artificial meaning of the average
displacements defined by Eq. (5.22), it is not really
surprising to find that the behavior of energy splittings
and average displacements are not simply related.

To compare the eigenmodes on the hierarchical lattice
with those of a real one-dimensional chain it is supposed
to model, one should recall that there, disorder induces ex-
ponential localization. This is clearly not observed for
the hierarchical lattice. It may be tempting to compute an
average localization length using the Herbert- Jones-
Thouless ' formula and the real part of the average
Green's function, which may be computed from the GK
scheme. That is not really justified, however, unless there
is exponential localization.

The lack of exponential localization on our lattice is not
all that surprising given that the hierarchical lattice is not

that it extrapolates to u „„=uo when m =O.
Also, once again, a law of the form (5.25) sets in only for
longer chains when we look at a low energy mode on a
heavy atom where we expect less "localization. "

The results for the cases we studied in detail are sum-
marized in Table I. The exponent P is obtained from the
slopes of lines like in Fig. 8 and y from the slope of the
graph of the intercept of these lines as a function of n.
Since P is not constant, but seems to reach a limit as the
chain length increases, we quote our estimate of this limit-
ing value. The same is true for y. Error estimates from
least-square fits give an uncertainty of not more than 5 on
the third digit. Within a more conservative error bound of
1 on the second digit, note that y=2P. Assuming that
this equality holds and using Eqs. (5.22) and (5.25) one
finds

really a one-dimensional structure. Remarking that each
time the length scale is changed by a factor of 2 the num-
ber of springs is changed by a factor of 4, the hierarchical
lattice looks, from that point of view, two dimensional. In
fact the connectivity is different from atom to atom' '"
and the structure is neither one nor two dimensional.
Hence it is not all that surprising to find that the behavior
is somewhere between exponential localization, like for
one-dimensional systems, and logarithmic localization,
like a two-dimensional system.

VI. CONCLUSION

We have demonstrated that the particular type of re-
scaling and of averaging over quenched disorder proposed
by GK is exact for the single-site DOS of the central atom
of a hierarchical lattice. This lattice is self-similar but not
translationally invariant. This connection suggests
perhaps that self-similar lattices may be a useful vehicle
for the study of disordered systems. It also helps to
understand the positivity, as well as some of the details of
the GK spectrum. The GK scheme is also exact in the
single impurity limit and, for arbitrary concentrations, in
the limit of equal masses.

We have also shown that, even though the GK approxi-
mation is the simplest one to give sharp features analogous
to those of the true DOS, these features do not necessarily
compare in detail with those of the true DOS. Neverthe-
less, it is possible to generalize the scheme to obtain better
DOS while retaining the essential simplicity of the origi-
nal method as well as the hierarchical lattice interpreta-
tion. Eliminating more atoms before averaging seems to
improve the part of the spectrum which involves longer-
range properties, while taking a larger number of atoms as
the basic units improves the results for modes which de-
pend more on short-range properties. This latter type of
approximation is in a sense a generalization of cluster
Bethe-lattice methods where a Bethe lattice is attached
to various clusters of atoms. Here, a hierarchical lattice of
clusters is attached to the central cluster being studied.
The exact result must be obtained when a large enough
block is taken as the basic unit. In standard rescaling ap-
proaches, the exact result is reached by taking a larger and
larger parameter space to describe the probability law.
Our point of view is different but equally valid.

Some qualitative information on the localization of the
modes can evidently be obtained from their sensitivity to
the particular approximation scheme used, but it is also
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possible to be more quantitative by looking at the depen-
dence of the energy splittings on chain length or even by
studying directly the eigenvectors. That kind of analysis
is tedious and not totally straightforward, but it tends to
show some kind of "algebraic" localization of the modes.
In energy ranges where the modes are expected to have a
more extended character, the asymptotic algebraic
behavior tends to set in only for rather long chains.

Finally, in Appendix A we show to what kind of
quenched disorder averaging the GK scheme leads in the
generating functional. The analogies between the generat-
ing functional and critical phenomena suggest that similar
considerations applied to statistical mechanics might help
to understand the connection between hierarchical lattices
used, for example, for the spin-glass problem' and the
real disordered systems they are supposed to represent.

Note added in proof After . this paper was submitted for
publication we received a manuscript from M. O. Robbins
and B. Koiller where it is shown analytically that in the
simple GK approximation the first five moments of the
exact spectrum are preserved. These authors also discuss
how many of the exact moments are reproduced when one
uses more elaborate schemes such as the ones considered
here.
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where

(A2)

The classical action is equal to the Fourier sum of S over
frequencies. Units may be chosen such that S is dimen-
sionless. Notice that the term proportional to e makes the
integral convergent. Integrating by parts one obtains

f ss(O
&u e ukMI, ———Mk6kI . (A4)

5u

One can easily show that this leads directly to the equa-
tions of motion (2.3) if the following definition of the
Green's function is used:

is„(O)
i f&u(utukMk)e

G

fuu e"" (A5)

This definition closely parallels the result (5.1). The quan-
tity W in Eq. (A1) is thus a generating functional since the
Green's function Eq. (A5) may be obtained from it by tak-
ing functional derivatives with respect to Pj or other
parameters such as M or co .

The generating functional is analogous to the free ener-

gy in phase transitions except that here it can be complex.
The recursion relations (2.8a) and (2.8b) may be obtained
from that functional by performing the Gaussian integrals
over half of the sites and regrouping the coefficients of the
remaining variables (say even sites) to write S in the form

N/2
S„"= g [ , [Mj(ro +—ie)—2K" ]]u~j

i=1

and

NS„''= g [ ,'M—j(ro +ie)u) ,—K—(uj+]—uj) P—juj] .
j=l

(A3)

APPENDIX A: GENERATING FUNCTIONAL
AND ANALOGY WITH CRITICAL PHENOMENA

(1)+L upjup(j+]) I (A6)

The generating functional presented in this appendix al-
lows one to draw analogies with renormalization-group
approaches in critical phenomena. This functional was
implicitly used in an earlier paper' to extract exponents
for the band-edge singularities from the behavior of recur-
sion relations near fixed points. The generating functional
also allows us to give yet another argument for the posi-
tivity of the DOS in the GK approximation or generaliza-
tions thereof.

Let us define

M (co,K, [M; ), [(i];] )

=ln fQ'u exp[iS' '([u; I,a],K, [M; I, [])I];I )]

(Al)

(w )~q-=ln f&u exp(i(S'"+C]"),dd) (A7)

Here, C"' is a constant term containing information only
on the eliminated odd sites. This process is repeated until

Pj can be set equal to zero for this purpose since to find
the DOS on a single site, it suffices to eliminate all sites
but this one.

One thus concludes that the renormalization procedure
leaves the generating functional invariant, as in critical
phenomena, and it is using this analogy that one may find
the relationship between band-edge singularities and
renormalization-group eigenvalues. '

In the disordered case, the above procedure may be re-
peated to generate the recursion relations (3.1a) and (3.1b)
for any realization of the disorder. The recursion relations
(3.2a) and (3.2b) in the GK approximation may be ob-
tained by averaging only over the eliminated sites (say odd
sites) as follows:



230 LANGLOIS, TREMBLAY, AND SOUTHERN 28

only one degree of freedom is left. This degree of freedom
is taken as representative of an atom in an infinite disor-
dered chain.

Clearly, the above scheme is in a sense a poor approxi-
mation since the log should be averaged. Nevertheless,
since only a partial averaging is done, this seems a better
approximation than averaging 5' ' over all degrees of free-
dom as is often done in the simplest kind of effective
medium approximation. In terms of the full Green's func-
tion (2.4), one may state in an analogous manner that
while the inverse matrix on the right-hand side should be
averaged, one instead eliminates half of the degrees of
freedom of the matrix on the left-hand side of Eq. (2.3)
and then averages this matrix, which is now half the size.

Equations (Al) —(A7) are also useful to prove that the
GK approximation preserves a positive density of states.
The fact that the DOS is positive comes from the sign of e
in MG '=2 —M(co +i@). Since this same e is the only
term which gives to the argument of the exponential a real
part with the sign appropriate to insure convergence of the
integral (A1), the density of states will be positive if and
only if the functional integral is formally convergent.
Since the quantity S'"+C"' has, before averaging, the
correct properties to insure convergence of W for any real-
ization of the disorder, its average over the eliminated sites
has the same properties. Note that C"' does not contri-
bute to the density of states on the uneliminated sites.

Recursion relations for the quantities (3.9a) and (3.9b)
may be derived from the functional integral by changing
variables as often as necessary to insure that the coeffi-
cient of the quadratic terms (Q ) always be equal to the
same constant. However, averaging those recursion rela-
tions does not correspond to a simple procedure in the
functional integral and we have not been able to deduce
what this procedure implies for the DOS. In particular,
we have not been able to show that this procedure guaran-
tees positivity.

(whose eigenvalues are the square of the original ones), the
number of T matrices to multiply to obtain the same gen-
erating functional is then half as much.

The GK approximation for the disordered case does not
correspond to such a simple procedure. Nevertheless, the
transfer matrix may be used to express the scaling
transformation for arbitrary scale change in a compact
way. Starting from the equations (2.1) and (2.2) for Q;, the
idea, as usual, is to eliminate Q;+1 in terms of Q; and Q;+b,
where b is the scaling factor. Equations (2.1) and (2.2)
may be written in the form

T

Qi+1 Qi

Q;
T i Qi

where

(2K —M;m )/K& i+1 —Ki i 1/K&. i+1
1 0

Using this result, we have that

(82)

Qi +b

Qi +b —1

Qi+1
~T +b —1 ~T'+2Ti +1

T

Qi+1—=Tb, ' Q. (B3)

which may be used to write Q;+1 1n terms of Q; and Q;+b,

1 ( T+by1, +1 )12
Qi+1 = Qg+b —. Qi ~

( T+b+1, +1 )11 ( T+b+1, +1 )11

Substituting in Eqs. (2.1) and (2.2) we find the renormal-
ized parameters

2~(1) 2~ ~ —b —l, l 12 ~ — b+I, —1)12—(T' ) (T'
l + l, l +1 + i,i —1

(—b —1, 1)11 ( —b+1, —1)11

APPENDIX B: RELATION WITH TRANSFER
MATRIX METHODS

In the case of a uniform system, the recursion relations
may be found by writing the eigenvalues of the square of
the transfer matrix in the same functional form as the
original eigenvalues. Using this new transfer matrix

~(1)
S, l+1

( T+by1, +1 )11
(86)

The equations may then be averaged as was done in going
from Eqs. (3.1) to (3.2). When b =2 the GK result is
reCOVCI Cd.
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